
A Hierarchy of Local Decision∗

Laurent Feuilloley1, Pierre Fraigniaud2, and Juho Hirvonen3

1 Institut de Recherche en Informatique Fondamentale (IRIF), CNRS and
University Paris Diderot, Paris, France
laurent.feuilloley@liafa.univ-paris-diderot.fr

2 Institut de Recherche en Informatique Fondamentale (IRIF), CNRS and
University Paris Diderot, Paris, France
pierre.fraigniaud@liafa.univ-paris-diderot.fr

3 Helsinki Institute for Information Technology (HIIT), Department of
Computer Science, Aalto University, Aalto, Finland
juho.hirvonen@aalto.fi

Abstract
We extend the notion of distributed decision in the framework of distributed network computing,
inspired by recent results on so-called distributed graph automata. We show that, by using
distributed decision mechanisms based on the interaction between a prover and a disprover, the
size of the certificates distributed to the nodes for certifying a given network property can be
drastically reduced. For instance, we prove that minimum spanning tree can be certified with
O(logn)-bit certificates in n-node graphs, with just one interaction between the prover and the
disprover, while it is known that certifying MST requires Ω(log2 n)-bit certificates if only the
prover can act. The improvement can even be exponential for some simple graph properties.
For instance, it is known that certifying the existence of a nontrivial automorphism requires
Ω(n2) bits if only the prover can act. We show that there is a protocol with two interactions
between the prover and the disprover enabling to certify nontrivial automorphism with O(logn)-
bit certificates. These results are achieved by defining and analysing a local hierarchy of decision
which generalizes the classical notions of proof-labelling schemes and locally checkable proofs.

1998 ACM Subject Classification D.1.3 Concurrent Programming (Distributed programming),
F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Distributed Network Computing, Distributed Algorithm, Distributed
Decision, Locality

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.118

1 Introduction

This paper is tackling the long-standing issue of characterizing the power of local computation
in the framework of distributed network computing [27]. Our concern is the ability to design
local algorithms, defined as distributed algorithms in which every node of a network (i.e.,
every computing entity in the system) can compute its output after having consulted only
nodes in its vicinity. That is, communications proceed along the links of the network, and, in
a local algorithm, every node must output after having exchanged information with nodes at
constant distance only. A construction task consists, for the nodes of a network G = (V,E)
where each node u is given an input x(u), to collectively and concurrently compute a collection

∗ The first and second authors received additional supports from ANR project DISPLEXITY, and from
INRIA project GANG.

EA
T

C
S

© Laurent Feuilloley, Pierre Fraigniaud, and Juho Hirvonen;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 118; pp. 118:1–118:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.118
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

118:2 A Hierarchy of Local Decision

y(u), u ∈ V , of individual outputs, such that (G, x, y) satisfies some property characterizing
the task to be solved. For instance, the minimum-weight spanning tree (MST) task consists,
given the weights x(u) of all the incident edges of every node u, in computing a subset y(u)
of edges incident to u such that the set {y(u), u ∈ V } forms a MST in G. Similarly, the
maximal independent set (MIS) task consists of computing y(u) ∈ {0, 1}, u ∈ V , such that
the set {u ∈ V : y(u) = 1} forms an MIS. It is an easy observation that the MST task cannot
be solved locally as the weights of far-away edges may impact the output of a node. In a
seminal result Linial showed that the same is true for MIS [24]: there is no local algorithm
for constructing an MIS, even on an n-node ring. Nevertheless, there are many construction
tasks that can be solved locally, such as approximate solutions of NP-hard graph problems
(see, e.g., [8, 21, 22, 23]). In general it is Turing-undecidable whether or not a construction
task can be solved locally [26].

Interestingly, the Turing-undecidability result of Naor and Stockmeyer [26] concerning the
locality of construction tasks holds even if one restricts the question to properties that can
be locally decided. A distributed decision task [1, 13] consists, given an input x(u) to every
node in a network G, in deciding whether (G, x) satisfies some given property. An instance is
accepted by a distributed algorithm if and only if every node individually accepts (i.e., every
node u outputs y(u) = true). For instance, proper colouring can easily be decided locally
by having each node merely comparing its colour with the ones of its neighbours. On the
contrary, deciding whether a collection of edges defined by {x(u), u ∈ V } forms a MST is not
possible locally (in fact, even separating paths from cycles is not possible locally). Similarly
to the sequential computing setting, there are strong connections between the construction
variant of a task and the ability to locally decide the legality of a given candidate solution
for the same task, as illustrated by, e.g., the derandomization results in [6, 26], and the
approximation algorithms in [29]. These connections have motivated work focusing on the
basic question: what can be decided locally? This paper is aiming at pushing further our
current knowledge on this question.

Two specific lines of work have motivated our approach of local decision in this paper. The
first line of research is related to the notion of proof-labelling schemes introduced by Korman
et al. [20], who showed that while not all graph properties can be decided locally, they can
all be verified locally, with the help of local certificates provided by a prover. Unfortunately,
there are natural graph properties (e.g., the existence of a non-trivial automorphism) which
require Ω(n2)-bit certificates to be verified by any local distributed algorithm [16]. Göös
and Suomela introduced the more practical class LogLCP of all graph properties that can be
verified using certificates of size O(logn) bits [16], i.e., merely the size required to store the
identities of the nodes. The class LogLCP contains non locally decidable properties such as
hamiltonicity and non-bipartiteness. LogLCP even contains graph properties that are not in
NP. Also, all existential-MSO graph properties are shown to be in LogLCP.

The second line of research which motivated our approach is the study of distributed
graph automata. In particular, [28] recently proved that an analogue of the polynomial
hierarchy, where sequential polynomial-time computation is replaced by distributed local
computation, turns out to coincide with MSO. However, while this result is important for
our understanding of the computational power of finite automata, the model does not quite
fit with the standard model of distributed computing aiming at capturing the power of
large-scale computer networks (see, e.g., [27]). Indeed, on the one hand, the model in [28] is
somewhat weaker than desired, by assuming a finite-state automaton at each node instead of
a Turing machine, and by assuming anonymous computation instead of the presence of unique
node identities. On the other hand, the very same model is also stronger than the standard

L. Feuilloley, P. Fraigniaud, and J. Hirvonen 118:3

model, by assuming a decision-making mechanism based on an arbitrary mapping from
the collection of all node states to {true, false}. Instead, the classical distributed decision
mechanism is based on the logical conjunction of the individual decisions. This is crucial
as this latter decision mechanism provides the ability for every node rejecting the current
instance to raise an alarm, and/or to launch a recovery procedure, without having to collect
all of the individual decisions.

In this paper, our objective is to push further the study initiated in [16] on the LogLCP
class, by adopting the approach of [28]. Indeed, LogLCP can be seen as the first level Σ1 of a
local hierarchy (Σk,Πk)k≥0, where Σ0 = Π0 = LD, the class of properties that can be locally
decided [13], and, for k ≥ 1, Σk is the class of graph properties for which there exists a local
algorithm A such that, for every instance (G, x),

(G, x) is legal ⇐⇒ ∃`1∀`2∃`3 . . . Q`k : A(G, x, `1, `2, . . . , `k) accepts

with k alternations of quantifiers, and where Q is the universal quantifier if k is even, and the
existential quantifier otherwise. (Πk is defined similarly as Σk, but starting with a universal
quantifier). The `i’s are called labelling functions, assigning a label `i(v) ∈ {0, 1}∗ to every
node v, such that, for every node v, |`i(v)| = O(logn) in n-node networks. Our aim is to
analyze the local hierarchy in the general context of distributed network computing [27], where
each node has an identity which is unique in the network, every node has the computational
power of a Turing machine, and where the acceptance of an instance by an algorithm is
defined as the logical conjunction of the individual decisions of the nodes.

1.1 Our Results
We study a hierarchy (Σk,Πk)k≥0 of local decision which represents a natural extension of
proof-labelling scheme, as well as of locally checkable proof, with succinct certificates (i.e., of
size O(logn) bits). In addition to its conceptual interest, this hierarchy might have some
practical impact. Indeed, any level k of the hierarchy can be viewed as a game between a
prover and a disprover, who play in turn by alternating k times. Roughly, on legal instances,
the prover aims at assigning distributed certificates responding to any attempt of the disprover
to demonstrate that the instance is illegal, and vice-versa on illegal instances. The referee
judging the correctness of the collection of certificates produced by the players is a local
distributed algorithm. For instance, the extensively studied class Σ1 includes problems whose
solutions are such that their legality can be certified by a prover using distributed certificates.
Instead, the class Π2 includes problems whose solutions are such that their legality can be
certified by a prover against any other candidate solution provided by a disprover, both using
distributed certificates.

We show that many problems have succinct proofs in the hierarchy. Actually, climbing up
the hierarchy enables to reduce drastically the size of the certificates. For instance, we show
a quadratic improvement for MST, which requires locally checkable proofs of Ω(log2 n) bits,
while MST stands at the second level of our hierarchy. That is, there is a Π2-protocol for
MST using distributed certificates of O(logn) bits. For graph properties such as nontrivial
automorphism, the improvement can even be exponential in term of certificate size, by
relaxing the verification from locally checkable proofs with Ω(n2) bits proofs to Σ3 (with
O(logn) bits proofs). More generally, many natural optimization problems are on the second
level of our hierarchy. On the other hand, we also show that there are simple (Turing-
computable) languages outside the local hierarchy. This latter property illustrates the impact
of insisting on compact O(logn)-bits certificates: there are graph properties that cannot be

ICALP 2016

118:4 A Hierarchy of Local Decision

locally certified via a finite number of interactions between a prover and a disprover using
succinct certificates.

In addition, we prove several results regarding the structure of the hierarchy. In particular,
we show that if the hierarchy collapses partially at any level, then it collapses all the way
down to that level. On the other hand, we prove that the hierarchy does not collapse to
the first level (i.e., the first and second levels are distinct). Distributed decision is naturally
asymmetric, that is, reversing the individual decision of the algorithm at each node does not
correctly reverse the global decision of the algorithm. As a consequence, it is not necessarily
the case that co-Σk = Πk, and vice-versa. However, we show that one additional level of
quantifiers is always sufficient to reverse a decision (i.e., to decide the complement of a
language). Finally, we show that, for every graph property at the intersection of a level-k
class and the complement of this class, there is a protocol deciding that property at level k
with unanimous decision, for both legal and illegal instances.

All our positive results hold in the classical CONGEST model (in which every edge can
transmit at most O(logn) bits at each round), while all our negative results hold in the more
liberal LOCAL model (in which there are no constraints on the amount of bits that can be
sent through an edge at each round).

All proofs missing from this extended abstract can be found in [7].

1.2 Related Work
Several forms of “local hierarchies” have been investigated in the literature, with the objective
of understanding the power of local computation, or for the purpose of designing verification
mechanisms for fault-tolerant computing. In particular, as we already mentioned, [28]
has investigated the case of distributed graph automata, where nodes are anonymous finite
automata, and where the decision function is a global interpretation of all the individual
outputs of the nodes. In this context, it was proved that the local hierarchy is exactly
captured by the MSO formulas on graphs.

The picture is radically different in the framework in which the computing entities are
Turing machines with pairwise distinct identities, and where the decision function is the
logical conjunction of all the individual boolean outputs. In [13], the authors investigated
the local hierarchy in which the certificates must not depend on the identity-assignment
to the nodes. Under such identity-oblivious certificates, there are distributed languages
outside Σ1. However, all languages are in the probabilistic version of Σ1, that is, in Σ1 where
the correctness of the verification is only stochastically guaranteed with constant probability.
In [11], it is proved that Σ1 is exactly captured by the set of distributed languages that are
closed under lift. (A configuration (G′, x′) is a t-lift of a configuration (G, x) if there is an
input-preserving mapping from V (G′) to V (G) which preserves the t-neighbourhood of the
nodes in these graphs). Interestingly, in the same framework as [13] but where the decision
function is a global interpretation of the all the individual outputs, instead of the logical
conjunction of individual boolean outputs, [3, 4] proved that the local hierarchy collapses
to Σ1. Also, in the same framework as [13], but where the certificates may depend on the
identity assignment, all distributed languages are in Σ1 (see [20]).

In [16], the authors proved that, to be placed in the first level Σ1 of the local hierarchy,
there are distributed languages on graphs (e.g., the existence of a nontrivial automorphism)
which require to exchange certificates of size Ω(n2) bits among neighbours, which is enough to
trivially decide any problem. Similarly, [18, 20] has proved that certifying Minimum-weight
Spanning Tree (MST) requires to exchange certificates on Θ(log2 n) bits, which can be costly
in networks with limited bandwidth, i.e., under the CONGEST model [27]. In [19], it is

L. Feuilloley, P. Fraigniaud, and J. Hirvonen 118:5

proved that the size of the certificates for MST can be decreased to O(logn) bits, but to the
expense of O(logn) rounds of communication. Recently, [25] has proved that the amount of
communication between nodes (but not necessarily the size of the certificates) for verifying
general network configurations can be exponentially decreased if using randomization, and [9]
analyzed in depth the certificate size for s-t connectivity and acyclicity.

It is also worth mentioning the role of the node identities in distributed decision. For
instance, after noticing that the identities are leaking information to the nodes about the size
of the network (e.g., at least one node has an ID at least n− 1 in n-node network), it was
recently proved that restricting the algorithms to be identity-oblivious reduces the ability to
decide languages locally in Σ0 (see [10]), while this is not the case for Σ1 (see [11]). Recently,
[12] characterized the “power of the IDs” in local distributed decision. In [5], the authors
discussed what can be computed in an anonymous networks, and showed that the answer to
this question varies a lot depending on the commitment of the nodes to their first computed
output value, i.e., whether it is revocable or not. In the context of local decision, the output
is assumed to be irrevocable.

In general, we refer to [32] for a recent survey on local distributed computing, and we
refer to [14, 15] for distributed decision in the context of asynchronous crash-prone systems
with applications to runtime verification, and to [2] for distributed decision in contexts where
nodes have the ability to share non classical resources (e.g., intricate quantum bits).

2 Local Decision

Let G = (V,E) denote an undirected graph, where V is the set of nodes, and E is the
set of edges. The subgraph induced by nodes at distance (i.e., number of hops) at most
t from a node v is denoted by BG(v, t). All graphs considered in this paper are assumed
to be connected (for non connected graphs, our results apply separately to each connected
components). The number of nodes in the graph is denoted by n. In every graph G = (V,E),
each node v ∈ V is assumed to have a name from the set {1, . . . , N}, denoted by id(v), where
N is polynomial in n. In other words, all identities are stored on O(logn) bits. In a fixed
graph, all names are supposed to be pairwise distinct.

Distributed languages. A distributed language L is a set of pairs (G, x), where G is a graph
and x is a function that assigns some local input x(v) to each node v. We assume that
all inputs x(v) are polynomial in n, and thus can be stored locally on O(logn) bits. The
following are typical examples of distributed languages:

3-colouring: (G, x) such that x encodes a proper 3-colouring of G;
3-colourability: graphs that can be properly 3-coloured;
nta: graphs with a nontrivial automorphism;
planarity: planar graphs.

The complement L̄ of a distributed language L is defined as the set L̄ = {(G, x) : (G, x) /∈ L}.
For instance, the complement of 3-colouring is non-3-colouring, consisting of all pairs
(G, x) such that x is not a proper 3-colouring of G.

Labellings. A labelling ` is a function ` : V (G)→ {0, 1}∗, assigning a bit string to each node.
If, for every graph G and every node v ∈ V (G), `(v) ∈ {0, 1}k, we say that the labelling `
is of size k. In this paper, we are mostly interested in labellings of logarithmic size in the
number of nodes in the input graph.

ICALP 2016

118:6 A Hierarchy of Local Decision

Local algorithms. We use the standard LOCAL model of distributed computing [27, 24]. In
this model each node v ∈ V (G) is a computational entity that has direct communication links
to other nodes, represented by the edges of G. Every node runs the same algorithm. In this
paper, all algorithms are deterministic. Nodes communicate with each other in synchronous
communication rounds. During each round, every node is allowed to (1) send a message to
each of its neighbours, (2) receive a message from each of its neighbours, and (3) perform
individual computation. At some point every node has to halt and produce a local output.
The number of rounds until all nodes have halted is the running time of an algorithm.

A local algorithm is a distributed algorithm A for which there exists a constant t such
that, for every instance (G, x), the running time of A in (G, x) is at most t. Since the most
a node can do in t communication rounds is to gather all the information available in its
local neighbourhood BG(v, t), a local algorithm A can be defined as a (computable) function
from all possible labelled local neighbourhoods to some output set. Given an ordered set
¯̀= (`1, `2, . . . , `k) of labellings, for some k ≥ 0, and given an instance (G, x), we denote by
A(G, v, x, ¯̀) the output of v in algorithm A running in G with input x and labelling ¯̀.

Local decision. In distributed decision, the output of each node v corresponds to its own
individual decision. That is, each node either accepts or rejects. Globally, the instance
(G, x) is accepted if and only if every node accepts individually. In other words, the global
acceptance is subject to the logical conjunction of all the individual acceptances. For the
sake of simplifying the presentation, A(G, v, x, ¯̀) = 1 (resp., A(G, v, x, ¯̀) = 0) denotes the
fact that v accepts (resp., rejects) in an execution of algorithm A on (G, x) labelled with ¯̀.
We say that A accepts if A(G, v, x, ¯̀) = 1 for every node v ∈ V (G), and rejects otherwise.
We will use the shorthand A(G, x, ¯̀) = 1 to denote that ∀v ∈ V (G), A(G, v, x, ¯̀) = 1, and
A(G, x, ¯̀) = 0 to denote that ∃v ∈ V (G), A(G, v, x, ¯̀) = 0.

The first class in the local hierarchy considered in this paper is local decision, denoted by
LD. A language L is in LD if there exists a local algorithm A, such that for all graphs G,
and all possible inputs x on G, we have that (G, x) ∈ L ⇐⇒ A(G, x) accepts.

As an example, deciding whether x is a 3-colouring of G is in LD, but deciding whether
G is 3-colourable is not. Note that LD does not refer to any labellings. The algorithm A

runs solely on graphs G with possible inputs to the nodes.

Example: certifying spanning trees. In a graph G, a spanning tree can be encoded as a
distributed data-structure x such that, for every v ∈ V (G), x(v) encodes the identity of one
of v’s neighbours (its parent in the tree), but one node r for which x(r) = ⊥ (this node is
the root of the tree). Deciding whether x is a spanning tree of G is not in LD. However, a
spanning tree can be certified locally as follows (see [1, 17]). Given a spanning tree x of G
rooted at node r, a prover assigns label `(v) = (id(r), d(v)) to each node v, where d(v) is
the distance of v to the root r in the spanning tree x. Such a label is on O(logn) bits. The
verification algorithm A at node v checks that v agrees on id(r) with all its neighbours, and
that d(x(v)) = d(v) − 1. If both tests are passed, then v accepts, otherwise it rejects. It
follows that Algorithm A accepts if and only if x is a spanning tree of G. Now we can also
accumulate counters, such as the number of nodes in the graph, toward the root. This ability
to certify spanning trees and to use them to carry information is a simple but powerful tool
that will be used throughout the paper.

L. Feuilloley, P. Fraigniaud, and J. Hirvonen 118:7

3 The Local Hierarchy

We generalize the various classes of distributed decision from previous work into a hierarchy
of distributed decision classes, in a way analogous to the polynomial hierarchy (in particular,
our class ΣLD

1 is equal to1 the class logLCP introduced by Göös and Suomela [16]).

3.1 Definition
We first define an infinite hierarchy {(ΣLD

k)k≥0, (ΠLD
k)k≥0} of classes. For the sake of simpli-

fying the notation, each of these classes is now abbreviated in Σk or Πk. Informally, each
class can be defined by a game between two players, called the prover and the disprover,
who can assign labels to the nodes. The nodes take these labels as additional inputs when
running their local algorithm A. Both players are given the language L, the instance (G, x),
and the algorithm A. The goal of the prover is to make the nodes accept the instance,
whereas the disprover wants it to be rejected. In Σk (resp., Πk), with k > 0, the prover
(resp., disprover) goes first, and assigns an O(logn)-bit label to each node. Then, the players
alternate, assigning O(logn)-bit labels to each node in turn, until k labels `1, `2, . . . , `k are
assigned. A language L is in the corresponding class if there exists a local algorithm A such
that, for all instances (G, x), the prover has a winning strategy if and only if (G, x) ∈ L. In
other words, the algorithm is such that if (G, x) ∈ L, no matter how the disprover assigns its
own labels, the prover can make A accept. Conversely, if (G, x) /∈ L, then the disprover has
a winning strategy and thus it can force A to reject. Such a combination local algorithm
A and prover-disprover pair is called a decision protocol for L in the corresponding class.
Equivalently, we define LD = Σ0 = Π0, and, for k > 0, Σk is defined as the set of languages
L for which there exists c ≥ 0, and a local algorithm A such that

(G, x) ∈ L ⇐⇒ ∃`1 ∀`2 . . .Q `k, A(G, x, `1, `2, . . . , `k) = 1,

where Q is the existential (resp., universal) quantifier if k is odd (resp., even), and every
label `i is of size at most c logn. The class Πk is defined similarly, except that the acceptance
condition is: (G, x) ∈ L ⇐⇒ ∀`1 ∃`2 . . .Q `k, A(G, x, `1, `2, . . . , `k) = 1.
I Remark. For both Σk and Πk, the equivalence should hold for every identity-assignment
to the nodes with identities in [1, N], where N is a fixed function polynomial in n. Indeed,
the membership of an instance (G, x) to a language is independent of the identities given to
the nodes. On the other hand, the labels given by the prover and the disprover may well
depend on the actual identities of the nodes in the graph where the decision algorithm A is
run. This is for instance the case of the protocol for certifying spanning trees described in
the previous section, establishing that spanning-tree ∈ Σ1.

3.2 The odd-even collapsing and the Λk-hierarchy
Interestingly, the ending universal quantifier in both Σ2k and Π2k+1 does not help. The class
Π1 turns out to be just slightly stronger than LD. Specifically, we prove the following result.

I Theorem 1. For every k ≥ 1, Σ2k = Σ2k−1 and Π2k+1 = Π2k. Moreover, LD ⊆ Π1 ⊆
LD#node, that is, local decision with access to an oracle providing each node with the number
of nodes in the graph.

1 If fact, ΣLD
1 is equal to LogLCP as defined by Göös and Suomela [16] when one restricts computation to

be performed by Turing Machines ([16] makes no assumption on the computational power of the nodes).

ICALP 2016

118:8 A Hierarchy of Local Decision

Proof. The result follows from the fact that an existential quantification on labels of size
O(logn) bit is sufficient to provide the nodes with the exact size of the graph. This can be
certified by accumulating subtree counters along a spanning tree (see Section 2 [16]).

I Claim 1. Let L = {(G, x) : for every v ∈ V (G), x(v) = |V (G)|}. We have that L ∈ Σ1.

We show how to use this mechanism in the case of Σ2k, for k > 0. Let L ∈ Σ2k, and let
A be a t-round local algorithm such that:

(G, x) ∈ L ⇐⇒ ∃`1 ∀`2 . . . ∃`2k−1 ∀`2k, A(G, x, `1, `2, . . . , `2k) = 1.

Recall that all labellings `i, i = 1, . . . , 2k, are of size at most c logn for some c ≥ 0. We
construct an algorithm A′ that simulates A for a protocol that does not need the last
universal quantifier on `2k. The first labelling `′1 consists of some correct `1 for A, with the
aforementioned additional label that encodes a spanning tree x′ (rooted at an arbitrary node)
and the value of the number of nodes in G. Regarding the remaining labellings, for each `2i−1
assigned by the disprover, the prover assigns `2i as in the protocol for A, ignoring the bits
padded to `1 for creating `′1. After the labellings have been assigned, each node v gathers its
radius-t neighbourhood. Then, it virtually assigns every possible combination of (c logn)-bit
labellings `2k(u) to each node u ∈ BG(v, t), and simulates A at v to check whether it accepts
or rejects with this labelling. If every simulation accepts, then A′ accepts at v, else it rejects.
Since every node generates all possible `2k labellings in its neighbourhood, we get that

(G, x) ∈ L ⇐⇒ ∃`′1 ∀`2 . . . ∃`2k−1, A
′(G, `1, `2, . . . , `2k−1) accepts ,

which places L in Σ2k−1. The proof of Π2k+1 = Π2k is similar by using the first existential
quantifier (which appears in second position) to certify the number of nodes in the graph.
For the case of Π1, the nodes use the number of nodes provided by the oracle. J

A consequence of Theorem 1 is that only of the classes Σk for odd k, and Πk for even k,
are worth investigating.

I Definition 2. We define the classes (Λk)k≥0 as follows: Λk =
{

Σk if k is odd;
Πk otherwise.

In particular, Λ0 = Π0 = LD. By definition, we get Λk ⊆ Λk+1 for every k ≥ 0, as the
distributed algorithm can simply ignore the first label.

I Definition 3. The local hierarchy is defined as LH = ∪k≥0Λk.

3.3 Complementary classes
We define the complement classes co-Λk, for k ≥ 0, as co-Λk = {L : L̄ ∈ Λk}. Note that, due
to the asymmetric nature of distributed decision (unanimous acceptance, but not rejection),
simply reversing the individual decision of an algorithm deciding L is generally not appropriate
to decide L̄. Nevertheless, we show that an additional existential quantifier is sufficient to
reverse any decision, implying the following theorem.

I Theorem 4. For every k ≥ 0, co-Λk ⊆ Λk+1.

Proof. The proof uses a spanning tree certificate to reverse the decision, in a way similar
to the proof that the complement of LD is contained in logLCP (i.e., according to our
terminology, co-Λ0 ⊆ Λ1) due to Göös and Suomela [16]. Let L ∈ Λk, and let A be a
t-round local algorithm deciding L ∈ Λk using labels on at most c logn bits. We construct

L. Feuilloley, P. Fraigniaud, and J. Hirvonen 118:9

an algorithm A′ which simulates A, but uses an additional label `k+1 to reverse the decisions
made by A. Let us assume that k is even (as it will appear clear later, the proof is essentially
the same for k odd). We have that

(G, x) ∈ L ⇐⇒ ∀`1 ∃`2 . . . ∃`k, A(G, x, `1, `2, . . . , `k) = 1,

with all labels `i’s of size at most c logn for some constant c ≥ 0. In Algorithm A′, the
prover and the disprover essentially switch their roles. From the above, we have

(G, x) /∈ L ⇐⇒ ∃`1 ∀`2 . . . ∀`k ∃v ∈ G,A(G, v, x, `1, `2, . . . , `k) = 0.

The prover for A′ always follows the disprover for A, and can always pick labellings
`1, `3, . . . , `k−1 such that there is a rejecting node if and only if (G, x) /∈ L. In the protocol
for A′, the prover sets `k+1 to be a spanning tree rooted at one such rejecting node v. Every
other node u 6= v simply checks that `k+1 constitutes a proper encoding of a spanning tree,
and rejects if not. If all nodes u 6= v accept, then `k+1 is indeed a proper spanning tree, and
it only remains to check that v rejects in A. To this end, the node v designated as the root of
the spanning tree encoded by `k+1 gathers all labellings in its radius-t neighbourhood, and
computes A(G, x, v, `1, `2, . . . , `k). If A rejects at v, we set A′ to accept at v, and, otherwise,
we set A′ to reject at v.

As discussed in Section 2, the spanning tree can be encoded using O(logn) bits. All
labellings `1, `2, . . . , `k have size at most c logn, therefore all labels of A′ are of size at most
c′ logn for some c′ ≥ c. The protocol is correct, as a rejecting node exists in A if and only if
(G, x) /∈ L, and A′ correctly accepts in this case. If (G, x) ∈ L, then we have that, for every
choice the prover can make, the disprover can always choose its labellings so that A accepts.
Thus, if the spanning tree `k+1 is correct, the root of that tree will indeed detect that it is
an accepting node in A, and so reject in A′. J

I Corollary 5. For every k ≥ 0, co-Λk ⊆ co-Λk+1, and Λk ⊆ co-Λk+1.

Proof. If L ∈ co-Λk, then, by definition, L̄ ∈ Λk, and thus also L̄ ∈ Λk+1, which implies that
L ∈ co-Λk+1. If L ∈ Λk, then L̄ ∈ co-Λk, and thus, by Theorem 4, we get that L̄ ∈ Λk+1,
which implies that L ∈ co-Λk+1. J

The following theorem shows that, for every k ≥ 0, and every language L in Λk ∩ co-Λk,
there is an algorithm deciding L such that an instance (G, x) ∈ L is accepted at all nodes,
and an (G, x) /∈ L is rejected at all nodes.

I Theorem 6. Let k ≥ 1, and let L ∈ Λk ∩ co-Λk. Then there exists a local algorithm A

such that, for every instance (G, x), and for every v ∈ V (G),

(G, x) ∈ L ⇐⇒
{
∀`1 ∃`2 ∀`3 . . . ∃`k, A(G, v, x, `1, . . . , `k) = 1 if k is even
∃`1 ∀`2 . . . ∃`k, A(G, v, x, `1, . . . , `k) = 1 otherwise

In Theorem 9 in the next section, we shall see several example of languages in Λ1 ∩ co-Λ1,
in relation with classical optimization problems on graphs. By Theorem 6, all of these
languages can be decided unanimously.

3.4 Separation results
From the previous results in this section, we get that the local hierarchy LH = ∪k≥0Λk has a
typical “crossing ladder” as depicted on Figure 1.

ICALP 2016

118:10 A Hierarchy of Local Decision

⇤1 ⇤2LD

co-LD co-⇤1 co-⇤2 co-⇤3

⇤3

ALL \ LH

Figure 1 Structure of the local hierarchy. Arrows indicate inclusions, while hollow-headed arrows
indicate strict inclusions.

In addition, we can show that some of the inclusions are strict. Indeed, it is known
for long that LD is strictly included in Λ1 (for instance, 2-colourability ∈ Λ1 \ LD).
Also, Λ0 ∪ co-Λ0 is strictly included in co-Λ1. Indeed, for instance, non-3-colourability
∈ co-Λ1 \(Λ0 ∪ co-Λ0). Therefore, all inclusions between LD and co-LD and the classes at the
first level are strict. Moreover, it is known [16] that non-3-colourability /∈ Λ1, implying
that 3-colourability /∈ co-Λ1. On the other hand, both languages are in Λ2, by application
of Theorem 4. As a consequence, both are also in co-Λ2. Therefore, all inclusions between
the classes at the first and second levels are strict.

For k ≥ 2, separating the classes at the kth level from the classes at the next level appears
to be not straightforward. In particular, all classical counting arguments used to separate the
three first levels (i.e., levels 0, 1, and 2) fail. On the other hand, we show that if Λk = Λk+1
for some k, then LH collapses to the kth level.

I Theorem 7. If there exists k ≥ 0 such that Λk = Λk+1, then Λi = Λk for all i > k, that
is, LH collapses at the kth level.

Finally, we show that there are languages outside LH. In fact, this result holds, even if
we restrict ourselves to languages with inputs 0 or 1 on oriented paths, i.e., with identity-
assignment where nodes are given consecutive ID from 1 to n. The result follows from the
fact that there are “only” 22O(log n) different local algorithms for such n-node instances at
any fixed level of LH, while there are 22n different languages on such instances.

I Theorem 8. There exists a Turing-computable language on 0/1-labelled oriented paths
that is outside LH.

4 Positive results

In this section, we precisely identify the position of some relevant problems for distributed
computing in the local hierarchy.

Optimization problems. Given an optimization problem π on graphs (e.g., finding a min-
imum dominating set), one defines two distinct distributed languages: the language optπ
(resp., admπ) is composed of all configurations (G, x) such that x encodes an optimal (resp.,
admissible) solution for π in graph G. Informally, in the context of optimization problems,
the disprover aims at demonstrating that the current solution is not optimal or not admissible.
Typically, the disprover does so by exhibiting a better solution or a proof of non-admissibility.

The minimum-weight spanning tree (MST) problem, which is one of the most studied
problem in the context of network computing [18, 19, 20], is a typical example of optimization
problems that we aim at considering in this section, but many other problems such as
maximum independent set, max-cut, etc., are also of our interest. We show that, for any

L. Feuilloley, P. Fraigniaud, and J. Hirvonen 118:11

optimization problem π, if deciding whether a candidate solution for π is admissible is “easy”,
and if the objective function for π has an additive form, then optπ ∈ co-Λ1, and optπ ∈ Λ2.

I Theorem 9. Let π be an optimization problem on graphs. If the following two properties
are satisfied: (a) admπ ∈ Λ1 ∩ co-Λ1, and (b) the value to the objective function for π is the
sum, over all nodes, of an individual value at each node which can be computed locally and
encoded on O(logn) bits, then optπ ∈ co-Λ1.

Let us give concrete examples of problems satisfying hypotheses (a) and (b). In fact, most
classical optimization problems are satisfying these hypotheses, and all the ones typically
investigated in the framework of local computing (cf. the survey [32]) do satisfy (a) and (b).

I Corollary 10. Let π be one of the following optimization problems: maximum independent
set, minimum dominating set, maximum matching, max-cut, or min-cut. Then optπ ∈ co-Λ1.

The following corollary of Theorem 9 deals with two specific optimization problems,
namely travelling salesman and MST. The former illustrates a significant difference between
the local hierarchy defined from distributed graph automata in [28], and the one in this
paper. Indeed, we show that travelling salesman is at the second level of our hierarchy, while
it does not even belong to the graph automata hierarchy (as Hamiltonian cycle is not in
MSO). Let travelling salesman be the distributed language formed of all configurations
(G, x) where G is a weighted graph, and x is an Hamiltonian cycle C in G of minimum
weight (i.e., at node u, x(u) is the pair of edges incident to u in C). Similarly, let mst be the
distributed language formed of all configurations (G, x) where G is a weighted graph, and x
is a MST T in G (i.e., at node u, x(u) is the parent of u in T). Note that the case of MST is
also particularly interesting. Indeed, mst is known to be in LCP(log2(n)) [18], but not in
Λ1 = LCP(log(n)) [19]. Note also that, for mst, it is possible to trade locality for the size
of the certificates, as it was established in [19] that one can use logarithmic certificates to
certify mst in a logarithmic number of rounds. A consequence of Theorem 9 is the following.

I Corollary 11. mst ∈ co-Λ1 and travelling salesman ∈ co-Λ1 for weighted graphs with
weights bounded by a polynomial in n.

Non-trivial automorphism. The graph automorphism problem is the problem of testing
whether a given graph has a nontrivial automorphism (i.e., an automorphism2 different from
the identity). Let nontrivial automorphism be the distributed language composed of
the (connected) graphs that admit such an automorphism. It is known that this language is
maximally hard for locally checkable proofs, in the sense that it requires proofs with size
Ω(n2) bits [16]. Nevertheless, we prove that this language is low in the local hierarchy.

I Theorem 12. nontrivial automorphism ∈ Λ3.

Proof. The first label `1 at node u is an integer that is supposed to be the identity of
the image of u by a nontrivial automorphism. Let us denote by φ : V (G) → V (G) the
mapping induced by `1. We are left with proving that deciding whether a given φ is a
nontrivial automorphism of G is in Λ2. Thanks to Theorem 4, it is sufficient to prove that
this decision can be made in co-Λ1. Thus let us prove that checking that (G,φ) is not a
nontrivial automorphism is in Λ1. If φ is the identity, then the certificate can just encode this

2 Recall that φ : V (G) → V (G) is an automorphism of G if and only if φ is a bijection, and, for every two
nodes u and v, we have: {u, v} ∈ E(G) ⇐⇒ {φ(u), φ(v)} ∈ E(G).

ICALP 2016

118:12 A Hierarchy of Local Decision

information, and each node u checks that φ(u) is equal to its own ID. So assume now that φ
is distinct from the identity, but is not an automorphism. To certify this, the prover assigns
to each node a set of at most four spanning tree certificates, that “broadcast” to all nodes
the identity of at most four nodes witnessing that φ is not an automorphism. Specifically, if
φ(u) = φ(v) with u 6= v, then the certificates are for three spanning trees, respectively rooted
at u, v, and φ(u), and if {u, v} ∈ E(G) is mapped to {φ(u), φ(v)} /∈ E(G), or {u, v} /∈ E(G) is
mapped to {φ(u), φ(v)} ∈ E(G), then the certificates are for four spanning trees, respectively
rooted at u, v, φ(u), and φ(v). Checking such certificates can be done locally, and thus
checking that (G,φ) is not a nontrivial automorphism is in Λ1, and the claim follows. J

Problems from the polynomial hierarchy. As the local hierarchy LH is inspired by the
polynomial hierarchy, it is natural to ask how their respective levels are connected. In this
section, we show that some connections can indeed be established, for central problems in
the polynomial hierarchy. For instance, let k ≥ 0, and let us consider all (connected) graphs
G = (V,E) such that there exists X ⊆ V , |X| ≥ k, such that, for every S ⊆ X, there is a
cycle C in G containing all vertices in S, but none in X \ S. Such graphs have Cycle-VC-
dimension, VCcycle(G), at least k. Deciding whether, given G and k, we have VCcycle(G) ≥ k
is ΣP3 -complete [30, 31]. Let cycle-vc-dimension be the distributed language composed of
all configurations (G, k) such that all nodes of G have the same input k, and VCcycle(G) ≥ k.

I Theorem 13. cycle-vc-dimension ∈ Λ3.

Proof. The existence of the set X can be certified setting a flag at each node in X, together
with a tree TX spanning X for proving that |X| ≥ k. Given S ⊆ X, the cycle C can be
certified in the same way as the Hamiltonian cycle in the proof of Corollary 11. J

We also show that the natural graph version qbf-satk of QBF-k-SAT is in Λk. Also,
as a direct consequence of the fact that any language at level k of the distributed graph
automata hierarchy [28] is at level at most k + 1 of LH, we get:

I Theorem 14. All graph properties expressible in MSO are in LH.

5 Conclusion

In this paper, we have defined and analyzed a local hierarchy LH of decision generalizing
proof-labelling schemes and locally checkable proofs. Using this hierarchy, we have defined
interactive local decision protocols enabling to decrease the size of the distributed certificates.
We have defined the hierarchy for O(logn)-bit size labels, mostly because this extends the
class LogLCP in [16], and because this is consistent with the classical CONGEST model for
distributed computation [27]. However, most of our results can be extended to labels on
O(B(n)) bits, for B(n) larger than logn. In particular, it is worth noticing that the existence
of a language L outside LH holds as long as B = o(n).

The main open problem is whether LH has infinitely many levels, or whether it collapses
at some level Λk. We know that the latter can only happen for k ≥ 2, and thus it would be
quite interesting to know whether Λ3 6= Λ2. In particular, all the typical counting arguments
used to separate Λ2 from Λ1, or, more generally, to give lower bounds on the label size in
proof-labelling schemes or locally checkable proofs appear to be too weak for separating
Λ3 from Λ2. A separation result for Λ3 6= Λ2 would thus probably provide new tools and
concepts for the design of space lower bounds in the framework of distributed computing.

L. Feuilloley, P. Fraigniaud, and J. Hirvonen 118:13

Acknowledgements. We thank Jukka Suomela for pointing out that a counting argument
can be used to find languages outside the local hierarchy, and Fabian Reiter for fruitful
discussions about distributed graph automata.

References
1 Yehuda Afek, Shay Kutten, and Moti Yung. The local detection paradigm and its

application to self-stabilization. Theor. Comput. Sci., 186(1-2):199–229, 1997. doi:
10.1016/S0304-3975(96)00286-1.

2 Heger Arfaoui and Pierre Fraigniaud. What can be computed without communications?
SIGACT News, 45(3):82–104, 2014. doi:10.1145/2670418.2670440.

3 Heger Arfaoui, Pierre Fraigniaud, David Ilcinkas, and Fabien Mathieu. Distributedly test-
ing cycle-freeness. In Graph-Theoretic Concepts in Computer Science – 40th International
Workshop, WG 2014, Nouan-le-Fuzelier, France, June 25-27, 2014. Revised Selected Papers,
pages 15–28, 2014. doi:10.1007/978-3-319-12340-0_2.

4 Heger Arfaoui, Pierre Fraigniaud, and Andrzej Pelc. Local decision and verification with
bounded-size outputs. In Stabilization, Safety, and Security of Distributed Systems – 15th
International Symposium, SSS 2013, Osaka, Japan, November 13-16, 2013. Proceedings,
pages 133–147, 2013. doi:10.1007/978-3-319-03089-0_10.

5 Yuval Emek, Jochen Seidel, and Roger Wattenhofer. Computability in anonymous net-
works: Revocable vs. irrecovable outputs. In Automata, Languages, and Programming –
41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Pro-
ceedings, Part II, pages 183–195, 2014. doi:10.1007/978-3-662-43951-7_16.

6 Laurent Feuilloley and Pierre Fraigniaud. Randomized local network computing. In
Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architec-
tures, SPAA 2015, Portland, OR, USA, June 13-15, 2015, pages 340–349, 2015. doi:
10.1145/2755573.2755596.

7 Laurent Feuilloley, Pierre Fraigniaud, and Juho Hirvonen. A hierarchy of local decision.
CoRR, abs/1602.08925, 2016.

8 Patrik Floréen, Marja Hassinen, Joel Kaasinen, Petteri Kaski, Topi Musto, and Jukka
Suomela. Local approximability of max-min and min-max linear programs. Theory Comput.
Syst., 49(4):672–697, 2011. doi:10.1007/s00224-010-9303-6.

9 Klaus-Tycho Förster, Thomas Luedi, Jochen Seidel, and Roger Wattenhofer. Local
checkability, no strings attached. In Proceedings of the 17th International Conference
on Distributed Computing and Networking, Singapore, January 4-7, 2016, page 21, 2016.
doi:10.1145/2833312.2833315.

10 Pierre Fraigniaud, Mika Göös, Amos Korman, and Jukka Suomela. What can be decided
locally without identifiers? In ACM Symposium on Principles of Distributed Computing,
PODC’13, Montreal, QC, Canada, July 22-24, 2013, pages 157–165, 2013. doi:10.1145/
2484239.2484264.

11 Pierre Fraigniaud, Magnús M. Halldórsson, and Amos Korman. On the impact of identifiers
on local decision. In Principles of Distributed Systems, 16th International Conference,
OPODIS 2012, Rome, Italy, December 18-20, 2012. Proceedings, pages 224–238, 2012. doi:
10.1007/978-3-642-35476-2_16.

12 Pierre Fraigniaud, Juho Hirvonen, and Jukka Suomela. Node labels in local decision. In
Structural Information and Communication Complexity – 22nd International Colloquium,
SIROCCO 2015, Montserrat, Spain, July 14-16, 2015, Post-Proceedings, pages 31–45, 2015.
doi:10.1007/978-3-319-25258-2_3.

13 Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory for local
distributed computing. J. ACM, 60(5):35, 2013. doi:10.1145/2499228.

ICALP 2016

http://dx.doi.org/10.1016/S0304-3975(96)00286-1
http://dx.doi.org/10.1016/S0304-3975(96)00286-1
http://dx.doi.org/10.1145/2670418.2670440
http://dx.doi.org/10.1007/978-3-319-12340-0_2
http://dx.doi.org/10.1007/978-3-319-03089-0_10
http://dx.doi.org/10.1007/978-3-662-43951-7_16
http://dx.doi.org/10.1145/2755573.2755596
http://dx.doi.org/10.1145/2755573.2755596
http://dx.doi.org/10.1007/s00224-010-9303-6
http://dx.doi.org/10.1145/2833312.2833315
http://dx.doi.org/10.1145/2484239.2484264
http://dx.doi.org/10.1145/2484239.2484264
http://dx.doi.org/10.1007/978-3-642-35476-2_16
http://dx.doi.org/10.1007/978-3-642-35476-2_16
http://dx.doi.org/10.1007/978-3-319-25258-2_3
http://dx.doi.org/10.1145/2499228

118:14 A Hierarchy of Local Decision

14 Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. Locality and checkability
in wait-free computing. Distributed Computing, 26(4):223–242, 2013. doi:10.1007/
s00446-013-0188-x.

15 Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. On the number of opinions
needed for fault-tolerant run-time monitoring in distributed systems. In Runtime Verific-
ation – 5th International Conference, RV 2014, Toronto, ON, Canada, September 22-25,
2014. Proceedings, pages 92–107, 2014. doi:10.1007/978-3-319-11164-3_9.

16 Mika Göös and Jukka Suomela. Locally checkable proofs. In Proceedings of the 30th
Annual ACM Symposium on Principles of Distributed Computing, PODC 2011, San Jose,
CA, USA, June 6-8, 2011, pages 159–168, 2011. doi:10.1145/1993806.1993829.

17 Gene Itkis and Leonid A. Levin. Fast and lean self-stabilizing asynchronous protocols.
In 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico,
USA, 20-22 November 1994, pages 226–239, 1994. doi:10.1109/SFCS.1994.365691.

18 Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees. Dis-
tributed Computing, 20(4):253–266, 2007.

19 Amos Korman, Shay Kutten, and Toshimitsu Masuzawa. Fast and compact self-stabilizing
verification, computation, and fault detection of an MST. Distributed Computing,
28(4):253–295, 2015. doi:10.1007/s00446-015-0242-y.

20 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Com-
puting, 22(4):215–233, 2010. doi:10.1007/s00446-010-0095-3.

21 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot be computed
locally! In Proceedings of the Twenty-Third Annual ACM Symposium on Principles of
Distributed Computing, PODC 2004, St. John’s, Newfoundland, Canada, July 25-28, 2004,
pages 300–309, 2004. doi:10.1145/1011767.1011811.

22 Christoph Lenzen, Yvonne Anne Oswald, and Roger Wattenhofer. What can be approxim-
ated locally?: case study: dominating sets in planar graphs. In SPAA 2008: Proceedings of
the 20th Annual ACM Symposium on Parallelism in Algorithms and Architectures, Munich,
Germany, June 14-16, 2008, pages 46–54, 2008. doi:10.1145/1378533.1378540.

23 Christoph Lenzen and Roger Wattenhofer. Leveraging Linial’s locality limit. In Distributed
Computing, 22nd International Symposium, DISC 2008, Arcachon, France, September 22-
24, 2008. Proceedings, pages 394–407, 2008. doi:10.1007/978-3-540-87779-0_27.

24 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992. doi:10.1137/0221015.

25 Baruch Mor, Pierre Fraigniaud, and Boaz Patt-Shamir. Randomized proof-labeling schemes.
In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015, Donostia-San Sebastián, Spain, July 21-23, 2015, pages 315–324, 2015.
doi:10.1145/2767386.2767421.

26 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM J. Comput.,
24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

27 David Peleg. Distributed Computing: A Locality-Sensitive Approach, volume 5. SIAM,
2000.

28 Fabian Reiter. Distributed graph automata. In 30th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 192–201,
2015. doi:10.1109/LICS.2015.27.

29 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM J. Comput., 41(5):1235–1265, 2012. doi:10.1137/
11085178X.

30 Marcus Schaefer. Deciding the Vapnik-Cervonenkis dimension in Σp3-complete. J. Comput.
Syst. Sci., 58(1):177–182, 1999. doi:10.1006/jcss.1998.1602.

http://dx.doi.org/10.1007/s00446-013-0188-x
http://dx.doi.org/10.1007/s00446-013-0188-x
http://dx.doi.org/10.1007/978-3-319-11164-3_9
http://dx.doi.org/10.1145/1993806.1993829
http://dx.doi.org/10.1109/SFCS.1994.365691
http://dx.doi.org/10.1007/s00446-015-0242-y
http://dx.doi.org/10.1007/s00446-010-0095-3
http://dx.doi.org/10.1145/1011767.1011811
http://dx.doi.org/10.1145/1378533.1378540
http://dx.doi.org/10.1007/978-3-540-87779-0_27
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1145/2767386.2767421
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1109/LICS.2015.27
http://dx.doi.org/10.1137/11085178X
http://dx.doi.org/10.1137/11085178X
http://dx.doi.org/10.1006/jcss.1998.1602

L. Feuilloley, P. Fraigniaud, and J. Hirvonen 118:15

31 Marcus Schaefer and Christopher Umans. Completeness in the polynomial-time hierarchy:
A compendium. SIGACT news, 33(3):32–49, 2002.

32 Jukka Suomela. Survey of local algorithms. ACM Comput. Surv., 45(2):24, 2013. doi:
10.1145/2431211.2431223.

ICALP 2016

http://dx.doi.org/10.1145/2431211.2431223
http://dx.doi.org/10.1145/2431211.2431223

	Introduction
	Our Results
	Related Work

	Local Decision
	The Local Hierarchy
	Definition
	The odd-even collapsing and the Lambda-k-hierarchy
	Complementary classes
	Separation results

	Positive results
	Conclusion

