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Abstract
For n ≥ 3, let (Hn, E) denote the n-th Henson graph, i.e., the unique countable homogeneous
graph with exactly those finite graphs as induced subgraphs that do not embed the complete
graph on n vertices. We show that for all structures Γ with domain Hn whose relations are
first-order definable in (Hn, E) the constraint satisfaction problem for Γ is either in P or is
NP-complete.

We moreover show a similar complexity dichotomy for all structures whose relations are
first-order definable in a homogeneous graph whose reflexive closure is an equivalence relation.

Together with earlier results, in particular for the random graph, this completes the complex-
ity classification of constraint satisfaction problems of structures first-order definable in countably
infinite homogeneous graphs: all such problems are either in P or NP-complete.
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1 Introduction

1.1 Constraint satisfaction problems
A constraint satisfaction problem (CSP) is a computational problem in which the input
consists of a finite set of variables and a finite set of constraints, and where the question is
whether there exists a mapping from the variables to some fixed domain such that all the
constraints are satisfied. We can thus see the possible constraints as relations on the domain,
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and in an instance of the CSP, we are asked to assign domain values to the variables such
that certain specified tuples of variables become elements of certain specified relations.

When the domain is finite, and arbitrary constraints are permitted, then the CSP is
NP-complete. However, when only constraints from a restricted set of relations on the domain
are allowed in the input, there might be a polynomial-time algorithm for the CSP. The set of
relations that is allowed to formulate the constraints in the input is often called the constraint
language. The question which constraint languages give rise to polynomial-time solvable CSPs
has been the topic of intensive research over the past years. It has been conjectured by Feder
and Vardi [19] that CSPs for constraint languages over finite domains have a complexity
dichotomy: they are either in P or NP-complete. This conjecture remains unsettled, although
dichotomy is now known on substantial classes (for example when the domain has at most
three elements [26, 17] or when the constraint language contains a single binary relation
without sources and sinks [21, 1]). Various methods, combinatorial (graph-theoretic), logical,
and universal-algebraic have been brought to bear on this classification project, with many
remarkable consequences. A conjectured delineation for the dichotomy was given in the
algebraic language in [18].

When the domain is infinite, the complexity of the CSP can be outside NP, and even
undecidable [10]. But for natural classes of such CSPs there is often the potential for
structured classifications, and this has proved to be the case for structures first-order
definable over the order (Q, <) of the rationals [7] or over the integers with successor [8].
Another classification of this type has been obtained for CSPs where the constraint language
is first-order definable over the random (Rado) graph [13], making use of structural Ramsey
theory. This paper was titled ‘Schaefer’s theorem for graphs’ and it can be seen as lifting the
famous classification of Schaefer [26] from Boolean logic to logic over finite graphs, since the
random graph is universal for the class of finite graphs.

1.2 Homogeneous graphs and their reducts
The notion of homogeneity from model theory plays an important role when applying
techniques from finite-domain constraint satisfaction to constraint satisfaction over infinite
domains. A relational structure is homogeneous if every isomorphism between finite induced
substructures can be extended to an automorphism of the entire structure. Homogeneous
structures are uniquely (up to isomorphism) given by the class of finite structures that embed
into them. The structure (Q, <) and the random graph are among the most prominent
examples of homogeneous structures. The class of structures that are definable over a
homogeneous structure with finite relational signature is a very large generalisation of the
class of all finite structures, and CSPs for those structures have been studied independently in
many different areas of theoretical computer science, e.g. in temporal and spatial reasoning,
phylogenetic analysis, computational linguistics, scheduling, graph homomorphisms, and
many more; see [4] for references.

While homogeneous relational structures are abundant, there are remarkably few countably
infinite homogeneous (undirected, irreflexive) graphs; they have been classified by Lachlan
and Woodrow [23]. Besides the random graph mentioned earlier, an example of such a graph
is the countable homogeneous universal triangle-free graph, one of the fundamental structures
that appears in most textbooks in model theory. This graph is the up to isomorphism unique
countable triangle-free graph (H3, E) with the property that for every finite independent set
X ⊆ H3 and for every finite set Y ⊆ H3 there exists a vertex x ∈ H3 \ (X ∪ Y ) such that x
is adjacent to every vertex in X and to no vertex in Y .

Further examples of homogeneous graphs are the graphs (H3, E), (H4, E), (H5, E), . . . ,
called the Henson graphs, and their complements. Here, (Hn, E) for n > 3 is the generalisation
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of the graph (H3, E) above from triangles to cliques of size n. Finally, the list of Lachlan
and Woodrow contains only one more family of infinite graphs, namely the graphs (Cs

n, E)
whose reflexive closure Eq is an equivalence relation with n classes of equal size s, where
1 ≤ n, s ≤ ω and either n or s equals ω, as well as their complements. We remark that
(Cs

n, Eq) is itself homogeneous and first-order interdefinable with (Cs
n, E), and so we shall

sometimes refer to the homogeneous equivalence relations.
All countable homogeneous graphs, and even all structures which are first-order definable

over homogeneous graphs, are ω-categorical, that is, all countable models of their first-order
theory are isomorphic. Moreover, all countably infinite homogeneous graphs Γ are finitely
bounded in the sense that the age of Γ, i.e., the class of finite structures that embed into Γ,
can be described by finitely many forbidden substructures. Finitely bounded homogeneous
structures also share with finite structures the property of having a finite description: up to
isomorphism, they are uniquely given by the finite list of forbidden structures that describes
their age. Recent work indicates the importance of finite boundedness for complexity
classification [2, 9], and it has been conjectured that all structures with a first-order definition
in a finitely bounded homogeneous structure enjoy a complexity dichotomy, i.e., their CSP is
either in P or NP-complete (cf. [15, 2]). The structures first-order definable in homogeneous
graphs therefore provide the most natural class on which to test further the methods developed
in [13] specifically for the random graph.

In this article we obtain a complete classification of the computational complexity of CSPs
where all constraints have a first-order definition in one of the Henson graphs. We moreover
obtain such a classification for CSPs where all constraints have a first-order definition in
a countably infinite homogeneous graph whose reflexive closure is an equivalence relation,
expanding earlier results for the special cases of one single equivalence class (so-called equality
constraints [6]) and infinitely many infinite classes [16]. Together with the above-mentioned
result on the random graph, this completes the classification of CSPs for constraints with a
first-order definition in any countably infinite homogeneous graph, by Lachlan and Woodrow’s
classification.

Following an established convention [28, 11], we call a structure with a first-order definition
in another structure ∆ a reduct of ∆. That is, for us a reduct of ∆ is as the classical definition
of a reduct with the difference that we first allow a first-order expansion of ∆. With this
terminology, the present article provides a complexity classification of the CSPs for all reducts
of countably infinite homogeneous graphs. In other words, for every such reduct we determine
the complexity of deciding its primitive positive theory, which consists of all sentences which
are existentially quantified conjunctions of atomic formulas and which hold in the reduct. We
remark that all reducts of such graphs can be defined by quantifier-free first-order formulas,
by homogeneity and ω-categoricity.

For reducts of (Hn, E), the CSPs express computational problems where the task is to
decide whether there exists a finite graph without any clique of size n that meets certain
constraints. An example of a reduct whose CSP can be solved in polynomial time is
(Hn, 6=,{(x, y, u, v) : E(x, y)⇒ E(u, v)}), where n ≥ 3 is arbitrary. As it turns out, for every
CSP of a reduct of a Henson graph which is solvable in polynomial time, the corresponding
reduct over the Rado graph, i.e., the reduct whose relations are defined by the same quantifier-
free formulas, is also polynomial-time solvable. On the other hand, the CSP of the reduct
(Hn, {(x, y, u, v) : E(x, y) ∨ E(u, v)}) is NP-complete for all n ≥ 3, but the corresponding
reduct over the random graph can be decided in polynomial time.

Similarly, for reducts of the graph (Cs
n, E) whose reflexive closure is an equivalence relation

with n classes of size s, where 1 ≤ n, s ≤ ω, the computational problem is to decide whether
there exists an equivalence relation with n classes of size s that meets certain constraints.

ICALP 2016
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1.3 Results
Our first result is the complexity classification of the CSPs of all reducts of Henson graphs,
showing in particular that a uniform approach to infinitely many “base structures” (namely,
the n-th Henson graph for each n ≥ 3) is possible.

I Theorem 1. Let n ≥ 3, and let Γ be a finite signature reduct of the n-th Henson graph
(Hn, E). Then CSP(Γ) is either in P or NP-complete.

We then obtain a similar complexity dichotomy for reducts of homogeneous equivalence
relations, expanding earlier results for special cases [16, 6].

I Theorem 2. Let (Cs
n, E) be an infinite graph whose reflexive closure Eq is an equivalence

relation with n classes of size s, where 1 ≤ n, s ≤ ω. Then for any finite signature reduct Γ
of (Cs

n, E), the problem CSP(Γ) is either in P or NP-complete.

Together with the classification of countable homogeneous graphs, and the fact that
the complexity of the CSPs of the reducts of the Rado graph have been classified [13], this
completes the CSP classification of reducts of all countably infinite homogeneous graphs,
confirming further instances of the open conjecture that CSPs of reducts of finitely bounded
homogeneous structures are either in P or NP-complete [15, 2].

I Corollary 3. Let Γ be a finite signature reduct of a countably infinite homogeneous graph.
Then CSP(Γ) is either in P or NP-complete.

1.4 The strategy
The method we employ follows to a large extent the method invented in [13] for the
corresponding classification problem where the ‘base structure’ is the random graph. The
key component of this method is the usage of Ramsey theory (in our case, a result of Nešetřil
and Rödl [24]) and the concept of canonical functions introduced in [12]. There are, however,
some interesting differences and novelties that appear in the present proof, as we now shortly
outline.

1.4.1 Henson graphs
When studying the proofs in [13], one might get the impression that the complexity of the
method grows with the model-theoretic complexity of the base structure, and that for the
random graph we have really reached the limits of bearableness for applying the Ramsey
method.

However, quite surprisingly, when we step from the random graph to the graphs (Hn, E),
which are in a sense more complicated structures from a model-theoretic point of view1, the
classification and its proof become easier again. It is one of the contributions of the present
article to explain the reasons behind this effect. Essentially, certain behaviours of canonical
functions existing on the random graph can not be realised in (Hn, E). For example the
canonical polymorphisms of behaviour “max” (cf. preliminaries) play no role for the present
classification, but account over the random graph for the tractability of, inter alia, the 4-ary
relation defined by the formula E(x, y) ∨ E(u, v).

1 For example, the random graph has a simple theory [27], whereas the Henson graphs are the most basic
examples of structures whose theory is not simple.
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Interestingly, we are able to reuse results about canonical functions over the random
graph, since the calculus for composing behaviours of canonical functions is the same for
any other structure with the same type space, and in particular the Henson graphs. Via this
meta-argument we can, on numerous occasions, make statements about canonical functions
over the Henson graphs which were proven earlier for the Rado graph, ignoring completely
the actual underlying structure; even more comfortably, we can a posteriori rule out some
possibilities in those statements because of the Kn-freeness of the Henson graphs. Examples
of this phenomenon appear in Lemmas 14 and 15.

On the other hand, along with these simplifications, there are also new additional
difficulties that appear when investigating reducts of (Hn, E) and that were not present in
the classification of reducts of the random graph, which basically stem from the lower degree
of symmetry of (Hn, E) compared to the Rado graph. For example, in expansions of Henson
graphs by finitely many constants, not all orbits induce copies of Henson graphs; the fact
that the analogous statement does hold for the Rado graph was used extensively in [13].

1.4.2 Equivalence relations
Similarly to the situation for the equivalence relation with infinitely many infinite classes
studied in [16], there are two interesting sources of NP-hardness for the reducts Γ of other
homogeneous equivalence relations: namely, if the equivalence relation is invariant under the
polymorphisms of Γ, then the structure obtained from Γ by factoring by the equivalence
relation might have a NP-hard CSP, implying NP-hardness for the CSP of Γ itself; or, roughly,
for a fixed equivalence class the restriction of Γ to that class might have a NP-hard CSP,
again implying NP-hardness of the CSP of Γ (assuming that Γ is a model-complete core, see
Sections 3 and 6). But whereas for the equivalence relation with infinitely many infinite
classes both the factor structure and the restriction to a class are again infinite structures,
for the other homogeneous equivalence relations one of the two is a finite structure, obliging
us to combine results about CSPs of finite structures with those of infinite structures. As it
turns out, the two-element case is, not surprisingly, different from the other finite cases and,
quite surprisingly, significantly more involved than the other cases.

2 Preliminaries

The following lemma has been first stated in [22] for finite domain structures Γ only, but the
proof there also works for arbitrary infinite structures.

I Lemma 4. Let Γ = (D,R1, . . . , R`) be a relational structure, and let R be a relation
that has a primitive positive definition in Γ. Then CSP(Γ) and CSP(D,R, R1, . . . , R`) are
polynomial-time equivalent.

I Theorem 5 (from [10]). Let Γ be a countable ω-categorical structure. Then the relations
preserved by the polymorphisms of Γ are precisely those having a primitive positive definition
in Γ.

These facts make it possible to apply a universal algebraic approach, and classify the
complexity of reducts of an ω-categorical structure through understanding the polymorphism
clones of these reducts. In fact, we can state our results in terms of the polymorphism clones,
see Theorems 22 and 38. Roughly speaking, we will conclude that if Γ is a reduct of a
homogeneous graph with a finite relational language, then CSP(Γ) is NP-complete iff for
some finite tuple c in Γ, the clone Pol(Γ, c) maps to the clone of projections via a continuous
homomorphism.

ICALP 2016
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If such a polymorphism does not exist, it indicates the existence of certain kind of
functions in Pol(Γ), which satisfy an equation that prevents them from being mapped to
projections with a homomorphism. The idea is to find patterns in the behaviour of these
interesting functions, and show that they must generate one out of a given finite number
of well-behaved functions; those appearing in Theorems 22 and 38, and whose incidence in
Pol(Γ) automatically make CSP(Γ) be solvable in polynomial time. In order to find these
well-behaved functions in Pol(Γ), we apply the method mentioned in Section 1.4 by using
canonical functions.

I Definition 6. Let ∆ be a structure. The type tp(a) of an n-tuple a in ∆ is the set
of first-order formulas with free variables x1, . . . , xn that hold for a in ∆. For structures
∆1, . . . ,∆k and tuples a1, . . . , an ∈ ∆1 × · · · ×∆k, the type tp(a1, . . . , an) of (a1, . . . , an) in
∆1 × · · · ×∆k is the k-tuple containing the types of (a1

i , . . . , a
n
i ) in ∆i for each 1 ≤ i ≤ k.

It is well-known that in homogeneous structures such as (Hn, E) and (Ck
n, E), two n-tuples

have the same type if and only if they are in the same orbit of the automorphism group.

I Definition 7. Let ∆1, . . . ,∆k and Λ be structures. A behaviour B between ∆1, . . . ,∆k and
Λ is a partial function from the types over ∆1, . . . ,∆k to the types over Λ. Pairs (s, t) with
B(s) = t are also called type conditions. We say that a function f : ∆1×· · ·×∆k → Λ satisfies
the behaviour B if whenever B(s) = t and (a1, . . . , an) has type s in ∆1, . . . ,∆k, then the
n-tuple (f(a1

1, . . . , a
1
k), . . . , f(an

1 , . . . , a
n
k )) has type t in Λ. A function f : ∆1 × · · · ×∆k → Λ

is canonical if it satisfies a behaviour which is a total function from the types over ∆1, . . . ,∆k

to the types over Λ.

To provide immediate examples for these notions, we now define some behaviours that
will appear in our proof as well as in the precise CSP classification. For m-ary relations
R1, . . . , Rk over a set D, we will in the following write R1 · · ·Rk for the m-ary relation on
Dk that holds between k-tuples x1, . . . , xm ∈ Dk iff Ri(x1

i , . . . , x
m
i ) holds for all 1 ≤ i ≤ k.

I Definition 8. Given a homogeneous graph G we say that a binary injective operation
f : G2 → G is

balanced in the first argument if for all u, v ∈ G2 we have that E=(u, v) implies
E(f(u), f(v)) and N=(u, v) implies N(f(u), f(v));
E-dominated (N -dominated) in the first argument if for all u, v ∈ G2 with 6==(u, v) we
have that E(f(u), f(v)) (N(f(u), f(v)));
balanced/E-dominated/N -dominated in the second argument if (x, y) 7→ f(y, x) is balanced/E-
dominated/N -dominated in the first argument;
balanced/E-dominated/N -dominated if f is balanced/E-dominated/N -dominated in both
arguments, and unbalanced if f is not balanced;
of behaviour p1 if for all u, v ∈ G2 with 6= 6=(u, v) we have E(f(u), f(v)) iff E(u1, v1);
of behaviour p2 if (x, y) 7→ f(y, x) is of behaviour p1;
of behaviour projection if it is of behaviour p1 or p2;
of behaviour min if for all u, v ∈ G2 with 6= 6=(u, v) we have E(f(u), f(v)) iff EE(u, v).

A ternary canonical injection f : G3 → G is
hyperplanely of behaviour projection iff the functions (u, v) 7→ f(c, u, v), (u, v) 7→ f(u, c, v),
and (u, v) 7→ f(u, v, c) are of behaviour projection for all c ∈ G. Similarly other hyperplane
behaviours, such as hyperplanely E-dominated, are defined.
of behaviour minority if for all u, v ∈ G3 with 6= 6= 6=(u, v) we have E(f(u), f(v)) if and
only if EEE(u, v), NNE(u, v), NEN(u, v), or ENN(u, v).
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2.1 Overview
This article is organised as follows. Basic notions and definitions, as well as the fundamental
facts of the method we are going to use, are deferred for reasons of space to the appendix.
Our notation and definitions may also be found in [13] unless they were already represented
in the introduction.

Sections 3 to 5 deal with the Henson graphs: Section 3 is complexity-free and investigates
the structure of reducts of Henson graphs via polymorphisms and Ramsey theory. In
Section 4, we provide hardness results for different classes of reducts. In Section 5 we
rephrase Theorem 1, and we discuss the complexity classification in more detail, formulating
in particular a tractability criterion for CSPs of reducts of Henson graphs.

Section 6 investigates the structure of reducts of homogeneous equivalence relations via
polymorphisms and Ramsey theory and describes the polynomial-time cases.

3 Polymorphisms over Henson graphs

We investigate polymorphisms of reducts of (Hn, E). We start with unary polymorphisms in
Section 3.1, obtaining that we can assume that the relations E and N are pp-definable in
our reducts. We then turn to binary polymorphisms in Section 3.2, obtaining Proposition 16
telling us that we may further assume the existence of a binary injective polymorphism.
Building on the results of those sections, we show in Section 3.3 via an analysis of ternary
polymorphisms that for any reduct which pp-defines the relations E and N , either the
polymorphisms preserve a certain relation H, or there is a polymorphism of behaviour min
(Proposition 18).

3.1 The unary case: model-complete cores
A countable ω-categorical structure ∆ is called a model-complete core if Aut(∆) is dense
in End(∆), or equivalently, every endomorphism of ∆ is an elementary self-embedding,
i.e., preserves all first-order formulas over ∆. Every countable ω-categorical structure Γ is
homomorphically equivalent to an up to isomorphism unique ω-categorical model-complete
core ∆, that is, there exists homomorphisms from Γ into ∆ and vice-versa [3]. Since the CSPs
of homomorphically equivalent structures are equal, it has proven fruitful in classification
projects to always work with model-complete cores. The following proposition essentially
calculates the model-complete cores of the reducts of Henson graphs.

I Proposition 9. Let Γ be a reduct of (Hn, E). Then either End(Γ) contains a function
whose image induces an independent set, or End(Γ) = Aut(Γ) = Aut(Hn, E).

In the first case of Proposition 9, the model-complete core of the reduct is in fact a reduct
of equality. Since the CSPs of reducts of equality have been classified [6], we do not have to
consider any further reducts with an endomorphism whose image induces an independent set.

I Lemma 10. Let Γ be a reduct of (Hn, E), and assume that End(Γ) contains a function
whose image is an independent set. Then Γ is homomorphically equivalent to a reduct of
(Hn,=).

In the second case of Proposition 9, it turns out that all polymorphisms preserve the
relations E, N , and 6=, by the following lemma and Theorem 5.

I Lemma 11. Let Γ be such that End(Γ) = Aut(Hn, E). Then E, N , and 6= have primitive
positive definitions in Γ.

ICALP 2016
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Before moving on to binary polymorphisms, we observe the following corollary of Propos-
ition 9, first mentioned in [28].

I Corollary 12. For every n ≥ 3, the permutation group Aut(Hn, E) is a maximal closed
subgroup of the full symmetric group on Hn, i.e., every closed subgroup of the full symmetric
group containing Aut(Hn, E) either equals Aut(Hn, E) or the full symmetric group.

3.2 Binary polymorphisms
We investigate binary functions preserving E, N , and 6=. A finitary operation f(x1, . . . , xn)
on a set is essential if it does not depend on only one of its arguments xi.

I Lemma 13. Every essential function f : Hk
n → Hn that preserves E, N , and 6= generates

a binary injection.

I Lemma 14. Let f : H2
n → Hn be a function of behaviour min that preserves E and N .

Then f generates a binary function of behaviour min that is N -dominated.

By Proposition 9, Lemma 11 and Lemma 13, we may assume that Pol(Γ) contains a
binary injection f , as otherwise the complexity of CSP(Γ) is known: see the explanation in
the end of this subsection. After an analysis of the possible behaviours of f , we can make
further assumptions on the binary injection in Pol(Γ).

I Lemma 15. Let f : Hk
n → Hn be an essential function that preserves E, N , and 6=. Then f

generates one of the following binary canonical injections: of behaviour min and N -dominated;
or of behaviour p1, balanced in the first, and N -dominated in the second argument.

We conclude this section by summarising the results we have so far.

I Proposition 16. Let Γ be a reduct of (Hn, E), where n ≥ 3. Then either
(1) Γ is homomorphically equivalent to a reduct of (Hn,=), or
(2) Γ pp-defines E, N , and 6=.

In the latter case we have that either
(2a) every function in Pol(Γ) is essentially unary, or
(2b) Pol(Γ) contains one of the two binary canonical injections of Lemma 15.

Note that if item (1) holds then CSP(Γ) is either in P or NP-complete [6], and if item (2a)
holds then CSP(Γ) is NP-complete (Theorem 10 in [5]). In case (2b), when Pol(Γ) contains
a binary canonical injection of behaviour min which is N -dominated then CSP(Γ) is in P, as
we will discuss later. It thus remains to further consider the second case of Lemma 15, which
we do in the next subsection.

3.3 The relation H

We investigate Case (2b) of Proposition 16. The following relation characterises the NP-
complete cases in this situation.

I Definition 17. We define a 6-ary relation H(x1, y1, x2, y2, x3, y3) on Hn by∧
i,j∈{1,2,3},i6=j,u∈{xi,yi},v∈{xj ,yj}

N(u, v)

∧
(
(E(x1, y1) ∧N(x2, y2) ∧N(x3, y3))
∨ (N(x1, y1) ∧ E(x2, y2) ∧N(x3, y3))
∨ (N(x1, y1) ∧N(x2, y2) ∧ E(x3, y3))

)
.
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The importance of the relation H is reflected in the following proposition, which states
that if Γ is a reduct of (Hn, E) with E and N primitive positive definable in Γ, then either H
has a primitive positive definition in Γ, in which case CSP(Γ) is NP-complete, or Pol(Γ) has
a certain canonical polymorphism which will imply tractability of the CSP. NP-completeness
and tractability for those cases will be discussed in Sections 4 and 5.

I Proposition 18. Let Γ be a reduct of (Hn, E) with E and N primitive positive definable
in Γ. Then at least one of the following holds:
(a) There is a primitive positive definition of H in Γ.
(b) Pol(Γ) contains a canonical binary injection of behaviour min.

4 CSPs over Henson graphs

We now explain why any reduct of (Hn, E) which has H among its relations, and hence by
Lemma 4 every reduct which pp-defines H, has an NP-hard CSP. While it would be possible
to show NP-hardness of CSP(Hn, H) directly by reduction of, say, the NP-hard problem
positive 1-in-3-SAT, we will use results from [14], and in fact a recent strengthening thereof
from [2], to prove hardness more elegantly via a structural property of Pol(Hn, H).

I Definition 19. Let Γ be a structure. A projective clone homomorphism of Γ is a mapping
from Pol(Γ) onto its projections which: preserves arities; fixes each projection; and preserves
composition.

A projective strong h1 clone homomorphism of Γ is a mapping as above, where the third
condition is weakened to preservation of composition with projections.

I Theorem 20 (from [2]). Let Γ be a countable ω-categorical structure in a finite relational
language which has a uniformly continuous strong h1 clone homomorphism. Then CSP(Γ) is
NP-hard.

I Proposition 21. The structure (Hn, H) has a uniformly continuous strong h1 clone
homomorphism. Consequently, CSP(Hn, H) is NP-hard.

5 Summary for the Henson graphs

We can restate Theorem 1 in a more detailed fashion as follows.

I Theorem 22. Let Γ be a reduct of a Henson graph (Hn, E). Then one of the following
holds.
(1) Γ has an endomorphism whose image induces an independent set, and is homomorphically

equivalent to a reduct of (Hn,=).
(2) Pol(Γ) has a uniformly continuous projective clone homomorphism.
(3) Pol(Γ) contains a binary canonical injection which is of behaviour min and N -dominated.
Items (2) and (3) cannot simultaneously hold, and when Γ has a finite relational signature,
then (2) implies NP-completeness and (3) implies tractability of its CSP.

The first statement follows directly from the proof of Theorem 1, with the additional
observation that the strong h1 clone homomorphism defined in Proposition 21 is in fact a
clone homomorphism. When (3) holds for a reduct, then (2) cannot hold, because (3) implies
the existence of f(x, y) ∈ Pol(Γ) and α ∈ Aut(Γ) such that f(x, y) = αf(y, x) holds, and
equation impossible to satisfy by projections. In fact, by further analysing case (1), one can
easily show that it also implies either (2) or (3), so that we have the following.
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I Corollary 23. For every reduct Γ of a Henson graph (Hn, E), precisely one of the following
holds: Pol(Γ) has a uniformly continuous projective clone homomorphism; or Pol(Γ) contains
f(x, y) ∈ Pol(Γ) and α ∈ Aut(Γ) such that f(x, y) = αf(y, x).

When Γ has a finite relational signature, then the first case possesses NP-completeness
and the second case the tractability of its CSP.

6 Reducts of homogeneous equivalence relations

We now investigate polymorphisms of reducts of the graphs (Cs
n, E), for 2 ≤ n, s ≤ ω, with

precisely one of n, s equal to ω. Recall from the preliminaries that we write Eq for the
reflexive closure of E.

Similarly to the case of the Henson graphs, we start with unary polymorphisms in
Section 6.1, reducing the problem to model-complete cores.

We then turn to higher-arity polymorphisms; here, the organisation somewhat differs
from the case of the Henson graphs. The role of the NP-hard relation H from the Henson
graphs is now taken by the two sources of NP-hardness mentioned in the introduction: the
first source being that factoring by the equivalence relation Eq yields a structure with an
NP-hard problem, and the second source being that restriction to some equivalence class
yields a structure with an NP-hard problem. In Section 6.2, we show that in fact, one of
the two sources always applies for model-complete cores when 2 < n < ω or 2 < s < ω.
Consequently, only the higher-arity polymorphisms of the reducts of (Cω

2 , E) and (C2
ω, E)

require deeper investigation using Ramsey theory; this will be dealt with in Sections 6.3
and 6.4, respectively.

6.1 The unary case: model-complete cores
I Proposition 24. Let Γ be a reduct of (Cs

n, E), where 1 ≤ n, s ≤ ω, and at least one of n, s
equals ω. Then End(Γ) = Aut(Γ) = Aut(Cs

n, E), or End(Γ) contains an endomorphism onto
a clique or an independent set.

In the following sections, we investigate essential polymorphisms of reducts Γ of (Cs
n, E)

which are model-complete cores, i.e., End(Γ) = Aut(Cs
n, E). The following proposition

implies that in that situation, the equivalence relation Eq is invariant under Pol(Γ).

I Proposition 25. Let Γ be a reduct of (Cs
n, E), where 1 ≤ n, s ≤ ω. If End(Γ) = Aut(Cs

n, E),
then E, N and Eq are preserved by the polymorphisms of Γ.

Therefore, in the above situation Eq is an equivalence relation which is invariant under
Pol(Γ), and so Pol(Γ) acts naturally on the equivalence classes of Eq. Moreover, if we fix
any c ∈ Cs

n and expand the structure Γ by the constant c, then the equivalence class C
of c has a primitive positive definition in that expansion (Γ, c), since Eq and c do. Hence,
C is invariant under Pol(Γ, c), and so Pol(Γ, c) acts naturally on C via restriction. In the
following sections, we analyse these actions.

6.2 The case 2 < n < ω or 2 < s < ω

It turns out that in these cases, one of the sources of hardness always applies. We will use
the following fact about function clones on a finite domain.

I Proposition 26 (from [20]). Every function clone on a finite domain of at least three
elements which contains all permutations as well as an essential function contains a unary
constant function.
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I Proposition 27. Let Γ be a reduct of (Cω
n , E), where 2 < n < ω, such that End(Γ) =

Aut(Cω
n , E). Then the action of Pol(Γ) on the equivalence classes of Eq has no essential

and no constant operation.

I Proposition 28. Let Γ be a reduct of (Cs
ω, E), where 2 < s < ω, such that End(Γ) =

Aut(Cs
ω, E). Then for any c ∈ Cs

ω, the action of Pol(Γ, c) on the equivalence class of c has
no essential and no constant operation.

6.3 The case of two infinite classes: n = 2 and s = ω

The following proposition states that either one of the two sources of hardness applies, or
Pol(Γ) contains a ternary canonical function with a certain behaviour.

I Proposition 29. Let Γ be a reduct of (Cω
2 , E) such that End(Γ) = Aut(Cω

2 , E). Then one
of the following holds:

the action of Pol(Γ) on the classes of Eq has no essential function;
the action of Pol(Γ, c) on the equivalence class of c has no essential function, for some
c ∈ Cω

2 ;
Pol(Γ) contains a canonical ternary injection of behaviour minority which is hyperplanely
of behaviour E-dominated projection.

To prove the proposition, we need to recall a special case of Post’s classical result about
function clones acting on a two-element set, as well as a result on function clones on a
countable set which contain all permutations. Comparing this statement with Proposition 26
sheds light on why the case of this section is more involved than the cases of the preceding
section.

I Proposition 30 (Post [25]). Every function clone with domain {0, 1} containing both
permutations of {0, 1} as well as an essential function contains a unary constant operation
or the ternary addition modulo 2.

I Proposition 31 (from [6]). Every closed function clone on a countably infinite set which
contains all permutations as well as an essential operation contains a binary injection.

I Proposition 32. Let Γ be preserved by a ternary injection h of behaviour minority which
is hyperplanely an E-dominated projection. Then CSP(Γ) can be solved in polynomial time.

6.4 The case of infinitely many classes of size two: n = ω and s = 2
As in the preceding section, we show that either one of the two sources of hardness applies,
or Pol(Γ) contains a ternary canonical function of a certain behaviour.

I Proposition 33. Let Γ be a reduct of (C2
ω, E) such that End(Γ) = Aut(C2

ω, E). Then one
of the following holds:

the action of Pol(Γ) on the classes of Eq has no essential function;
the action of Pol(Γ, c) on the equivalence class of c has no essential function, for some
c ∈ C2

ω;
Pol(Γ) contains a ternary canonical function h with h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N

and which behaves like a minority on {E,=}.

To prove the proposition, we are again going to make use of Propositions 30 and 31, and
the following lemma.
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I Lemma 34. Let Γ be a reduct of (C2
ω, E) such that End(Γ) = Aut(C2

ω, E). If Pol(Γ)
contains a ternary function which behaves like x+ y + z modulo 2 on some equivalence class,
then it contains a ternary function which behaves like x+ y + z modulo 2 on all equivalence
classes.

Let Γ be a reduct of (C2
ω, Eq) where Eq is an equivalence relation with infinitely many

classes of size two such that Pol(Γ) contains a ternary canonical function h as in item 3 of
Proposition 33.

I Proposition 35. A relation with a first-order definition in (C2
ω, Eq) is preserved by h if

and only if it can be defined by a conjunction of formulas of the form

N(x1, y1) ∨ · · · ∨N(xk, yk) ∨ Eq(z1, z2) (1)

for k ≥ 0, or of the form

N(x1, y1) ∨ · · · ∨N(xk, yk)∨ (|{i ∈ S : xi 6= yi}| ≡2 p) (2)

where p ∈ {0, 1} and S ⊆ {1, . . . , k}.

I Proposition 36. There is a polynomial-time algorithm that decides whether a given set Φ
of formulas as in the statement of Proposition 35 is satisfiable.

I Corollary 37. Let Γ be a reduct of (C2
ω, Eq) with finite signature and such that Pol(Γ)

contains the operation h. Then CSP(Γ) is in P.

We close the section with a more detailed variant of Theorem 2.

I Theorem 38. Let (Cs
n, E) be an infinite graph whose reflexive closure Eq is an equivalence

relation with n classes of size s, where 1 ≤ n, s ≤ ω. Let Γ be a reduct of (Cs
n, E). Then one

of the following holds.
(1) Γ has an endomorphism whose image induces a clique or an independent set, and is

homomorphically equivalent to a reduct of (Cs
n,=).

(2) Γ is a model complete core and Pol(Γ, c) has a uniformly continuous projective clone
homomorphism for some c ∈ (Cs

n, E).
(3) n = 2, s = ω, Γ is a model complete core, and Pol(Γ) contains a canonical ternary

injection of behaviour minority which is hyperplanely of behaviour E-dominated projection.
(4) n = ω, s = 2, Γ is a model complete core, and Pol(Γ) contains a ternary canonical

function h with h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N and which behaves like a minority
on {E,=}.

Neither items (2) and (3), nor items (2) and (4) can simultaneously hold, and when Γ has
a finite relational signature, then (2) implies NP-completeness and both (3) and (4) imply
tractability of its CSP.

7 Outlook

We have classified the computational complexity of CSPs for reducts of the infinite homo-
geneous graphs. Our proof shows that the scope of the classification method from [13] is
much larger than one might expect at first sight. The general research goal here is to identify
larger and larger classes of infinite-domain CSPs where systematic complexity classification
is possible; a general dichotomy conjecture is open for CSPs of reducts of finitely bounded
homogeneous structures [15, 2]. The next step in this direction might be to show a general
complexity dichotomy for reducts of homogeneous structures whose age is finitely bounded
and has the free amalgamation property (the Henson graphs provide natural examples for
such structures). The present paper indicates that this problem might be within reach.
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