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—— Abstract

In the context of statistical databases, the release of accurate statistical information about the
collected data often puts at risk the privacy of the individual contributors. The goal of differential
privacy is to maximise the utility of a query while protecting the individual records in the database.
A natural way to achieve differential privacy is to add statistical noise to the result of the query.
In this context, a mechanism for releasing statistical information is thus a trade-off between
utility and privacy. In order to balance these two “conflicting” requirements, privacy preserving
mechanisms calibrate the added noise to the so-called sensitivity of the query, and thus a precise
estimate of the sensitivity of the query is necessary to determine the amplitude of the noise to
be added.

In this paper, we initiate a systematic study of sensitivity of counting queries over relational
databases. We first observe that the sensitivity of a Relational Algebra query with counting is
not computable in general, and that while the sensitivity of Conjunctive Queries with counting
is computable, it becomes unbounded as soon as the query includes a join. We then consider
restricted classes of databases (databases with constraints), and study the problem of computing
the sensitivity of a query given such constraints. We are able to establish bounds on the sensitivity
of counting conjunctive queries over constrained databases. The kind of constraints studied here
are: functional dependencies and cardinality dependencies. The latter is a natural generalisation
of functional dependencies that allows us to provide tight bounds on the sensitivity of counting
conjunctive queries.
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1 Introduction

With the emergence of new systems and services such as eHealth, electronic tickets (e.g.,
London Oyster card), mobile phones, or social networks, important amounts of information
concerning our everyday activities are collected in various databases. Statistical analysis of
such datasets could be very useful for improving services, or enabling research and market
studies for example. But at the same time, the collection and storage of all this data puts at
risk our individual privacy. A solution to address this problem is not to release the exact
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result of any query on a sensitive dataset, but rather to perturb the released results by adding
some noise. Differential privacy [3, 6] precisely characterises the level of privacy provided by
such randomized mechanisms. It offers a worst-case statistical guarantee on the increase in
harm that an individual can be exposed to, if deciding to contribute her data to the dataset.

The concept of differential privacy is rooted in the notion of neighboring databases, that
is, databases that differ in the presence or not of the information regarding one participant.
More precisely, a mechanism M is e-differentially private, for € > 0 if for any two neighboring
databases D and D’ and for any subset S C R of possible outputs we have:

PrM(D) € S] < e -PrfM(D') € §].

That is, the probability that M releases an element of .S on D is almost the same as the
probability that M releases an element of S on D’. In the definition of differential privacy
the parameter € plays a central role. It gives the concrete bound on the increase in harm
that an individual I can be exposed to, by contributing her data to the database.

Several mechanisms have been proposed to turn a deterministic query into a differentially
private one, like the Laplace mechanism, the exponential mechanism, the Gaussian mechanism,
etc. An extended introduction to these and other mechanisms (and more generally to
differential privacy) is the recent monograph by Dwork and Roth [7]. In order to provide a
good balance between privacy and utility, such e-differential private mechanisms calibrate the
added noise to the so-called sensitivity of the query. The sensitivity of a query @ captures
the influence that an individual’s data can have on the output of the query. More precisely,
let us denote by D ~ D’ the fact that two databases D and D’ are neighbors. The sensitivity
of a numeric query @ is then

!

max [Q(D) — QD).

This measure is generally referred to as the global sensitivity of the query to distinguish it
from other notions of local or smooth sensitivity [13].

To avoid adding too much noise and thus sacrificing too much utility to achieve the
intended level of differential privacy, the sensitivity of the query needs to be computed as
accurately as possible. However, this problem is undecidable in general as we shall see. In
this paper we propose algorithms for computing upper bounds on the sensitivity of queries.
Our results hold in a rather general setting: we consider counting conjunctive queries over
multi-table databases. Further, our results are not tied to any particular neighboring relation,
but hold for any relation of bounded order. This work is a first step towards understanding
the class of queries and neighboring relations that are amenable to differential privacy.

Relational databases. Most of the works on differential privacy assume the simplified
situation where the database is a monolithic table [7]. However, real life databases consist
of not one, but many tables containing the information scattered. Of course, one could
build a unique table from all these tables, by simply producing the cartesian product of
all the tables in the database. Nevertheless, this immediately raises two problems. First,
materialising the cartesian product of many—possibly big—tables is impractical, and often
plain impossible due to space and time requirements. Second, the notion of neighboring
databases now becomes unbounded which makes queries have unbounded sensitivity, and
thus not amenable to differential privacy mechanisms. For example, given two tables (T7,7%)
and a neighbor T} = Ty \ {t} of T} for some record ¢ € T}, we have that, whereas (77, T5) is
the neighbor of (T}, T%) resulting from removing one record, T} x Ty differs from T] x T3 in
a number of records equal to |T5|. This in general makes it impossible for non-trivial queries
to have bounded sensitivity, unless further restrictions on the databases are assumed.
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Neighboring relation. Most works on differential privacy define neighboring databases as
those that differ in exactly one record. This corresponds to assuming that each individual
contributes at most one record in the database. However, as pointed out in [10] this
assumption does not hold for many applications such as social networks or tabular data.
So the definition of neighboring databases needs to be tailored to the application at hand
with privacy in mind. Indeed, neighboring databases should, strictly speaking, differ in the
complete set of information pertaining to one individual, which could mean more than one
record. Alternative definitions of neighboring have been proposed [10, 5]. In particular, our
results are not tied to any particular definition of the neighboring relation.

SQL. SQL is arguably the prevalent query language for relational databases. It is equivalent
to first order logic (FO) over relational structures and to Relational Algebra (RA). Here,
we focus on SQL with aggregation, and study the static analysis problem of computing the
sensitivity of SQL queries. As a first step in the larger programme of studying aggregate
queries, we study the counting operator. We concentrate our investigation on one of the most
prominent fragments of SQL, namely the Conjunctive Queries, corresponding to positive
“select-from-where” queries [1].

Contributions. We first establish, in Section 2, that finding the sensitivity of a SQL query
with counting is not computable in general. In the remaining sections we restrict our study
to counting Conjunctive Queries. Section 3 shows that the sensitivity for this fragment is
computable, although the characterisation shows that sensitivity becomes unbounded as
soon as we have a ‘non-trivial’ join.

Now, in most scenarios the class of databases of interest for the application at hand
are restricted (or constrained), and oftentimes the sensitivity of a query @ restricted to a
constrained class of databases can become bounded. Following this idea, we then study the
problem of computing global sensitivity restricted to databases from a constrained class. In
Section 4, we focus on Functional Dependencies (FD), that allow constraining databases by
rules of the form “in the table T, the i-th column determines the j-th column”, in other
words, “there are no 2 rows of 7' with the same datum in the i-th column but distinct data
in their j-th columns”. Further, in Section 5 we study Cardinality Dependencies, which are a
generalisation of FDs, with rules of the form “there are no more than k rows of T with the
same datum in the i-th column but pairwise distinct data in their j-th columns”. Finally,
Section 6 concludes and discusses future work.

Related work. Several works have studied methods for computing the sensitivity of a given

query or program. The work most related to ours is the one of Palamidessi and Stronati [14].

They study the problem of computing the sensitivity of queries in relational algebra. Their
approach is based on the use of constraints on attributes: every attribute comes with a
bounded range, e.g. 0 < age < 100. They are able to provide tight bounds on the sensitivity
of the query Q. This approach can be applied to general SQL queries but it has the drawback
that it requires to constrain the ranges for all the attributes. In this paper, instead, we focus
on counting queries and on more lax semantic restrictions, namely functional dependencies
and cardinality dependencies.

Pierce and Reed [15] and Gaboardi et al. [8] use relational algebra operations with a
fixed, predetermined sensitivity, and a linear type system to track the use of the data in
programs. This combination permits to have sensitivity analyses that extend, beyond SQL,
to a full functional programming language. Their approach can provide “bad” estimates on
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the sensitivity of given queries due to the use of fixed sensitivity for relational operations.
Our approach could provide a kernel query language providing more precise estimates that
could be then combined with their type systems.

Chaudhuri et al. in [4] study automatic program analyses that provide bounds on the
sensitivity of numerical imperative programs. Their approach is not directly related to
specific query languages but our work could, in principle, be combined with their techniques
to design a general purpose programming language for differential privacy.

Several works have pointed out and studied the problem of providing a bound to the
sensitivity of queries in disconnected structures. McSherry [12], in the setting of tabular data,
considers a restricted form of join where the data of the two tables are grouped by their join
keys, and then groups are joined using their group keys. The same solution has been used also
in [15, 8]. A similar approach, with different restrictions, has also been used by Palamidessi
and Stronati in [14]. This approach limits the situations where differential privacy can be
used with a good utility. To overcome this problem, several approaches considered alternative
notions of sensitivity such as local sensitivity [13] or empirical sensitivity [5].

2 Preliminaries

Let N=1{0,1,2,...} and let n = {1,...n} for every n € N. We write a to denote a vector
of elements, whose i-th element is denoted by a[i]. We write A* [resp. AT, A"| for the set of
strings [resp. non-empty strings, length-n strings] over A, and e for the empty string.

2.1 Relational structures

A relational vocabulary o = (K, R) consists of a collection K of constants (usually
denoted by ¢1, ¢, ... ), and a collection R of relation symbols, each with a specified arity.
By o, we denote a vocabulary o,, = (I, R) where K = {¢1,...,¢,}. For a relation R we write
arity(R) € IN to denote its arity; and we sometimes write R(") to specify that R has arity 7.
A o-structure A consists of a universe A containing K, or domain, and an interpretation
which associates to each relation symbol R € R, a relation R* C A% () and for each
constant ¢ € K, ¢® = ¢. An isolated element of A is an element a € A which does not
appear in any interpretation. Let STR be the set of all finite structures (we write STR[o]
to make explicit the vocabulary). We use A, B,C,A’,B’,... to denote relational structures
from STR, and A, B,C, A’, B’,... to denote their respective domains.

» Example 1. As our running example, we will consider a database of patients, doctors and
hospitals, with tables
Hos(id, loc), containing the hospitals with their location,
Pat(id, sex, hos), listing the patients with an identifier, gender and the hospital where
they are being treated,
Doc(id, specialty, hos), listing the doctors with their identifier, their specialty and the
hospital where they practice,
PatDoc(pat, doc), containing the patients and their current attending doctor.
Such a database can be described over the vocabulary ¢ = (K,R) containing relations
R = {Hos'®, Pat®  Doc'®, PatDoc™®} and some constants such as K = {cg, co}-

A graph is a structure G = (V, E), where F is a binary relation that is symmetric
and irreflexive. Thus, our graphs are undirected, loopless, and without parallel edges. The
Gaifman graph of a o-structure A, denoted by G(A), is the (undirected) graph whose set
of nodes is the universe of A, and whose set of edges consists of all pairs (a,a’) of distinct
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elements of A such that a and a’ appear together in some tuple of a relation in A. Recall that
the distance between two vertices u, v of a graph is the length of the shortest path from
to v. We define the distance between two elements a, b of a structure A as their distance in
G(A), which we denote by dista(a,b). We write AU B for the disjoint union of A and B.

A homomorphism from a (I, R)-structure A to a (', R')-structure B such that £ C K’
and R C R’ is a mapping h : A — B so that for each relation symbol R € R, if (a1, ...,a,) €
R", then (h(a1),...,h(a,)) € R®, and for every constant ¢ € K, h(c) = c. We will sometimes
write h(ai,...,a,) as short for (h(a1),...,h(a,)). We write A — B to denote that there is a
homomorphism from A to B, and we write h : A — B to denote that h is a homomorphism
from A to B. If A — B and B — A we say that A and B are hom-equivalent. We use
2 for the isomorphism relation. Given a o-structure A and a set B C A there is (up to
isomorphism) a unique structure A’ so that

it is hom-equivalent to A, that is, there are h : A — A’ and 1/ : A’ — A,

h(a) = h'(a) = a for all a € B,

it has the minimal number of elements.
Such a structure A’ is called the core preserving B (or simply core if B = (}). We write
core(A, B) [resp. core(A)] to denote the core of A preserving B [resp. the core of A].

2.2 Logic

Let V be a collection of first-order variables equipped with a linear order <. Let o be a
relational vocabulary. A term is either a first order variable x € V or a constant from o. The
atomic formulas of o are those of the form R(t1,...,t,), where R € o is a relation symbol
of arity 7, and #1,...,t, are terms. Formulas of the form ¢ = ¢’ are also atomic formulas, and
we refer to them as equalities. The collection of first-order formulas (FO formulas) is
obtained by closing the atomic formulas under negation, conjunction, disjunction, universal
and existential first-order quantification. The semantics of first-order logic is standard. The
set of variables of ¢ is denoted by wvar(¢), and the set of free variables by free(p). We
often write ¢(x1,...,2,) where {z1,...,2,} = free(p) and 21 < -+ < xy, to stress the free
variables. If A is a o-structure and (Z) is a first-order formula, we use the notation A = ¢[a]
to denote the fact that ¢ is true in A when its free variables & are interpreted by the tuple
of elements a. When ¢ contains no free variables, we say that it is a sentence, and in this
case we simply write A |= ¢. For any formula ¢(z1,...,2,) and structure A, we write p(A)
to denote {(as,...,a,) € A" | A E ¢[ai,...,a,]}. We use ()’ to denote the 0-ary tuple of

elements. Hence, if ¢ has no free variables we interpret ¢(A) as {()} if A = ¢ or () otherwise.

Note that, in this case, [p(A)| =1 iff A = p. We use = for the logical equivalence relation
and =¢ for the equivalence relation restricted to a class of structures C.

Given a class of FO formulas £, by £# we denote the class of counting queries
{#p | ¢ € L}. The evaluation of #¢ in A, denoted #p(A), is defined as |¢(A)|, that is, as
the number of distinct tuples making ¢ true in A.

» Example 2. Continuing our running example, we consider the query that counts the
number of oncology doctors that are treating female patients in the same hospital as they
practice:

SELECT count distinct Doc.id

FROM Pat, Doc, PatDoc

WHERE Doc.specialty = ’0’ and
Pat.sex = ’F’ and
Pat.hos = Doc.hos and
PatDoc.pat = Pat.id and

PatDoc.doc = Doc.id
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This can be equivalently expressed with the formula #¢, where

@(zdoc) = El'rpata Lhos - Doc(xdom Co, thos) A Pat(zpata CF, zhos) A PatDOC(xpata xdoc) .

2.3 Global sensitivity

In its standard formulation, Differential Privacy requires the privacy bound to be valid
for every pair of structures that differ in one record. However, it is possible that an
individual contributes more than a single record to the database. Further it may be that
the database contains tables with public information. For this reason we do not set for our
study a particular neighboring relation. Our results hold for any neighboring relation
N C STRJo] x STR[o].

Having said that, a specific neighboring relation, called 1-neighboring, will be partic-
ularly useful for our proofs. Given two o-structures A, B with ¢ = (K, R), we say that A
is a substructure of B (noted A C B) if A C B, and RA C RB for all R € 0. We write
A < A" if A C A’ and there is no B so that A C B C A’. We say that A, B are 1-neighboring
structures, noted A ~1 B, if A < B or B < A. In other words, A ~; B if A can be obtained
from B (and B from A) by removing/adding a tuple or an isolated node.

We say that the neighboring relation A is of order k € N, if any two neighboring
relational structures differ in at most k elements. More formally, N is of order k if for any
(A,B) € N, there exist Ay, ..., Ay such that £ <k, A=Ay, B=A, and A;_; ~1 A; for all
1 € £. We say that the neighboring relation is unbounded if no such k exists.

The global sensitivity of a function f : STR — IN over a class of models C C STR with
respect to a neighboring relation N’ C C x C is:

GSE'() = max | IF(8) = F(A).

» Example 3. Suppose now that we want to find out the number of oncological patients in
the state of New York with the query

(p(xpat) = 3xhosy Tdocy Tsex -

DOC((EdOC, Co, :Ehos) A Pat(l'pat, Tsex xhos) A PatDOC(xpata xdoc) A Hos(xhos, xloc)

It is not hard to see that this query has unbounded global sensitivity when all relations are
considered sensitive, and thus all databases that differ in any one element are neighbors.
Indeed changing the location of a hospital from Indiana to New-York can increase the number
of ontological patients in the state of New York by any number.

» Observation 1. For any neighboring relation N of order k and any class of databases C,
the global sensitivity of a query Q is bounded with respect to N over C iff it is bounded with
respect to ~1 over C. Further, the global sensitivity with respect to N and relative to the class
C is bounded by k - GS;* (Q). So in the remaining of the paper we focus on 1-neighboring.

We will study the following problem, given a query language £, and a class of relational
structures C

PROBLEM:  GLOBALSENSITIVITY (L, C)
InpUT: Q€L
OutrpuT:  GSZ'(Q)

Unfortunately, this problem is undecidable already for counting first-order logic (and
therefore for counting Relational Algebra [1]).
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» Theorem 4. GLOBALSENSITIVITY (FO#, STR) is non-computable.

The fact that the global sensitivity problem for FO is undecidable is not really surprising
since most static analysis problems for FO on unrestricted structures are undecidable. This
is why in the next sections we will focus on Conjunctive Queries.

3 Conjunctive queries

One of the most studied fragments of FO in relation to database queries is the fragment
of Conjunctive Queries (CQ). We now, and for the rest of the paper, restrict our study to
counting conjunctive queries, and show that sensitivity for this fragment is computable.

The class of Conjunctive Queries (also known as Primitive Positive Logic, or Existential
Positive FO) is the fragment of FO corresponding to positive ‘select-project-join’ queries of
the Relational Algebra or to positive ‘select-from-where’ queries of SQL, where by ‘positive’
we mean that there are no inequalities in the select [resp. where] conditions (we refer the
reader to [1, §4] for more details). These are formulae of the form

(T, ...y xn) = 3y1, .-, Ym 0, (1)

where 6 is a conjunction of atomic formulae. Since we deal with constants, and, in future
sections, with constrained databases, a conjunctive query can also be false (noted ).
However, all the results that we show will assume that the input formula is not equivalent to
L (i.e., that it is satisfiable, which can be checked in polynomial time)—for the particular
case where formulae are unsatisfiable all the results are trivial, and this will avoid lengthy
statements. For simplicity, we assume that the formulae do not contain equalities.

Every conjunctive query of the form (1) over a relational vocabulary o} gives rise to
a canonical structure (sometimes called tableau) C, with n + m + k elements, where
the elements of C, are the variables x1,...,%n,y1,...,¥m Plus the constants ci,...,cp,
the relations of C, consist of the tuples of terms in the conjuncts of §. Given a CQ ¢,
we write C, for the canonical structure of ¢, and C,, for its domain (i.e., the variables
T1yees Ty Y1,---,Ym and constants ci,...,cx). We also define C, as the result of removing
all isolated constants from C, (note that C, may not necessarily be a structure over the
same vocabulary of ¢ due to the absence of some constants). Likewise, any og-structure
A with domain A = {z1,...,2,} U{c1,...,ci} gives rise to a canonical CQ ¢(z1,...,2,)
where var(p) = free(p) = {z1,...,7,}, and ¢ has a conjunct R(f) iff £ € R®. Note that for
every op-structure A there is A’ = A and ¢ so that ¢ is the canonical query of A’.

A CQ ¢ is acyclic if G(C,,) is acyclic. We say that a CQ ¢ is connected if G(C7) is
connected, otherwise it is disconnected. Note that every disconnected CQ ¢ so that G(C,,)
has n connected components can be equivalently written in the form ¢ = A, ¥i(Z;) so
that 9;(Z;) is a connected CQ for every i, and for all ¢ # j, Z; and Z; have no variables in
common. We say that 1; is a connected conjunct of ¢, and we say that v; is a sentential
connected conjunct if it is a sentence (i.e., 7; = ()). Given o = A\, ¥:(Z;) a disconnected
CQ with each 1); being a connected conjunct, we further define @’ as the conjunction of all
the 1,’s but ;.

» Example 5 (Cont. from Ex. 2). The canonical o-structure C,, has universe {pa¢, Zhos: Tdocs
co,cr} and relations (shown in Figure 1):

Doc®» = (Tdocs COs Thos) } Pat™ = {(xpah CF, Thos) }» PatDoc™ = (xpaﬁ? Tdoc) }-
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C Tdoc co Thos g((c ) Ldoc CcCo LThos
@ emtae il .. . ®
UATO
PatDoc! :. Doc
:O ______ .A" '." Pat
]t] I’pat CFr xpat Cp

Figure 1 Depiction of the canonical structure of ¢ as defined in Example 2 as well as its Gaifman
graph. Square vertices denote free variables and triangle vertices denote constants.

C, s core(Cy, {x1,22}) S core(Cy,) S
sizl g R R

& 0 a) ®
T

Figure 2 Core of CQ’s.

Core of CQ’s. For a CQ query ¢(z) = 3y.0 over i we define core(p) as the CQ query
¢'(z) = Jy'.0" where 0’ is the canonical query of core(C,,Z) and ¥ is the set of all non-
constant elements of core(C,, ) that are not in z. Note that C ooy = core(Cy, z). We
say that ¢(Z) is a core-CQ if C,ppe(y) = core(Cy,), and we write CQ,,,, for the class of all
core-CQ’s. We define core(#p) as #core(yp) for every CQ .

» Example 6. Given ¢(z1,z2) = Jy1,y2.S(x1,x1)A S(x1,92) A R(x1,91) A R(x2,y1), whose
canonical structure is depicted in Figure 2, we have that core(yp) = Jy1.S(z1, z1) AR(z1,y1) A
R(x2,y1), and that ¢ is not a core-CQ since core(C,,, {x1, z2}) is not isomorphic to core(C,),
as shown in Figure 2.

Given a connected CQ ¢, let us define

00 if 3z € free(p). IR E€R. Ja € R™¥) . x ¢ a
1 otherwise

Astr(#p) = {

» Proposition 7. For every connected CQ* Q, we have GS3ip(Q) = Astr(Q).

» Example 8 (Cont. from Ex. 5). Note that we have Agrr(#¢) = oo since core(p) = ¢ and
~1

Tdoc 1s not in the tuple (Zpat, cr, Thes) of the relation Pat® . and thus that GS51R(Q) = 0.

We extend the definition of Agrg to disconnected CQ# as follows. For any ¢ = /\ie” Vi
disconnected CQ so that each ¢; is a connected conjunct, we define

Astr(#¢k) if Ik € n. free(p) = free(pr) N Czr — Cy,
00 otherwise

Astr(#p) = {

» Theorem 9. For every CQ* Q, we have GSgir(Q) = AsTr(Q).

The above characterization shows that, even when we deal with connected CQ’s (arguably
the most common), we obtain unbounded sensitivity very easily. Indeed, as soon as one
has a ‘join’ with a free variable which is not the joining attribute, such as #¢(x) =
# Jy,z. R(z,y) A S(y, z) the global sensitivity is unbounded. Although this means that for
every N € IN there are structures A ~q A’ so that #p(A) — #¢(A") > N, it may be that
A, A’ do not correspond to databases that could arise in the domain of application at hand.
However, when restricting the set of considered structures to ones satisfying some constraints,
it may well be that the sensitivity becomes bounded. The next two sections will focus on
evaluating sensitivity of queries over constrained structures.
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4  Functional Dependencies

In this section we show bounds for the sensitivity of queries in the presence of what are
called functional dependencies. In databases, it is often the case that a set of attributes
determines another attribute. Such constraints are called functional dependencies. In this
section functional dependencies where one attribute determine another are considered.

» Example 10 (Cont. from Ex. 2). Note that, the global sensitivity of #¢ is unbounded.

Indeed, this is a consequence of the possibility of having patients with unbounded number
of attending doctors and doctors working in any number of hospitals. However, this does
not correspond to databases that could occur in practice, since patients have normally one
attending doctor and doctors work in at most one hospital. This is why the use of database
constraints becomes useful, to restrict the collection of databases we are interested in, and
thus to improve the bounds of the sensitivity of queries.

We write R[i — j] to denote a functional dependency of a relation R of arity n
between components i € n and j € n. A structure A satisfies a functional dependency
(henceforth “FD”) R[i — j] if max,ea(|{b[j] | b € R*,b[i] = a}|) < 1. We use the symbol 2

to denote a set of FDs, and we write #xR[i — j] to denote 1 if R[i — j] € X, or co otherwise.

We write Cx, for the class of all relational structures satisfying all FDs in X.
Given a CQ query ¢ and a set of FDs X we define the ¥-chase [11, 2] of ¢, noted
chasex, (), as the closure of the application of the following rule:
For every R[i — j] € ¥ and every pair of conjuncts R(f) and R(5) of ¢ so that t[i] = 5]i]
and t[j] # 5[j],
if 5[4] is a variable, replace every occurrence of 5[j] with ¢[j];
if 5[j] and t[j] are constants, output L.
It can be seen that the application of these rules is terminating and Church-Rosser confluent,
up to renaming of variables [1].

The following result shows that, as soon as we have a disconnected query, the sensitivity
is likely to be unbounded.

» Proposition 11. For every disconnected CQ query ¢ containing a conjunct without con-
stants and at least one free variable, and for every set X of FD’s, we have GS;] (#) = 0.

Paths. A path of a (I, R)-structure A between an element a € A and b € A, is a string
p= (R13i17a17j17b1) o (Rnainvan:j'rubn) € (R XINx AxIN x A)* (*)

so that either p = ¢ and a = b (i.e., the empty path); or a; = a, b, = b, a; = b;—; for all
1 < i < n, and for every £ € n we have iy, j; € arity(R;) and there is a € Rf so that a[i¢] = ay
and alj;] = be. A path of the form (%) is simple if a; # b; # b; for all 1 <i < j <n. Note
that in particular the empty path ¢ is simple. We write p : A; ~»4 A to denote that p is a
simple path of A from an element of A; C A to an element of Ay C A. We write a ~~, b,
Ajq ~p by a ~p Ag as short for {a} ~p {b}, A1 ~p {b}, {a} ~>4 As respectively.

» Example 12. For a structure A with relations R* = {(a1,as,a3), (a1,a4,0a6)}, S* =
{(as,a6)}, and T = {(a3,as,a4)}, we have that p : a; ~», a4 for p = (R,1,a1,3,a3)
(T,1,a3,2,a5) (S,1,as5,2,a6) (R, 3,a6,2,a4), as depicted in Figure 3
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pathin A
@@

Figure 3 A path in a structure.

R o2, o2.0

C,: |R R A: |R R A': |R
L5 PEe PESIVG

Figure 4 Structures of Example 14. Square vertices denote free variables.

Given a vocabulary o = (I, R) and a path p of the form (x), let m € n be the greatest
index m so that b,, € K, or 0 otherwise. We define the cardinality of path p as

#2(p) E I #sRelic = o (1)

m<L<n

where as usual the product of the empty sequence is 1, and oo is absorbing wrt the product
(00+ N =N - 00 =00). Note that #s(¢) = 1. The intuition is that #x(p) gives a bound on
how many different elements b can be reached from a through p on any structure A € Cx
(i.e., so that p: a ~»4 b).

Let Q = #¢(x1,...,2,) be a connected CQ¥ over a vocabulary o = (K,R), and let
¢ = core(chases (1))). We define

def .
AL = max max min ;
E(Q) Bor o lien \piarc, o #sx (pz)
aER"»

_ def .
A = i) ] -
»(Q) = max max max (pi:gnwggw #s(p ))
» Observation 2. Note that A5 (Q) is either 1 or oo and that Ag(Q) = oo iff AL(Q) = .
Further, observe that AL(Q) — A5 (Q) < ng — 1, where ng is the mazimum number of
elements in a relation of the canonical structure of core(chases (), assuming Q = #.

» Theorem 13. Given a set ¥ of functional dependencies and a connected CQ¥ query Q,
we have that GS} (Q) < A;(Q). Further, if Q € CQ¥ . we have Gl (Q) > Ag(Q).

core’

» Observation 3. When computing lower and upper bounds for global sensitivity of query
Q = #Y(x1,...,2y) in the presence of functional dependencies, we consider core(chases (1))
(rather than core(v)) as it gives a corresponding canonical minimal query. This allows us to
obtain tighter bounds than if we hadn’t taken the chase of ¥.

» Example 14. Take for instance the CQ with one free variable of Figure 4. Observe that,
for ¥ = {R[1— 2], R[2— 1]}, we have that GS5! (#¢) < Af (#¢) = 4, which is tight since
#p(A) =4, and #p(A’) = 0. Further, this example can be easily generalized, obtaining that
for every n € N there is a CQ @ so that GS3 (Q) = n = AL(Q).

» Example 15 (Cont. from Ex. 2). As noted in Example 10, #¢ has unbounded global
sensitivity. However, if every patient has no more than one attending doctor, the sensitivity
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of #¢ becomes bounded. Indeed, if ¥ = {PatDoc[l — 2|}, then

AS (#p) <GSl (#) < AL (#9)

by Theorem 13—observe that ¢ € CQ
it thus follows that GS; (#¢) = 1.

since it is unary. Since Ay (#¢) = A;(#cp) =1,

core

As we have shown, adding functional dependencies immediately improves the global
sensitivity of queries. However, functional dependencies are often very restrictive, and it may
not always be possible to impose such restrictions. This leads to a more general notion of
dependencies, that we call cardinality dependencies. These dependencies bound the number
of elements associated with component ¢ of a relation R for each fixed element of a component
j. This will be the object of study of our next section.

5 Cardinality Dependencies

While functionality constraints are a very natural restriction of databases, there are many
scenarios in which, although we don’t have an attribute i functionally determining an attribute
7 in a relation, we have a cardinality dependency nonetheless. This is a dependency
of the form “there are at most n different attributes j sharing the same attribute 4 in the
relation R”"—functional dependencies being the special case when n = 1.

These dependencies arise naturally when modelling relations between entities (such as
in ER modelling [9]). For example, the business rules underlying a company database may
allow that an employee has more than one manager, but no more than 2. Another example
is for bounded domain attributes: whereas the name of a person does not determine the
gender, there cannot be more than two possibilities of gender for any given name. As we
will see next, cardinality dependencies provide further means to give tighter bounds for the
global sensitivity of CQ’s.

» Example 16 (Cont. from Ex. 15). We already noticed that constraining each patient to
have at most one attending doctor, brings the sensitivity of #¢ down to 1. However, it
may be that a patient can have more than one attending doctor, although it can’t have an
unbounded number of attending doctors. For example, a scenario in which a patient has at
most 3 attending doctors.

More formally, we write R[é LA j] to denote a k-cardinality dependency of a relation
R of arity n between components i € n and j € n. A structure A satisfies a cardinality
dependency (henceforth “CD”) R[igj] if max,ea(|{b[j] | b € R*,b[i] = a}|) < k. For the
particular case where k = 1, note that R[zg jl is a functional dependency. We use the
symbol ¥ to denote a set of CD’s, and we write #xR[i — j] to denote the minimum & so that
RJi LN j] € £, or oo otherwise. As before, we write Cx; for the class of all relational structures
satisfying all CDs in ¥.. We define the cardinality of a path #x(p) as in (1), where now ¥ is
a set of CD’s, and in the definition #xR[i — j] is interpreted as defined above, over CD’s.

Upper bound. Given a connected CQ¥ query @ over a vocabulary o = (R,K) so that
core(Q) = #p(x1,...,Ty,), let us define

def .
AL = max E min H ;
Z(Q> ReR P1,--,Pn St ; #Z(pl)
acRC¢ pitd~c,®; fori €n ?
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» Observation 4. Note that in the presence of cardinality dependencies, when comput-
ing upper bounds for global sensitivity of a query Q = #(x1,...,2,), we now consider
core(yp) (rather than core(chases (1)) ). This is because core(chases (1)) is not necessarily a
conjunctive query, but rather a union of conjunctive queries which we do not handle.

» Theorem 17. Given a set of cardinality dependencies X3, for all connected CQ¥ queries Q
we have GS;1(Q) < AL(Q).

» Example 18 (Cont. from Ex. 16). If every patient has at most 3 attending doctors, the

sensitivity of #¢ becomes bounded. Indeed, if ¥ = {PatDoc[1 i>2]}, then GS?E (#) <
A;;,E(#go) = 3 by Theorem 17.

6 Conclusion

We have given bounds for the global sensitivity of counting Conjunctive Queries under the
functionality or cardinality constraints. These bounds can be used to turn those queries in
differentially private ones by using mechanisms like the Laplacian or the Gaussian mechanisms
without adding too much noise. The proposed algorithms for computing these bounds have
exponential complexity, but since effectively many interesting queries are often small, our
results are still practical.

There are several interesting directions that we will pursue in future work. We will
study other aggregation operations already present in SQL such as average or sum. We will
also investigate sensitivity of queries with negation, where one can ask for example for the
number of patients that are not treated by a given doctor. Further, we have focused here
on global sensitivity but there are other notions of sensitivity that have been proposed. In
particular, the so-called local sensitivity is studied in [13]. The local sensitivity is defined by
quantifying not over all possible databases but only over the ones in the neighborhood of
the particular database under analysis. The local sensitivity is often lower than the global
sensitivity, but adding noise proportional to the local sensitivity does not ensure differential
privacy. Nevertheless, adding the noise proportional to a smooth approximation of the local
sensitivity permits to recover differential privacy.
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