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Abstract
In this paper, we exhibit a one-to-one correspondence between ω-regular languages and a sub-
class of regular cost functions over finite words, called ω-regular like cost functions. This bridge
between the two models allows one to readily import classical results such as the last appear-
ance record or the McNaughton-Safra constructions to the realm of regular cost functions. In
combination with game theoretic techniques, this also yields a simple description of an optimal
procedure of history-determinisation for cost automata, a central result in the theory of regular
cost functions.
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1 Introduction

The theory of regular cost functions [4] aims at offering a uniform framework dealing with
boundedness questions in automata theory. It provides a toolbox of concepts and results for
solving questions involving resource constraints, such as the star height problem over finite
words [10, 12] and finite trees [7], the finite power property [14], the boundedness of fixpoints
for monadic second-order logic [2] or over guarded logic [1], or for attacking the Mostowski
index problem [7]. The strength of regular cost functions is that it is a quantitative setting
where many of the crucial results of regular languages generalise, including the cornerstone
effective equivalence between logic, automata, algebra and expressions.

For regular languages, determinising plays a central role, as for instance for complementing
automata over infinite trees, or for solving games. The situation is different for cost functions,
even over finite words: it is impossible to determinise cost automata, deterministic cost
automata being strictly less expressive. The notion of history-deterministic automata
overcomes this shortcoming. These are non-deterministic cost automata that have the
semantical property that an oracle resolves the non-determinism in an optimal way. The
non-determinisability issue is resolved by establishing that cost automata can be effectively
transformed into history-deterministic ones [4]. This is crucially used for instance when
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developing the theory of regular cost functions over finite trees [7]. However, the proof of
this result is so far very complicated. The original version [4] was going through algebra
(stabilisation monoids), incurring a double exponential blowup. An optimal version inspired
by the construction of Safra is known [5], but its description and correctness proof are
extremely complicated.

One aim of the present work is to give a simple description and correctness proof of
the construction from [5] which, given a cost-automaton as input, produces an equivalent
history-deterministic automaton. The key advantage of the novel presentation in this work is
that it uses the determinisation of ω-regular languages as a black box. In particular, it does
not depend at all on the details of the (relatively complicated) Safra construction. This also
makes both the construction and the proof much simpler. Further, it is optimal, meaning
that it yields an automaton of exponential size, matching known lower bound for the case of
ω-regular languages [8].

In order to obtain this completely new presentation, we describe a one-to-one correspond-
ence between the theory of ω-regular languages and a subclass of regular cost functions, called
the ω-regular like cost functions. This correspondence allows us to readily import from ω-
regular languages constructions such as the last appearance record or determinisation results
to regular cost functions. In other words, ω-regular like cost functions are determinisable.

In a second step, combining game theoretic techniques with an idea of Bojańczyk [3], we
obtain a simple, direct and optimal construction of history-deterministic cost automata.

Structure of the document

We define the class of ω-regular like cost functions in Section 3, and study its properties.
We give in Section 4 the history-determinisation procedure, relying on the results about
ω-regular like cost functions combined with game theoretic techniques.

2 Definitions

Let A and B be alphabets. An initial automaton structure is denoted A = (Q, A, B, I,∆), where
A is the input alphabet, B is the output alphabet, Q is a finite set of states, I ⊆ Q is the set of
initial states and ∆ ⊆ Q× A× B×Q is the transition relation. An element (p, a, b, q) ∈ ∆ is
called a transition. An automaton structure A = (Q, A, B, I,∆, F ) is an initial automaton
structure enriched with a set F ⊆ Q of accepting states.

A run (which can be finite or infinite) is a sequence of transitions of the form

(p0, a1, b1, p1)(p1, a2, b2, p2) · · ·

such that p0 is initial. We denote by ρ|A its projection to the alphabet A, and by ρ|B its
projection to the alphabet B. For w a finite or infinite word over A, we say that a run ρ is
a run of w if ρ|A = w and a prefix run of w if ρ|A is a prefix of w. When dealing with an
automaton structure, we further require that a run of a finite word ends in an accepting
state.

ω-automata

An ω-automaton is denotedA = (Q, A, B, I,∆,W ), where (Q, A, B, I,∆) is an initial automaton
structure, and W ⊆ Bω is called the accepting condition. The ω-language recognised by the
ω-automaton is the set

{w ∈ Aω | there exists a run ρ over w such that ρ|B ∈W} .
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We define some of the classical ω-accepting conditions.

Büchi = {w ∈ {0, 1}ω | w contains infinitely many 0′s}

coBüchi = {w ∈ {1, 2}ω | w contains finitely many 1′s}

Rabin1 =
{
w ∈ {I,R, ε}ω

∣∣∣∣ w contains infinitely many I ′s
and finitely many R′s

}

Rabink =

w ∈ ({I,R, ε}k)ω
∣∣∣∣∣∣

for some ` ∈ {1, . . . , k} ,
w contains infinitely many I ′`s
and finitely many R′`s


Parityk =

{
w ∈ {1, . . . , k}ω

∣∣∣∣ the smallest colour appearing
infinitely often in w is even

}
A Rabin automaton is an ω-automaton with a Rabin condition, and similarly for the other
conditions. It is known that Büchi, parity and Rabin automata recognise the same ω-
languages, that are called the ω-regular languages.

Regular cost functions

We consider functions from A∗ to N ∪ {∞}. Let f be such a function, and X ⊆ A∗, we say
that f |X is bounded if there exists n ∈ N such that f(u) ≤ n for all u ∈ X.

Let f, g be two such functions, then g dominates f , denoted f 4 g, if for all X ⊆ A∗, if
g|X is bounded then f |X is bounded. We say that f and g are equivalent, denoted f ≈ g,
if f 4 g and g 4 f . The following lemma is central, see [6] for more considerations on this
equivalence relation.

I Lemma 1. f 4 g if, and only if, f ≤ α ◦ g for some function α : N → N such that
limα =∞, extended with α(∞) =∞.

A cost function is an equivalence class for the relation ≈.
Many equivalent formalisms can be used in order to define regular cost functions; this

paper studies automata.

I Definition 2. A min-cost-automaton is denoted A = (Q, A, B, I,∆, F, f), given by an
automaton structure (Q, A, B, I,∆, F ) together with an accepting map f : B∗ → N ∪ {∞}. It
recognises the cost function induced by the map

[[A]]min : A∗ → N ∪ {∞}
w 7→ inf {f(ρ|B) | ρ run over w} .

A max-cost-automaton is defined similarly, recognising the cost function induced by the map

[[A]]max : A∗ → N ∪ {∞}
w 7→ sup {f(ρ|B) | ρ run over w} .

We define some of the classical accepting maps for regular cost functions.
We first define the costB map for one counter. The value of the counter is initialised

by 0. The letter i is an increment, it adds 1 to the value of the counter, the letter r is a
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reset, it resets the value of the counter to 0, and the letter ε does nothing. Formally, the
costB map for one counter is defined by

costB : {i, r, ε}∗ → N ∪ {∞}
w 7→ max{n ∈ N | w ∈ {i, r, ε}∗ (ε∗i)n {i, r, ε}∗} .

The restrictions over {ε, i}∗ and over {r, i}∗ are called distance and desert, respectively
denoted distB and desertB.

The costB map for k counters is defined similarly as for one counter, over the alphabet
{ε, i, r}k, by taking the maximum over all counters.

The costhB map for k hierarchical counters is the restriction of costB over the alphabet
{I1, R1, . . . , Ik, Rk}, where I` increments the `th counter and resets all counters of smaller
index, and R` resets all counters of index smaller than or equal to `.

A B-automaton is a min-cost-automaton equipped with a costB map. Similarly, a
hB-automaton is equipped with a costhB map. The class of cost functions recognised by
B-automata (or equivalently, hB-automata) is called regular cost functions.

We will make use of the following special case of max-cost-automata.

I Definition 3. A prefix-max-cost-automaton is denoted A = (Q, A, B, I,∆, f), given by an
initial automaton structure (Q, A, B, I,∆) together with an accepting map f : B∗ → N ∪ {∞}.
It recognises the cost function induced by the map

[[A]]pmax : A∗ → N ∪ {∞}
w 7→ sup {f(ρ|B) | ρ prefix run over w} .

3 Omega Regular like Cost Functions

In this section we introduce the subclass of regular cost functions called ω-regular like cost
functions, that we show are in one-to-one correspondence with ω-regular languages.

In Subsection 3.1 we define an operator defining the class and fleshing out the correspond-
ence. We then explain how to construct ω-regular like cost functions with different models:
in Subsection 3.2 using automata, and in Subsection 3.3 using algebra.

This strong correspondence allows us to transfer results from ω-regular languages to
ω-regular like cost functions; in Subsection 3.4 we show how to transfer the latest appearence
record and the Safra constructions.

Finally, we show the interplay between ω-regular like cost functions and games in
Subsection 3.5.

3.1 Bijection with Omega-Regular Languages
The following is the main definition of this paper.

I Definition 4. Given a language L over infinite words, Lol is defined by

Lol : A∗ → N ∪ {∞}
w 7→ sup {n | w = uv1 · · · vnu′, v1, . . . , vn 6= ε, u · {v1, . . . , vn}ω ⊆ L} .

A cost function is ω-regular like if it contains a map Lol for some ω-regular language L.

Note that we will mostly be interested in using the definition of ·ol with ω-regular
languages.
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I Example 5.
Büchiol = distB: it is the function counting the number of 1’s, i.e. the distance map
where 1 is ε and 0 is i.
coBüchiol = desertB: it is the function counting the size of the largest block of 2’s, i.e.
the desert map where 1 is r and 2 is i.
Rabin1

ol = costB: it is the function counting the number of I’s in a block containing no
R’s, i.e. the costB map for one counter where I is i and R is r.
Rabinkol ≈ costB: it is the costB map for k counters where I` is increment for the `th
counter and R` is reset for the `th counter. Note that here the functions are not equal,
one can see that costB ≤ Rabinkol ≤ k · costB.
Parity2k

ol ≈ costhB: it is the costhB map for k counters, where I` is the colour 2(k − `)
and R` is 2(k − `)− 1.

The following lemma is central, it shows the interplay between the above definition and
ultimately periodic words.

I Lemma 6. Let L be a language over infinite words, and u, v two finite words with v

non-empty. The following statements are equivalent:
1. uvω ∈ L,
2. (Lol(uvn))n∈N tends to infinity.

Note that this lemma does not make any assumption on the regularity of L; in the rest
of the paper, we shall always look at Lol for L an ω-regular language.

Proof. One direction is clear: if uvω ∈ L, then (Lol(uvn))n∈N tends to infinity.
We prove the converse implication. Assume that (Lol(uvn))n∈N tends to infinity, and let

n be larger than |uv|. There exists k such that uvk can be factorised u′v1 · · · vnu′′ such that
u′ · {v1, . . . , vn}ω ⊆ L.

Consider the lengths |u′v1 · · · v`| for ` ∈ {|u|, . . . , n}: two of them have the same value
modulo |v|, denote the corresponding words u′v1 · · · vi and u′v1 · · · vj , with i < j. Note that
since ` ≥ |u| and v1, . . . , v` are not empty, the word u is a strict prefix of u′v1 · · · vi. It follows
that we have u′v1 · · · vi = uvpx for some p and v = xy, and vi+1 · · · vj = yvqx for some q.

Consider the infinite word

u′v1 · · · vi(vi+1 · · · vj)ω = uvpx(yvqx)ω ,

by assumption it belongs to L. Thanks to the equality s(ts)ω = (st)ω, the word above is
equal to uvp(xyvq)ω = uvp(vq+1)ω = uvω. Thus, uvω ∈ L. J

I Theorem 7. The map ·ol is a bijection between ω-regular languages and ω-regular like
cost functions.

In particular, two ω-regular like cost functions Lol, L′
ol are equal if, and only if, L = L′.

Proof. The map is surjective by definition of ω-regular like cost functions.
We show that it is injective: consider L,L′ two ω-regular languages such that Lol ≈ L′ol.

It follows from Lemma 6 that L and L′ coincide on ultimately periodic words; being ω-regular,
this implies that they are equal. J
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0, 1 0

0 1

1

0

0, 1

Figure 1 The Büchi automaton for Example 9.

3.2 Automata Constructions
The following theorem shows how to construct automata recognising ω-regular like cost
functions. The construction is very simple, as it amounts to consider an ω-automaton and to
see it as a prefix-max-cost-automaton, without any further changes. The correctness proof
however is bit more involved.

I Theorem 8. Let W be an ω-regular condition.
Consider a W -automaton A, and denote by L the language it recognises. The prefix-max-

cost-automaton induced by A with the map W ol recognises the cost function Lol.

Before proving this theorem, we give an example.

I Example 9. Consider the Büchi automaton represented in Figure 1. The alphabet is
A = {0, 1}, the Büchi transitions are represented by a boldface loop. The top part checks
whether the word contains infinitely many 1’s, and the bottom part checks whether the word
contains finitely many 1’s. It follows that this automaton recognises all ω-words, i.e. L = Aω,
so

Lol : A∗ → N ∪ {∞}
w 7→ length of w

The induced prefix-max-cost-automaton recognises the following cost function:

[[A]]pmax : A∗ → N ∪ {∞}
w 7→ max {number of 1′s in w, size of the largest block of 0′s in w} .

These two functions are indeed equivalent: [[A]]pmax ≤ Lol ≤ [[A]]2pmax.

In the proof of Theorem 8, we will make use of Simon’s theorem [13]. We state here the
corollary that we use. Recall that a semigroup is a set equipped with an associative binary
product, and that an idempotent in a semigroup is an element e such that e · e = e.

For every morphism ϕ : A+ → M where M is a finite semigroup, there exists a
function α : N→ N such that limα =∞ and for all words w of length n, there exists
a factorisation w = uv1 · · · vα(n)u

′ where the words v1, . . . , vα(n) are non-empty and
such that

ϕ(v1) = ϕ(v2) = · · · = ϕ(vα(n))

is an idempotent.
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Proof. For the sake of simplicity, we will assume that A is a parity automaton, i.e. W is the
parity language. The proof generalises to the case of an ω-regular language W by considering
a deterministic parity automaton recognising W .

We denote Aol the prefix-max-cost-automaton induced by A with the accepting map
Parityol. By definition:

[[Aol]]pmax(w) is defined by

sup
{

Parityol(ρ|B) | ρ prefix run over w
}
.

Lol(w) is defined by

sup {n | w = uv1 · · · vnu′, v1, . . . , vn 6= ε, u · {v1, . . . , vn}ω ⊆ L} .

We will apply Simon’s theorem twice, once for each direction. To this end, we construct
a morphism ϕ : A→M , where M is the transition semigroup of A. A transition profile is a
tuple (p, c, q) where p and q are states and c is a colour. The product of transition profiles is
(partially) defined by

(p, c, q) · (r, c′, s) =
{

(p,min(c, c′), s) if q = r

undefined otherwise.

An element of M is a set of transition profiles. The product is inherited by the product for
transition profiles. The morphism ϕ associates to a letter a the set of transitions over the
letter a in the automaton A.

Assume [[Aol]]pmax(w) ≥ n: there exists a prefix run ρ over w such that Parityol(ρ|B) ≥ n.
It follows that ρ factorises ρρ1 · · · ρnρ′, where in each ρi the smallest colour appearing is even.
We apply Simon’s theorem to the word ρ1 · · · ρn, seen as a word of length n, i.e. where we
interpret each ρi as a single letter. Denote m = α(n). There exists a factorisation which we
denote τ̃ τ̃1 · · · τ̃mτ̃ ′ such that ϕ(τ̃1) = · · · = ϕ(τ̃m) is idempotent, denoted S. This implies
the existence of (q, c, q) in S, where c is even. Denote w = uv1 · · · vmu′ the factorisation of w
it induces. Observe that u · {v1, . . . , vm}ω ⊆ L, as for each such word one can construct a
ultimately periodic run ρ in A whose smallest colour appearing infinitely often is c, hence
such that ρ|B ∈ Parity. So W ol(ρ) ≥ α(n).

It follows that [[Aol]]pmax 4 Lol.

Conversely, assume Lol(w) ≥ n: there exists a factorisation of w in uv1 · · · vnu′ as in the
definition of Lol(w). We apply Simon’s theorem to the word v1 · · · vn, seen as a word of
length n, i.e. where we interpret each vi as a single letter. Denote m = α(n). There exists
a factorisation which we denote ũṽ1 · · · ṽmũ′ such that ϕ(ṽ1) = · · · = ϕ(ṽm) is idempotent,
denoted S. Note that each ṽ` and ũ is an infix vi · · · vj ; denote w̃ the infix corresponding
to ṽ1 · · · ṽm. The element ϕ(w̃) is idempotent equal to S. Since u · {v1, . . . , vn}ω ⊆ L, in
particular uũ · w̃ω ∈ L. Because A recognises L, there exists an accepting run of uũ · w̃ω.
Now, ϕ(w̃) being idempotent, this implies that there exist:

a transition profile in ϕ(u · ũ) of the form (p,_, q) where p is initial, and
a transition profile in ϕ(w̃) of the form (q, c, q) where c is even.

Recall that each ϕ(ṽ`) is equal to S = ϕ(w̃), so it contains (q, c, q). Thus, we obtain a run
ρ = ρ

uũ
ρ
ṽ1
· · · ρ

ṽm
over uũṽ1 · · · ṽm such that ρ

uũ

{
ρ
ṽ1
, . . . , ρ

ṽm

}ω
⊆ W . This implies that

[[Aol]]pmax(w) ≥ α(n).
It follows that Lol 4 [[Aol]]pmax.

We conclude that Lol and [[Aol]]pmax are equivalent. J
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Recall that if W is the Büchi language, then W ol is the distance map. Similarly, the
Rabin condition induces the costB map and the parity condition the costhB map.

In particular, Theorem 8 implies that if L is recognised by a Büchi automaton (resp.
Rabin automaton, parity automaton), then Lol is recognised by a prefix-max-cost-automaton
with the distance map (resp. costB map, costhB map).

3.3 Syntactical Constructions
The above subsection shows how to construct ω-regular like cost functions using automata.

3.4 Transferring Results
We show in this subsection how to use the above correspondence to transfer two automata
theoretic constructions.

The first construction is the latest appearance record construction, which allows to
transform a Rabin condition into a parity condition, as stated in the following theorem.

I Theorem 10. For every k, there exists a deterministic parity automaton with k! states
and k colours recognising the language Rabink.

This yields the following corollary.

I Corollary 11. For every k, there exists a hierarchical B-automaton (hB-automaton) with
k! states and k counters recognising the cost function costB.

Consequently, for every regular cost function, one can effectively construct an hB-
automaton recognising it.

The first part is obtained by applying Theorem 8 to the automaton constructed by
Theorem 10. For the second part, it amounts to compose the B-automaton with the
automaton constructed by the first item to obtain an hB-automaton.

The second construction is the determinisation of Büchi automata.

I Corollary 12. For every ω-regular like cost function, one can effectively construct a
deterministic B-automaton recognising it.

Proof. Consider an ω-regular language L given by a non-deterministic Büchi automaton,
inducing the ω-regular like cost function Lol.

The McNaughton-Safra construction yields an equivalent deterministic Rabin automaton,
denoted A. Thanks to Theorem 8, this implies a prefix-max-cost-automaton equipped with
the Rabinol condition recognising Lol. Since A is deterministic and Rabinol is the costB

map, A is in fact a deterministic B-automaton recognising Lol. J

3.5 Games with Omega-Regular like Cost Functions
In this subsection, we show how to solve games with ω-regular like cost functions.

We refer to [9] for materials about games; here we only give the basic definitions.
A game is denoted G = (V, A, VE , VA, E), where V is a set of vertices, A is the output

alphabet, VE is the set of vertices controlled by the first player Eve, VA is the set of vertices
controlled by the opponent Adam with V = VE ] VA and E ⊆ V × A× V is the set of edges.
A game is said finite if V is finite.

A token is initially placed on a given initial vertex v0, and the player who controls this
vertex pushes the token along an edge, reaching a new vertex; the player who controls this
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new vertex takes over, and this interaction goes on forever, describing an infinite path called
a play. A winning condition is a language L ⊆ Aω: a play is won by Eve if its projection on A
belongs to L. A strategy for Eve is a map σ : E∗VE → E. A memory structure is denoted
M = (M,m0, µ), where M is the (finite) set of memory states, m0 ∈M is the initial memory
state and µ : M ×E →M is the (deterministic) update function. A finite-memory strategy
is given by a memory structureM and a next-move function σ : M × VE → E.

I Theorem 13. Consider a finite game G and L an ω-regular language. The following are
equivalent:
1. There exists n, there exists a strategy for Eve, such that for all plays, the value for Lol is

less than n,
2. Eve wins for the winning condition L{.

Proof. Since L is ω-regular, it is recognised by a deterministic Rabin automaton. By
considering the product of the game with this automaton, we can assume without loss of
generality that L = Rabin, so Lol = costB.

The top to bottom direction is clear: indeed, for a play π, if costB(π) ≤ n, then
π ∈ Rabin{.

To prove the converse implication, we rely on the fact that since L{ is an ω-regular
condition, Eve has a finite-memory winning strategy. By considering the product of the
game with the memory structure, we observe that in each cycle, for each counter, either it is
not incremented or it is both incremented and reset. It follows that this strategy ensures
that the values for costB is bounded over all plays by twice the size of the graph times the
size of the memory. J

We can strengthen this theorem:

I Theorem 14. Consider a finite game G and L,L′ two ω-regular languages. The following
are equivalent:
1. For all n, there exists n′, there exists a strategy for Eve, such that for all plays:

if the value for Lol is less than n then the value for L′ol is less than n′,
2. Eve wins for the condition L ∪ L′{.

Proof. Since L and L′ are ω-regular, they are each recognised by a deterministic Rabin
automaton. By considering the product of the game with the two automata, we can assume
without loss of generality that the alphabet is {ε, i, r}k × {ε, i, r}k

′
with L = Rabin1 and

L′ = Rabin2. Thus Lol = cost1
B and L′ol = cost2

B.
Assume that Eve wins for the condition L ∪ L′{: since it is ω-regular, Eve has a finite-

memory winning strategy. By considering the product of the game with the memory structure,
we observe that for each cycle,

if for each counter in {ε, i, r}k, it is either reset or not incremented,
then for each counter in {ε, i, r}k

′
, it is either reset or not incremented.

Let n be twice the size of the graph times the size of the memory. It follows that this strategy
ensures that for all plays, if the value for cost1

B is less than n then the value for cost2
B is less

than n.
To prove the converse, we proceed by contrapositive. Assume that Eve does not win

for the condition L ∪ L′{, since the game is determined this implies that Adam wins, and
again because the winning condition is ω-regular Adam has a finite-memory winning strategy.
The same reasoning as before concludes that each cycle satisfies the negation of the above

ICALP 2016
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property, which implies for the same value of n that this strategy ensures the following: for
all n′, there exists a play such that the value for cost1

B is less than n and the value for cost2
B

is greater than n′. J

4 History-Determinisation of Cost Automata

In this section we give a simple and direct procedure for history-determinisation of B-
automata: given a B-automaton, construct an equivalent history-deterministic B-automaton.
Note that for the sake of simplicity we consider here hierarchical B-automata. Our contruction
relies on the properties we obtained for ω-regular like cost functions in the above section
together with game theoretic techniques inspired by Bojańczyk [3].

An automaton is history-deterministic if it is non-deterministic but its non-determinism
can be resolved by a function considering only the input read so far. This notion has been
introduced for studying ω-automata in [11]. We specialise it here to the case of cost functions,
involving a relaxation on the values allowing for a good interplay with the definition of
equivalence for cost functions.

A B-automaton B is history-deterministic if there exists a function α : N→ N such that
limα =∞ and for every n, there exists a strategy σ : A∗ → ∆ such that for all words w, we
have

[[B]]min(w) ≤ n =⇒ [[Bσ]]min(w) ≤ α(n).

The automaton Bσ is infinite but deterministic, as for each situation the strategy σ chooses
the transition to follow.

I Theorem 15. For every hB-automaton, one can effectively construct an equivalent history-
deterministic hB-automaton.

Let A = (Q, A, {I1, R1, . . . , Ik, Rk} , I,∆, F, costhB) be a hB-automaton. We first sketch
the construction, which involves two automata:

a deterministic hB-automaton C recognising an ω-regular like cost function denoted Lol,
a history-deterministic min-cost-automaton B equipped with the map Lol.

Recall that for a word w, the value of [[A]]min(w) is the minimum value for the costhB

map over all runs of w.
The automaton B simulates A and is in charge of guessing an optimal run, i.e. having

minimal value for the costhB map. However, we want B to be history-deterministic; to
achieve this, B will do something easier than guessing one run, it will guess for each transition
whether it belongs to some optimal run. In other words, B guesses a run tree (see Figure 2
for the representation of a run tree). As we shall see, thanks to the positionality of hB-games,
B can guess a set of near optimal runs in a history-deterministic fashion. In effect, B inputs
a word and outputs a run tree.

The automaton C recognises the cost function which given a run tree computes the
maximum value for the costhB map over all paths in the run tree. The crucial point is
that this cost function is ω-regular like, so one can effectively construct a deterministic
hB-automaton recognising it.

The composition of the automata B and C yields a history-deterministic hB-automaton
equivalent to A. The correctness of this construction relies on the following two properties:

[[A]]min and [[B]]min are equivalent,
B is history-deterministic.
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Figure 2 A run tree. Each state has at most one ingoing transition.

We proceed with the formal construction.
We define the alphabet B, which is the output alphabet of B and the input alphabet of C.

A transition profile is a triple (p, act, q) where p and q are states and act is an action on the
k counters, i.e. act ∈ {I1, R1, . . . , Ik, Rk}. An element of B is a set of transition profiles T
such that for every state q, there exists at most one p such that (p, act, q) ∈ T for some act.
Equivalently, it is a partial function T : Q→ {I1, R1, . . . , Ik, Rk} ×Q; this backward point
of view will be useful in proving that B is history-deterministic. A word over this alphabet is
called a run tree; see Figure 2 for the representation of a run tree.

Construction of C. The automaton C recognises an ω-regular like cost function; to construct
it we define a parity automaton and turn it into a prefix-max-cost automaton relying on
Theorem 8. Denote

L =

t ∈ Bω

∣∣∣∣∣∣∣∣
there exists an infinite path in t such that,

the minimal action performed infinitely often
for the ordering I1 < R1 < · · · < Ik < Rk

is R` for some `

 .

The language L is recognised by a non-deterministic parity automaton of linear size which
guesses the witnessing path. Formally, the parity automaton is

(Q, B, {I1, R1, . . . , Ik, Rk} , I,∆C , Parity)

The transition relation is ∆C = {(p, T, act, q) | (p, act, q) ∈ T}. The parity condition is
obtained by seeing R` as the colour 2` and I` as the colour 2`− 1.

Theorem 8 implies that

Lol ≈
{

B∗ → N ∪ {∞}
t 7→ max {costhB(π) | π prefix path in t}

Following Corollary 12, we can effectively construct a deterministic hB-automaton C
recognising Lol.

Construction of B. The automaton B is a min-cost-automaton equipped with the map Lol,
in charge of guessing a run tree and deterministically checking whether it contains a run.

Formally, B = (P(Q), A, B,P(I),∆B, FB, Lol). The transition relation ∆B is defined by

{(S, a, T, S′) | S′ is the set of states reached from S using the transitions in T} .

The set of final states FB is {S ⊆ Q | S ∩ F 6= ∅}.

I Lemma 16. [[A]]min and [[B]]min are equivalent.

ICALP 2016
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Proof. By definition
[[A]]min(w) is the minimum value for the costhB map over all runs of w.
[[B]]min(w) is the minimum value for the Lol map over all runs of w. By construction of
B, the runs of w are the run trees of w that contain a run of w over A.
Thanks to the equivalence above about Lol, this implies that

[[B]]min ≈


A∗ → N ∪ {∞}

w 7→ min
{

costhB(t)
∣∣∣∣ t run tree of w which
contains a run of w over A

}
,

where costhB(t) = max {costhB(π) | π prefix path in t}.

Let [[A]]min(w) ≤ n: there exists a run ρ of w such that costhB(ρ) ≤ n. Consider the run
tree t consisting of exactly ρ, it satisfies costhB(t) ≤ n. It follows that [[B]]min 4 [[A]]min.

Conversely, let [[B]]min(w) ≤ n: there exists a run tree t of w such that costhB(t) ≤ n.
Because it is a run of B, there exists a run ρ in t, and costhB(t) ≤ n implies that costhB(ρ) ≤ n.
It follows that [[A]]min 4 [[B]]min.

We conclude that [[A]]min and [[B]]min are equivalent. J

I Lemma 17. B is history-deterministic.

This relies on the following positionality result, which is proved in [7]. It is also in essence
in the proof of Bojańczyk [3].

I Theorem 18 ([7]). Eve has positional uniform strategies in hB-games.

We now prove Lemma 17.

Proof. To prove that B is history-deterministic, we show that there exists a function
α : N→ N such that limα =∞ and for every n, there exists a strategy σ : A∗ → ∆B such
that for all words w, if [[B]]min(w) ≤ n then [[Bσ]]min(w) ≤ α(n).

Observe that σ : A∗ → ∆B can equivalently defined as a partial function σ : Q× A∗ →
{I1, R1, . . . , Ik, Rk} ×Q; what B guesses is for each state q, at most one transition leading
to q.

We define an hB-game. The set of vertices is Q× A∗. The edges are

{((wa, q), act, (w, p)) | (p, a, act, q) ∈ ∆} .

By definition, for all words w such that [[B]]min(w) ≤ n, there exists q ∈ F such that Eve
has a strategy ensuring costhB(n) ∩ Safe(ε,Q \ I). It follows from Theorem 18 that there
exists a uniform positional strategy, i.e. σ : Q× A∗ → ∆. By definition, for this strategy we
have [[Bσ]]min(w) ≤ n. It follows that B is history-deterministic. J

Composing the two automata yields a history-deterministic automaton equivalent to A.
Denote n the number of states of A, the constructed automaton has 2n × Safra(n) states,
where Safra(n) is the number of states obtained by applying the Safra determinisation on
an ω-automaton with n states. Since Safra(n) = 2O(n log(n)), the constructed automaton
also has 2O(n log(n)) states.
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