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Abstract
In this paper we continue a classical work of Schützenberger on codes with bounded synchron-
ization delay. He was interested in characterizing those regular languages where the groups in
the syntactic monoid belong to a variety H. He allowed operations on the language side which
are union, intersection, concatenation and modified Kleene-star involving a mapping of a prefix
code of bounded synchronization delay to a group G ∈ H, but no complementation. In our
notation this leads to the language classes SDG(A∞) and SDH(A∞). Our main result shows that
SDH(A∞) always corresponds to the languages having syntactic monoids where all subgroups
are in H. Schützenberger showed this for a variety H if H contains Abelian groups, only. Our
method shows the general result for all H directly on finite and infinite words. Furthermore, we
introduce the notion of local Rees extensions which refers to a simple type of classical Rees ex-
tensions. We give a decomposition of a monoid in terms of its groups and local Rees extensions.
This gives a somewhat similar, but simpler decomposition than in Rhodes’ synthesis theorem.
Moreover, we need a singly exponential number of operations, only. Finally, our decomposition
yields an answer to a question in a recent paper of Almeida and Klíma about varieties that are
closed under Rees extensions.
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1 Introduction

A fundamental result of Schützenberger characterizes the class of star-free languages SF as
exactly those languages which are group-free, that is, aperiodic [15]. One usually abbreviates
this result by SF = AP. Schützenberger also found another, but less prominent charac-
terization of SF: the star-free languages are exactly the class of languages which can be
defined inductively by finite languages and closure under finite union, concatenation, and
the Kleene-star restricted to prefix codes of bounded synchronization delay [17]. This result
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129:2 Characterizing Regular Languages Using Prefix Codes

is abbreviated by AP = SD. It is actually stronger than the famous SF = AP because
SD ⊆ SF ⊆ AP is relatively easy, see [11, Chapter VIII], so SF = AP follows from AP ⊆ SD.
The extension SF = AP to infinite words is due to Perrin [10]. The result AP = SD for
infinite words was obtained much later in [5]. It became possible thanks to a “local divisor
approach”, which also is a main tool in this paper.

Schützenberger did not stop by showing AP = SD. In retrospective he started a program:
in [16] he was able to prove an analogue of AP = SD for languages where syntactic monoids
have Abelian subgroups, only. In our notation AP = SD means 1(A∞) = SD1(A∞); and
the main result in [16] is “essentially” equivalent to Ab(A∗) = SDAb(A∗). (We write
“essentially” because using the structure theory of Abelian groups, a sharper version than
Ab(A∗) = SDAb(A∗) is possible.) The proofs [16] use deep results in semigroup theory; and
no such result beyond Abelian groups was known so far. Our result generalizes Ab(A∞) =
SDAb(A∞) to every variety H of finite groups: we show H(A∞) = SDH(A∞). We were able
to prove it with much less technical machinery compared to [16]. For example, no knowledge
in Krohn-Rhodes theory is required.

Actually, our result is a generalization of Ab(A∗) = SDAb(A∗) [16] and also of AP(A∞) =
SD(A∞) [5]. More precisely, we give a characterization of languages which are recognized by
monoids where all subgroups belong to H. The characterization uses an inductive scheme
starting with all finite subsets of finite words, allows concatenation, finite union, no (!)
complementation, but a restricted use of a group-controlled star (resp. group-controlled
ω-power). Let us explain the group-controlled star in our context. Instead of putting the
star above a single language, consider first a disjoint union K =

⋃
{Kg | g ∈ G} where G is

a finite group and each Kg is regular in A∗. The “group-controlled star”, more precisely the
“G-controlled star”, associates with such a disjoint union the following language:

{ug1 · · ·ugk
∈ K∗ | ugi

∈ Kgi
∧ g1 · · · gk = 1 ∈ G} .

Clearly, we obtain a regular language, but without any restriction, allowing such a “group
star” yields all regular languages, even in the case of the trivial group. So, the construction is
of no interest without a simultaneous restriction. The restriction considered in [16] yields an
inductive scheme to define a class C. The restriction says that such a group-controlled star is
allowed only over a disjoint union K =

⋃
{Kg | g ∈ G} where each Kg already belongs to C

and where K is, in addition, a prefix code of bounded synchronization delay. The initials
in “synchronization delay” led to the notation SD; and an indexed version SDG (resp. SDH)
refers to synchronization delay over G (resp. over a finite group in H). Since we also deal
with infinite words we apply the same restriction to ω-powers.

Our results give also a new characterization for various other classes. For example, by a
result of Straubing, Thérien and Thomas [20], the class of languages, having syntactic monoids
where all subgroups are solvable, coincides with (FO + MOD)[<]. Here, (FO + MOD)[<]
means the class of languages defined by the logic (FO + MOD)[<]. Thus, we are able to give
a new language characterization: (FO + MOD)[<](A∞) = SDSol(A∞).

Moreover, as a sort of byproduct of H = SDH, we obtain a simple and purely algebraic
characterization of the monoids in H. Every monoid in H can be decomposed in at most
exponentially many iterated Rees extensions of groups in H. The iteration uses only a very
restricted version of Rees extensions: local Rees extensions. This means we obtain every finite
monoid which is not a group as a divisor of a Rees extension between two proper divisors of
M , one of them a proper submonoid, the other one a “local divisor”.

Our decomposition result is similar to the synthesis theory of Rhodes and Allen [13].
Moreover, it yields a singly exponential bound on the number of operations whereas no such
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bound was known by [13]. Finally, using this decomposition, we answer a recent question of
Almeida and Klíma [1] concerning varieties which are closed under Rees extensions.

2 Preliminaries

Throughout, A denotes a finite alphabet and A∗ is the free monoid over A. It consists of
all finite words. The empty word is denoted by 1 as the neutral elements in other monoids
or groups. The set of non-empty finite words is A+; it is the free semigroup over A. By
Aω we denote the set of all infinite words with letters in A. For a set K ⊆ A∗, we let
Kω = {u1u2 · · · | ui ∈ K,ui non-empty, i ∈ N} ⊆ Aω. In particular, Kω = (K \{1})ω. Since
our results concern finite and infinite words, it is convenient to treat finite and infinite words
simultaneously. We define A∞ = A∗∪Aω to be the set of finite or infinite words. Accordingly,
a language L is a subset of A∞. We say that L is regular, if first, L ∩ A∗ is regular and
second, L ∩Aω is ω-regular in the standard meaning of formal language theory. In order to
study regular languages algebraically, one considers finite monoids. A divisor of a monoid
M is a monoid N which is a homomorphic image of a subsemigroup of M . In this case we
write N �M . A subsemigroup S of M is in our setting a divisor if and only if S is a monoid
(but not necessarily a submonoid of M). A variety of finite monoids – hence, in Birkhoff’s
setting: a pseudovariety – is a class of finite monoids V which is closed under finite direct
products and under division:

If I is a finite index set and Mi ∈ V for each i ∈ I, then
∏
i∈IMi ∈ V. In particular, the

trivial group {1} belongs to V.
If M ∈ V and N �M , then N ∈ V.

Classical formal language theory states “regular” is the same as “recognizable”. This
means: L ⊆ A∗ is regular if and only if its syntactic monoid is finite; L ⊆ Aω is regular if and
only if its syntactic monoid in the sense of Arnold [2] is finite and, in addition, L is saturated
by the syntactic congruence, see eg. [11, 21]. Here we use a notion of recognizability which
applies to languages L ⊆ A∞. Let ϕ : A∗ →M be a homomorphism to a finite monoid M .
First, we define a relation ∼ϕ as follows. If u ∈ A∗ is a finite word, then we write u ∼ϕ v if v
is finite and ϕ(u) = ϕ(v). If u ∈ Aω is an infinite word, then we write u ∼ϕ v if v is infinite
and if there are factorizations u = u1u2 · · · and v = v1v2 · · · into finite nonempty words such
that ϕ(ui) = ϕ(vi) for all i ≥ 1. It is easy to see that ∼ϕ is not transitive on infinite words,
in general. Therefore, we consider its transitive closure ≈ϕ. If u, v ∈ A∗, then we have

u ∼ϕ v ⇐⇒ u ≈ϕ v ⇐⇒ ϕ(u) = ϕ(v).

If α, β ∈ Aω, then we have α ≈ϕ β if and only if there is sequence of infinite words α0, . . . αk
such that

α = α0 ∼ϕ · · · ∼ϕ αk = β.

We say that L ⊆ A∞ is recognizable by M if there exists a homomorphism ϕ : A∗ → M

such that u ∈ L and u ∼ϕ v implies v ∈ L. We also say that M or ϕ recognizes L in this
case. The connection to the classical notation is as follows. A regular language L ⊆ A∞ is
recognizable (in our sense) by ϕ if and only if the syntactic monoids of L ∩A∗ and L ∩Aω
are divisors of M . Another equivalent definition can be given in terms of Wilke algebras [22].

Every variety V defines a family of regular languages V(A∞) as follows: we let L ∈
V(A∞) if there exists a monoid M ∈ V which recognizes L. Further, we define V(A∗) =
{L ⊆ A∗ | L ∈ V(A∞)} and V(Aω) = {L ⊆ Aω | L ∈ V(A∞)} . A variety of finite groups is
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129:4 Characterizing Regular Languages Using Prefix Codes

a variety of finite monoids which contains only groups. Throughout H denotes a variety of
finite groups. Special cases are the varieties

1: the trivial group {1}, only.
Ab: all finite Abelian groups.
Sol: all finite solvable groups.
Solq: all finite solvable groups where the order is divisible by some power of q.
G: all finite groups.

According to standard notation H denotes the variety of finite monoids where all subgroups
belong to H. It is not completely obvious, but a classical fact [9], that H is indeed a variety.
In fact, it is the maximal variety V such that V ∩G = H.

Clearly, G is the class of all finite monoids. The most prominent subclass is 1: it is
the variety of aperiodic monoids AP. The class AP(A∞) = 1(A∞) admits various other
characterizations as subsets of A∞. For example, it is the class of star-free languages SF(A∞),
it is the class of first-order definable languages, and it is the class of definable languages in
linear temporal logic over finite or infinite words: LTL(A∞) .

Local divisors. Let M be a finite monoid and c ∈ M . Consider the set cM ∩Mc with a
new multiplication ◦ which is defined as follows:

mc ◦ cn = mcn.

A straightforward calculation shows that cM ∩Mc becomes a monoid with this operation
where the neutral element of Mc is c. Thus, the structure Mc = (cM ∩Mc, ◦, c) defines a
monoid. We say that Mc is the local divisor of M at c. If c is a unit, then Mc is isomorphic
to M . If c = c2, then Mc is the standard “local monoid” at the idempotent c.

The important fact is that Mc is always a divisor of M and that |Mc| < |M | as soon as c
is not a unit of M . Indeed, the mapping λc : {x ∈M | cx ∈Mc} →Mc given by λc(x) = cx

is a surjective homomorphism. Moreover, if c is not a unit, then 1 /∈ cM ∩Mc, hence
|Mc| < |M |. Thus, if M belongs to some variety V, then Mc belongs to the same variety.
If M is not a group, then we find some nonunit c ∈M and the local divisor Mc is smaller
than M . This makes the construction useful for induction. For a survey on the local divisor
technique we refer to [6].

Rees extensions. Let N,L be monoids and ρ : N → L be any mapping. The Rees extension
Rees(N,L, ρ) is a classical construction for monoids [12, 14], frequently described in terms of
matrices. Here, we use an equivalent definition as in [7]. As a set we define

Rees(N,L, ρ) = N ∪ (N × L×N) .

The multiplication · on Rees(N,L, ρ) is given by

n · n′ = nn′ for n, n′ ∈ N,
n · (n1,m, n2) · n′ = (nn1,m, n2n

′) for n, n′, n1, n2 ∈ N,m ∈ L,
(n1,m, n2) · (n′1,m′, n′2) = (n1,mρ(n2n

′
1)m′, n′2) for n1, n

′
1, n2, n

′
2 ∈ N,m,m′ ∈ L.

The neutral element of Rees(N,L, ρ) is 1 ∈ N and N ⊆ Rees(N,L, ρ) is an embedding of
monoids. In general, L is not a divisor of Rees(N,L, ρ). The following property holds.

I Lemma 1. Let N � N ′ and L � L′. Given ρ : N → L, there exists a mapping ρ′ : N ′ → L′

such that Rees(N,L, ρ) is a divisor of Rees(N′,L′, ρ′).
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Proof. First, assume that N (resp. L) is submonoid in N ′ (resp. L′). Let ρ′ : N ′ → L′ be
any function such that ρ′|N = ρ. The mapping π : Rees(N,L, ρ)→ Rees(N′,L′, ρ′) given by
π(n) = n and π(n1, `, n2) = (n1, `, n2) is an injective homomorphism.

Second, let ϕ : N ′ → N and ψ : L′ → L be surjective homomorphisms. Let ρ′ : N ′ → L′

be a function such that ρ′(n) ∈ ψ−1(ρ(ϕ(n))). Let π : Rees(N′,L′, ρ′)→ Rees(N,L, ρ) be the
mapping defined by π(n) = ϕ(n) and π(n1, `, n2) = (ϕ(n1), ψ(`), ϕ(n2)). It is clear that π is
surjective. It is a homomorphism since

π((n1, `, n2) · (n′1, `′, n′2)) = π(n1, `ρ
′(n2n

′
1)`′, n′2) = (ϕ(n1), ψ(`)ψ(ρ′(n2n

′
1))︸ ︷︷ ︸

=ρ(ϕ(n2n′1))

ψ(`′), ϕ(n′2))

= (ϕ(n1), ψ(`), ϕ(n2)) · (ϕ(n′1), ψ(`′), ϕ(n′2)) = π(n1, `, n2) · π(n′1, `′, n′2). J

We are mainly interested in the case where N and L are proper divisors of a given finite
monoid M . This leads to the notion of local Rees monoids. More precisely, let M be a
finite monoid, N be a proper submonoid of M and Mc be a local divisor of M at c where
c is not a unit. The local Rees extension LocRees(N,Mc) is defined as the Rees extension
Rees(N,Mc, ρc) where ρc denotes the mapping ρc : N →Mc;x 7→ cxc.

For a variety V we define Rees(V) to be the least variety which contains V and is closed
under taking Rees extensions and LocRees(V) to be the least variety which contains V and
is closed under local Rees extensions.

2.1 Schützenberger’s SD classes
Schützenberger gave a language theoretical characterization of the class of star-free languages
SF(A∗) avoiding complementation, but allowing the star-operation to prefix codes of bounded
synchronization delay [17].

A language K ⊆ A+ is called prefix code if it is prefix-free. That is: u, uv ∈ K implies
u = uv. A prefix-free language K is a code since every word u ∈ K∗ admits a unique
factorization u = u1 · · ·uk with k ≥ 0 and ui ∈ K. Note that the empty set ∅ is considered
to be a prefix code. More generally, if L ⊆ A+ is any subset, then K = L \ LA+ is a prefix
code. A prefix code K has bounded synchronization delay if for some d ∈ N and for all
u, v, w ∈ A∗ we have: if uvw ∈ K∗ and v ∈ Kd, then uv ∈ K∗. Note that the condition
implies that for all uvw ∈ K∗ with v ∈ Kd, we have w ∈ K∗, too. If d is given explicitly,
K is said to have synchronization delay d. Every subset B ⊆ A (including the empty set)
yields a prefix code with synchronization delay 0. If we have c ∈ A \ B, then B∗c is a
prefix code with synchronization delay 1. If K is any prefix code with (or without) bounded
synchronization delay, then Km is a prefix code for all m ∈ N, but for m ≥ 2 it is never of
bounded synchronization delay.

Consider a disjoint union K =
⋃
{Kg | g ∈ G} of a prefix code K with bounded syn-

chronization delay where G is a finite group and each Kg is regular in A∗. The G-controlled
star associates with such a disjoint union the following language:

{ug1 · · ·ugk
∈ K∗ | ugi ∈ Kgi ∧ g1 · · · gk = 1 ∈ G} .

Another view of the G-controlled star of K is the following: Let γK : K → G be a mapping
such that Kg = γ−1

K (g) and let γ : K∗ → G denote the canonical extension of γK to a
homomorphism from the free submonoid K∗ ⊆ A∗ to G, then the G-controlled star of K is
exactly the set γ−1(1). The generalization to infinite words γ−1(1)ω is called the G-controlled
ω-power. Let C be a class of languages. We say that C is closed under G-controlled star
(ω-power) if K is a prefix code with bounded synchronization delay, Kg ∈ C for all g ∈ G,
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129:6 Characterizing Regular Languages Using Prefix Codes

then the G-controlled star γ−1(1) (ω-power γ−1(1)ω) is in C. For a variety of groups H we
say that C is closed under H-controlled star (ω-power) if C is closed under G-controlled star
(ω-power) for every group G ∈ H. By SDG(A∞) we denote the smallest class of regular
languages such that ∅ ∈ SDG(A∞), {a} ∈ SDG(A∞) for all letters a ∈ A, SDG(A∞) is closed
under finite union and concatenation, i.e., L,K ∈ SDG(A∞) implies L ∪K and (L ∩A∗) ·K
are both in SDG(A∞), and SDG(A∞) is closed under G-controlled star and G-controlled
ω-power. We also define

SDG(A∗) = {L ⊆ A∗ | L ∈ SDG(A∞)} and SDG(Aω) = {L ⊆ Aω | L ∈ SDG(A∞)} .

Note that for every homomorphism γ : A∗ → G we have γ−1(1) ∈ SDG(A∗) and γ−1(1)ω ∈
SDG(Aω). This follows because first, A is a prefix code of bounded synchronization delay
and second, all finite subsets of A are in SDG(A∗).

Unlike the case of star-free sets, the definition of SDG(A∞) does not use any comple-
mentation. By induction: for L ⊆ A∞ we have L ∈ SDG(A∞) if and only if we can write
L = L1 ∪ L2 with L1 ∈ SDG(A∗) and L2 ∈ SDG(Aω). In the special case where G = {1}
is the trivial group, we also simply write SD instead of SD{1}. In this case closure under
{1}-controlled stars (ω-powers) can be rephrased in simpler terms as follows: If K ∈ SD(A∗)
is a prefix code of bounded synchronization delay, then K∗ ∈ SD(A∗) and Kω ∈ SD(Aω).

In [16] Schützenberger showed (using a different notation) SDH(A∗) ⊆ H(A∗), but the
converse only for H ⊆ Ab, see Proposition 6 for the first inclusion. Our aim is to show
H(A∞) ⊆ SDH(A∞) for all H, cf. Theorem 4. We begin with a technical lemma.

I Lemma 2. Let K ⊆ A+ be a prefix code of bounded synchronization delay and let
γ : K∗ → G be a homomorphism such that γ−1(g) ∩K ∈ SDG(A∗) for all g ∈ G, then we
have γ−1(g) ∈ SDG(A∗) for all g ∈ G.

Proof. For a word w = u1 · · ·uk ∈ K∗ we define P (w) = {γ(u1 · · ·ui) | 1 ≤ i ≤ k} ⊆ G

to be the set of prefixes of w in G. By an induction on |P (w)| we construct languages
L(w) ∈ SDG(A∗) such that w ∈ L(w) ⊆ γ−1(γ(w)) and the number |{L(w) | w ∈ K∗}|
of such languages is finite. The base case |P (w)| = 0 implies g = 1. We may choose
L(w) = γ−1(1) and we are done, since γ−1(1) ∈ SDG(A∗) by definition. Hence, we may
assume |P (w)| ≥ 1. Let g1 = γ(u1) and choose i maximal such that g1 = γ(u1 · · ·ui). Then
we have u1 · · ·ui ∈ (K ∩ γ−1(g1)) · γ−1(1). Note that P (w′) = g−1

1 · {γ(u1 · · ·uj) | i < j ≤ k}
for w′ = ui+1 · · ·uk. By choice of i we have g1 /∈ {γ(u1 · · ·uj) | i < j ≤ k} and therefore
|P (w′)| = |{γ(u1 · · ·uj) | i < j ≤ k}| < |P (w)|. By induction there exists L(w′) and we
let L(w) = (K ∩ γ−1(g1)) · γ−1(1) · L(w′). The number of |{L(w) | w ∈ K∗}| is therefore
bounded by

∑|G|
i=0 |G|

i which is less than |G||G|+1. The result follows because we can write
γ−1(g) =

⋃{
L(w)

∣∣ w ∈ γ−1(g)
}
and this is a finite union. J

Clearly, we have for all G: if K ∈ SDG(A∗) is a prefix code of bounded synchronization
delay, then K∗ and Kω are both in SDG(A∞). As a special case, using the prefix code
K = ∅, it holds K∗ = {1} ∈ SDG(A∞). More generally, every finite language is in
SDG(A∞). Note also that for G′ ≤ G we have SDG′(A∞) ⊆ SDG(A∞). In particular,⋃
{SDGi(A∞) | i ∈ I} ⊆ SD∏

i∈I
Gi

(A∞) for every finite index set I. This inclusion holds
for every divisor of G as observed by the next lemma which can be proved by induction.

I Lemma 3. SDH(A∞) ⊆ SDG(A∞) holds for H � G.

We will formulate our some of results on the language classes SDG(A∞) to obtain finer
results. However, our main result concerns the language class

SDH(A∞) =
⋃
{SDG(A∞) | G ∈ H}.
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I Theorem 4. Let H be a variety of finite groups. Then H(A∞) is the smallest class of
languages C closed under finite union, concatenation, H-controlled star and H-controlled
ω-power such that C contains all finite languages over A∗. In other words, it holds H(A∞) =
SDH(A∞).

I Corollary 5. SDH(A∞) is closed under complementation and intersection for every variety
H of finite groups.

An algebraic characterization of H in terms of Rees extensions will be given in Theorem 15.
The proof of Theorem 4 covers the next two sections.

3 Closure properties of SDH

In this section we prove SDH(A∞) ⊆ H(A∞). Therefore one has to study the closure
properties under the operations given in the definition of SDH(A∞), that is, one has to show
that those operations do not introduce new groups.

The next proposition shows that the H-controlled star does not introduce new groups.

I Proposition 6 ([16]). Let K =
⋃
{Kg | g ∈ G} ⊆ A+ be a prefix code of bounded syn-

chronization delay where each Kg is regular. Then all subgroups in the syntactic monoid of
the G-controlled star are divisors either of G or of the direct product

∏
g∈G Synt(Kg).

We will prove the same for γ−1(1)ω, relying on Proposition 6 as a blackbox. The concept used
for transfering the properties to infinite words are Birget-Rhodes expansions [3, 4]. The Birget-
Rhodes expansion of a monoid M is the monoid Exp(M) = {(X,m) | 1,m ∈ X ⊆M} . The
multiplication on Exp(M) is given as a semi-direct product: (X,m) ·(Y, n) = (X∪m ·Y,m ·n).
Note that M is isomorphic to the submonoid {(M,m) | m ∈M} of Exp(M), that is, M is a
divisor of Exp(M). Moreover, the following lemma shows that the Birget-Rhodes expansion
has the same groups as M .

I Lemma 7. Every subgroup of Exp(M) is isomorphic to some group in M .

Proof. Let G ⊆ Exp(M) be a group contained in Exp(M) and let (X, e) ∈ G be the unit in
G. For every element (Y,m) ∈ G we have (X, e)(Y,m) = (X ∪ eY, em) = (Y,m) and hence,
X ⊆ Y . Furthermore, (Y,m)|G| = (Y ∪ · · · ,m|G|) = (X, e) and we conclude X = Y . Thus,
(X,m) 7→ m is an injective embedding of G into M . J

The idea behind the Birget-Rhodes expansion is that it stores the seen prefixes in a set.

I Lemma 8. Let ϕ : A∗ → M be a homomorphism and ψ : A∗ → Exp(M) be the homo-
morphism given by ψ(a) = ({1, ϕ(a)} , ϕ(a)). Let u ∈ A∗ and ψ(u) = (X,ϕ(u)). For every
m ∈ X there exists a prefix v of u such that ϕ(v) = m.

Proof. We will prove this inductively. The statement is true if u is the empty word. Thus,
consider u = va for some letter a ∈ A. Let ψ(v) = (Y, ϕ(v)), then

ψ(u) = ψ(v) · ({1, ϕ(a)} , ϕ(a)) = (Y ∪ {ϕ(v), ϕ(v)ϕ(a)} , ϕ(u)).

Inductively, we obtain prefixes of v, and therefore also prefixes of u, for all elements of Y .
The only (potentially) new element in X is ϕ(u). This proves the claim. J

A special kind of ω-regular languages are arrow languages. Let L ⊆ A∗ be a language.
We define −→L = {α ∈ Aω | infinitely many prefixes of α are in L} to be the arrow language
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of L. The set of arrow languages is exactly the set of deterministic languages [21]. The
Birget-Rhodes expansion can be used to obtain a recognizing monoid for −→L , given a monoid
for L. For a related result see [10].

I Proposition 9. Let L ⊆ A∗ be some regular language and ϕ : A∗ →M be a homomorphism
which recognizes L, then −→L is recognized by Exp(M).

Proof. Let ψ : A∗ → Exp(M) be the homomorphism given by ψ(a) = ({1, ϕ(a)} , ϕ(a)).
Let α ∈ −→L and α ∼ψ β. We show that β ∈ −→L . Let α = u1u2 · · · and β = v1v2 · · · be
factorizations such that ψ(ui) = ψ(vi). Since α ∈ −→L , we may assume that for every i

there exists a decomposition ui = u′iu
′′
i such that u1 · · ·ui−1u

′
i ∈ L. By ψ(ui) = ψ(vi)

and Lemma 8, there exists a decomposition vi = v′iv
′′
i such that ϕ(u′i) = ϕ(v′i). Thus,

u1 · · ·ui−1u
′
i ∼ϕ v1 · · · vi−1v

′
i and therefore v1 · · · vi−1v

′
i ∈ L. This implies β ∈ −→L . J

I Proposition 10. If L ∈ SDG(A∞), then all subgroups in Synt(L) are a divisor of a direct
product of copies of G.

Proof. We will prove this inductively on the definition of SDG(A∞). The cases ∅ ∈ SDG(A∞)
and {a} ∈ SDG(A∞) for all letters a ∈ A are straightforward, as they are recognized by
aperiodic monoids. Let L,K be languages, such that their syntactic monoids contain only
groups which are divisors of a direct product of G. The language L ∪K is recognized by
the direct product of their syntactic monoids which implies the statement. (L ∩A∗) ·K is
recognized by the Schützenberger product of their syntactic homomorphisms [10] and [8,
Proposition 11.7.10]. The Schützenberger product does not introduce new groups [15].

Let K ⊆ A+ be a prefix code of bounded synchronization delay and γ : K∗ → G be a
homomorphism of the free monoid K∗ to the group G such that for all g ∈ G every subgroup
of Synt(K ∩ γ−1(g)) is a divisor of a direct product of copies of G. Proposition 6 implies
that every subgroup of Synt(γ−1(1)) is a divisor of a direct product of copies of G. Note
that γ−1(1)ω =

−−−−→
γ−1(1) and therefore Proposition 9 and Lemma 7 imply that every subgroup

of Synt(γ−1(1)ω) is a divisor of a direct product of copies of G. J

4 The inclusion H(A∞) ⊆ SDH(A∞)

We prove that if every subgroup ofM is a divisor of G, then every language recognized byM is
contained in SDG(A∞). This result is again finer than just the inequality H(A∞) ⊆ SDH(A∞).
The proof works by induction on |M | and on the alphabet and decomposes every ≈ϕ-class
into several sets in SDG(A∞). As a byproduct we obtain a normal form for the languages in
SDG(A∞).

I Proposition 11. Let L ⊆ A∞ be recognized by ϕ : A∗ →M and let G be a group such that
every subgroup of M is a divisor of G, then L ∈ SDG(A∞). Moreover, L can be written as
finite union

L = L0 ∪
m⋃
i=1

Li · γ−1
i (1)ω

for Li ∈ SDG(A∗) and γi : K∗i → G for prefix codes Ki ∈ SDG(A∗) of bounded synchroniza-
tion delay with γ−1

i (g) ∩Ki ∈ SDG(A∗) for all g ∈ G. All products in the expressions of Li
are unambiguous.
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Proof. Let JwKϕ = {v ∈ A∞ | w ≈ϕ v} be the equivalence class of w. Since L is recognized
by ϕ, it holds L = ∪w∈L JwKϕ. Our goal is to construct languages L(w) ∈ SDG(A∞) such
that

w ∈ L(w) ⊆ JwKϕ.
the number of such languages is finite.
every word in L(w) starts with the same letter.

In particular, we want to saturate JwKϕ by sets in SDG(A∞). The construction of the set
L(w) is by induction on (|M | , |A|) with lexicographic order.

If w = 1, then we set L(w) = {1}. This concludes the induction base |A| = 0. Let us
consider the case that ϕ(A∗) is a group, that is, a divisor of G. Let K = A. The set K
is a prefix code of synchronization delay 0 and we may choose the homomorphism γ = ϕ.
Note that every subset of A is in SDG(A∗). In particular, Kg = K ∩ γ−1(g) ∈ SDG(A∗) for
all g ∈ ϕ(A∗). This shows γ−1(g) = ϕ−1(g) ∈ SDG(A∗) for all g ∈ ϕ(A∗) by Lemma 2 and
Lemma 3. In order to satisfy the third condition let w = av ∈ aA∗ for some a ∈ A and set
L(w) = aϕ−1(ϕ(v)). It is clear that w ∈ L(w) ⊆ JwKϕ and L(w) ∈ SDG(A∗) by the above.
If w ∈ aAω, then we obtain w ∈ aϕ−1(g)ϕ−1(1)ω for some g ∈ ϕ(A∗) by the pigeonhole
principle. Thus, we may set L(w) = aϕ−1(g)ϕ−1(1)ω. Note that by the definition of ∼ϕ, the
inclusion L(w) ⊆ JwKϕ holds. In particular, these cases include the induction base |M | = 1.

In the following we assume that ϕ(A∗) is not a group and therefore there exists a letter
c ∈ A such that ϕ(c) is not a unit. Fix this letter c ∈ A and set B = A \ {c}. If w ∈ B∞, the
set L(w) exists by induction. Let w = uv with u ∈ B∗ and v ∈ cA∞. By induction we obtain
L(u) ∈ SDG(B∞) ⊆ SDG(A∞) and it remains to show L(v) ∈ SDG(A∞). Note that the
product L(w) = L(u) · L(v) is unambiguous. From now on we may assume w ∈ cA∞. Let us
first consider the case w = uv with u ∈ c(B∗c)∗ and v ∈ B∞, i.e., there are only finitely many
occurrences of the letter c in w. By induction, there exists L(v) ∈ SDG(B∞) ⊆ SDG(A∞)
and by setting L(w) = L(u) · L(v) it remains to construct L(u).

Consider the alphabet T = ϕ(B∗) = {ϕ(u) | u ∈ B∗}. Let Mc be the local divisor of M
at ϕ(c). Since Mc is a divisor of M , every subgroup of Mc is a divisor of G. Consider the
homomorphism ψ : T ∗ →Mc given by ψ(ϕ(u)) = ϕ(cuc) and the substitution σ : (B∗c)∞ →
T∞ with σ(u1cu2c . . .) = ϕ(u1)ϕ(u2) · · · . Note that

ψ(σ(u1cu2c . . . unc)) = ψ(ϕ(u1)ϕ(u2) · · ·ϕ(un)) = ϕ(cu1c) ◦ ϕ(cu2c) ◦ · · · ◦ ϕ(cunc)
= ϕ(cu1cu2c . . . cunc)

and thus ϕ−1(m) ∩ c(B∗c)∗ = cσ−1(ψ−1(m)). Since |Mc| < |M |, we can apply induction on
the monoid size and there exists a language L(σ(u′)) ∈ SDG(T∞) for all u′ ∈ (B∗c)∗. We
set L(u) = cσ−1(L(σ(u′))) for u = cu′. In order to complete the case of finitely many c’s, it
suffices to show the following claim:

I Claim. It is σ−1(K) ∈ SDG(A∞) for all K ∈ SDG(T∞).

Proof of the Claim: We prove the claim inductively on the definition of SDG. For K = ∅,
we obtain σ−1(K) = ∅ ∈ SDG(A∞). Furthermore,

σ−1(t) =
⋃

v∈B∗,t=ϕ(v)

L(v)c ∈ SDG(A∞).

Let L,K ∈ SDG(T∞). A basic result from set theory yields σ−1(L ∪ K) = σ−1(L) ∪
σ−1(K). Let σ(v) = w1w2 for some v ∈ (B∗c)∗. Since B∗c is a prefix code, there exists a
unique factorization v = v1v2 with v1, v2 ∈ (B∗c)∗ such that σ(v1) = w1 and σ(v2) = w2.
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Thus, we conclude σ−1(K · L) = σ−1(K) · σ−1(L). Let now K ∈ SDG(T∞) be a prefix
code of synchronization delay d. We first show that σ−1(K) is a prefix code of bounded
synchronization delay. Let u, uv ∈ σ−1(K), then σ(u), σ(uv) = σ(u)σ(v) ∈ K and therefore
σ(v) = 1. This implies v = 1 and σ−1(K) is a prefix code. We prove that σ−1(K)
has synchronization delay d + 1. The incrementation of the synchronization delay by
one comes from the fact that B∗c is not a suffix code, and thus we need another word
in B∗c to pose as a left marker. Consider uvw ∈ σ−1(K)∗ with v ∈ σ−1(K)d+1 and
factorize v = v1cv2 with v2 ∈ σ−1(K)d = σ−1(Kd). Then σ(uvw) = σ(uv1c)σ(v2)σ(w),
and by σ(v2) ∈ Kd this implies σ(uv) = σ(uv1c)σ(v2) ∈ K∗. Thus, uv ∈ σ−1(K)∗. Let
γ : K∗ → G be some homomorphism and Kg = K ∩ γ−1(g) ∈ SDG(T∞) for all g ∈ G.
Inductively, σ−1(Kg) ∈ SDG(A∞) and σ−1(K) =

⋃
σ−1(Kg). Let γ′ : σ−1(K)∗ → G be

induced by γ′(u) = γ(σ(u)). By definition of SDG(A∞) we obtain γ′−1(1) ∈ SDG(A∞).
However, u1 · · ·un ∈ σ−1(γ−1(1)) if and only if γ(σ(u1 · · ·un)) = 1. Furthermore, note
that γ(σ(u1 · · ·un)) = γ(σ(u1)) · · · γ(σ(un)) = γ′(u1) · · · γ′(un) = γ′(u1 · · ·un). Thus, we
obtain σ−1(γ−1(1)) = γ′−1(1) ∈ SDG(A∞) and σ−1(γ−1(1)ω) = γ′−1(1)ω ∈ SDG(A∞). This
concludes the proof of the claim. J

At this point we showed the proposition for languages L ⊆ A∗.
The last case of the proof is that w contains infinitely many c’s, that is, w = cv

with v ∈ (B∗c)ω. By induction, we know that σ(v) ∈ LT · γ−1
T (1)ω ⊆ Jσ(v)Kψ for some

LT ∈ SDG(T ∗) and γT : K∗T → G for some prefix code KT ∈ SDG(T ∗) of bounded
synchronization delay with γ−1

T (g) ∩KT ∈ SDG(T ∗). By the calculation above, there exists
a γ : K∗ → G with the usual properties such that γ−1(1) = σ−1(γ−1

T (1)). Let L = σ−1(LT )
and set L(w) = cLγ−1(1)ω. It remains to show that cLγ−1(1)ω ⊆ JwKϕ. Let cu ∈ cLγ−1(1)ω,
then σ(u) ∈ Jσ(v)Kψ, that is σ(u) ≈ψ σ(v). Since ≈ψ is the transitive closure of ∼ψ, we show
that σ(u) ∼ψ σ(v) implies cu ≈ϕ cv for all u, v ∈ (B∗c)ω which concludes the proof. Now,
let σ(u) = σ(u1c)σ(u2c) · · · and σ(v) = σ(v1c)σ(v2c) · · · such that ψ(σ(uic)) = ψ(σ(vic)).
As observed above, this implies ϕ(cuic) = ϕ(cvic). Thus,

cu = (cu1c)u2(cu3c)u4(c · · · ∼ϕ (cv1c)u2(cv3c)u4(c · · ·
= cv1(cu2c)v3(cu4c) · · · ∼ϕ cv1(cv2c)v3(cv4c) · · ·
= cv.

This implies the existence of finitely many sets L(w) ∈ SDG(A∞) with w ∈ L(w) ⊆ JwKϕ in
the case of infinitely many c’s. J

5 Rees extension monoids

We need the fact that every group contained in Rees(N,M, ρ) is contained in N or in M .

I Lemma 12 ([1]). Let G be a subgroup of Rees(N,M, ρ), then there exists an embedding of
G into N or into M .

Thus, Lemma 12 implies LocRees(H) ⊆ Rees(H) ⊆ Rees(H) ⊆ H for any group variety H.
We want to prove equality, that is, every monoid which contains only groups in H is a divisor
of an iterated Rees extension of groups in H. However, we are able to prove a stronger
statement using only local Rees extensions.

I Lemma 13. Let M be a monoid, N be a submonoid of M and c ∈M . If N and c generate
M , then M is a homomorphic image of the local Rees extension LocRees(N,Mc).
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Proof. Let ϕ : LocRees(N,Mc) → M be the mapping given by ϕ(n) = n for n ∈ N and
ϕ(u, x, v) = uxv for (u, x, v) ∈ N ×Mc ×N . Since

ϕ((u, x, v)(s, y, t)) = ϕ(u, x ◦ cvsc ◦ y, t) = ϕ(u, xvsy, t)
= (uxv)(syt) = ϕ(u, x, v)ϕ(s, y, t),

ϕ is a homomorphism. Obviously, M = N ∪NMcN and thus ϕ is surjective. J

A Rees decomposition of a monoid M is a sequence of monoids M1, . . . ,Mk = M such that
for each 1 ≤ j ≤ k we have for Mj one of the following:

Mj is a group which is a divisor of M .
Mj is a divisor of a local Rees extension of a submonoid Mi of Mj and a local divisor M`

of Mj with i, ` < j.

I Proposition 14. A finite monoid M has a Rees decomposition of length at most 2|M | − 1.

Proof. We prove the statement with induction on |M |. If M is a group, we set M1 = M .
This includes the base case |M | = 1. IfM is not a group, we may choose a minimal generating
set ofM . Let c be a nonunit of this generating set, then there exists a proper submonoid N of
M such that N and c generate M . Since c is not a unit, the local divisor Mc is smaller than
M , that is, |Mc| < |M |. By induction, there exist Rees decompositions M ′1, . . . ,M ′k′ = N

and M ′′1 , . . . ,M ′′k′′ = Mc with k′, k′′ ≤ 2|M |−1 − 1. Note that every group, which is a divisor
of N or Mc also is a divisor of M . Furthermore, M is a divisor of the local Rees extension of
Mk′ = N and Mk′+k′′ = Mc by Lemma 13. Therefore, choosing

Mi = M ′i for 1 ≤ i ≤ k′
Mi+k′ = M ′′i for 1 ≤ i ≤ k′′
Mk′+k′′+1 = M

leads to such a sequence for M . Since k′ + k′′ + 1 ≤ 2 · (2|M |−1 − 1) + 1 = 2|M | − 1, the
bound on k holds. J

The inclusion H ⊆ LocRees(H) is immediate from Proposition 14. This yields

I Theorem 15. Let H be a variety of finite groups. Then H = LocRees(H) = Rees(H).

In particular, every monoid in H is a divisor of an iterated Rees extension of groups in H by
Lemma 1. We can draw the decomposition as a tree based on the decomposition of M in
submonoids and local divisors. We do not describe this formally but content ourselves to
give an example.

I Example 16. Let M be the monoid generated by {a, b, δ, σ} with the relations a2 = b2 =
ab = ba = 0, aδ = a, δσ = σδ2, δ3 = 1, σ2 = 1 and dδ = δd, dσ = σd with d ∈ {a, b}. The
subgroup generated by δ and σ is the symmetric group S3; it is solvable but not abelian.
The monoid M is syntactic for the language L which is a union of La and Lb. The language
La is the set of all words uav with uv ∈ {δ, σ}∗ and the sign of the permutation uv evaluates
to −1. The language Lb is the set of all words ubv with uv ∈ {δ, σ}∗ and uv evaluates in S3
to δ. The decomposition in local Rees extensions from Proposition 14 is depicted in Figure 1.
Here M [a, σ, δ] denotes the submonoid generated by {a, σ, δ}. In particular, this yields

M � Rees(Rees(S3,Rees(Z/2Z, {1} , ρ1), ρ2),Rees(S3, {1} , ρ3), ρ4)

for some ρ1, ρ2, ρ3, ρ4 by Lemma 1.
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M

M [a, σ, δ]

S3 M [a, σ, δ]a ' Z/2Z ∪ {0}

Z/2Z (M [a, σ, δ]a)0 ' {1}

Mb ' S3 ∪ {0}

S3 (Mb)0 ' {1}

Figure 1 Decomposition tree of the monoid in Example 16.

6 Applications

An application of Proposition 14 is the solution to an open problem of Almeida and Klíma.
Let U and V be varieties. Let Rees(U,V) be the variety generated by Rees(N,M, ρ) for
N ∈ U and M ∈ V. Note that in general Rees(V) 6= Rees(V,V). However Rees(V) can be
defined as the limit of this operation. Let Vi = Rees(Vi−1,Vi−1) and V0 = V, then

Rees(V) =
⋃
i∈N

Vi.

The variety Rees(U,V) has recently been introduced by Almeida and Klíma under the name
of bullet operation [1]. They defined a variety V to be bullet idempotent if V = Rees(V,V)
and they asked whether there are varieties apart from H which are bullet idempotent. Using
our decomposition above, we prove that the answer to this question is “No”.

I Theorem 17. Let V be a bullet idempotent variety and let H = V ∩G, then V = H.

Proof. Since H is the maximal variety with H ∩G = H, we have V ⊆ H. Let M ∈ H.
Inductively, we may assume that every proper divisor of M is in V. If M is a group, then
M ∈ H and thus M ∈ V. Thus, there exists an nonunit element c ∈ M and a proper
submonoid N of M such that N and c generate M . By Lemma 13, M is a divisor of
LocRees(N,Mc), and since N,Mc ∈ V and V = Rees(V,V) we obtain M ∈ V. J

Let (FO + MODq)[<] be the fragment of first-order sentences which only use first-order
quantifiers, modular quantifiers of modulus q and the predicate <. Then the following
theorem holds.

I Corollary 18. (FO + MODq)[<](A∞) = SDSolq (A∞)

Proof. By [20], see also [19] for a complete treatise, (FO + MODq)[<] describes the family
of all regular languages such that every group in the syntactic monoid is a solvable group of
cardinality dividing a power of q, that is the languages in Solq. Theorem 4 then implies the
stated equality. J

The same language class has been described by Straubing with another operation, counting
how many prefixes are in a given language, which resembles more closely the counting
modulo q [18].

7 Summary

Our main theorem Theorem 4 states H(A∞) = SDH(A∞). An overview over the contributions
for H is given in Table 1.
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Table 1 Overview of existing and new language characterizations of H.

1 Ab Sol Solq H
finite words [17] [16] [18],new [18],new new, unless H ⊆ Ab
ω-words [5] new new new new, unless H = 1

As a byproduct we were able to give a simple decomposition of the monoids in H as local
Rees extensions and groups in H, using only exponentially many operations.
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