
An Optimal Dual Fault Tolerant Reachability
Oracle∗†

Keerti Choudhary

Department of Computer Science and Engineering, IIT Kanpur, Kanpur, India
keerti@cse.iitk.ac.in

Abstract
Let G = (V,E) be an n-vertices m-edges directed graph. Let s ∈ V be any designated source
vertex. We address the problem of reporting the reachability information from s under two vertex
failures. We show that it is possible to compute in polynomial time an O(n) size data structure
that for any query vertex v, and any pair of failed vertices f1, f2, answers in O(1) time whether
or not there exists a path from s to v in G \ {f1, f2}.

For the simpler case of single vertex failure such a data structure can be obtained using
the dominator-tree from the celebrated work of Lengauer and Tarjan [TOPLAS 1979, Vol. 1].
However, no efficient data structure was known in the past for handling more than one failures.
We, in addition, also present a labeling scheme with O(log3 n)-bit size labels such that for any
f1, f2, v ∈ V , it is possible to determine in poly-logarithmic time if v is reachable from s in
G \ {f1, f2} using only the labels of f1, f2 and v.

Our data structure can also be seen as an efficient mechanism for verifying double-dominators.
For any given x, y, v ∈ V we can determine in O(1) time if the pair (x, y) is a double-dominator
of v. Earlier the best known method for this problem was using dominator chain from which
verification of double-dominators of only a single vertex was possible.

1998 ACM Subject Classification G.2.2 Graph Algorithms

Keywords and phrases Fault tolerant, Directed graph, Reachability oracle, Labeling scheme

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.130

1 Introduction

Networks in most real life applications are prone to failures. These failures, though unpre-
dictable, are transient due to some simultaneous repair process that is undertaken in the
application. This motivates the research on designing fault tolerant structures for various
graph problems. In the past few years, a lot of work has been done in designing fault tolerant
structures for various fundamental graph problems, see [7, 9, 14].

We address the problem of building a compact data structure for answering reachability
queries from a designated source on vertex failures. The only previous known result for this
problem was for single failure. The single fault tolerant reachability is closely related to the
notion of dominators as follows. Given a directed graph G and a source vertex s, we say
that a vertex x dominates a vertex v if every path from s to v contains x. Lengauer and
Tarjan [12] introduced a data structure called dominator tree which is a tree rooted at s such
that for any v in G, the set of ancestors of v in the tree is precisely the set of dominators of v.
Thus, for any two vertices x and v in G, v becomes unreachable from s on failure of x if and

∗ This work was partially supported by Google India PhD Fellowship Award.
† Full version of this article is available at http://www.cse.iitk.ac.in/users/keerti/papers/

icalp2016.pdf.

EA
T

C
S

© Keerti Choudhary;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 130; pp. 130:1–130:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.130
http://www.cse.iitk.ac.in/users/keerti/papers/icalp2016.pdf
http://www.cse.iitk.ac.in/users/keerti/papers/icalp2016.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

130:2 An Optimal Oracle for Dual Fault Tolerant Reachability

only if x is ancestor of v in the dominator tree. A lot of work has been done on computing
dominators in optimal and near-optimal time, see [3, 10, 11, 12].

In this work, we focus on building efficient data structures for answering reachability
queries upon two vertex failures. One simple solution to this problem is an O(n) space
and O(n) query time data structure using the work of Baswana et. al [1] on fault tolerant
reachability subgraphs (FTRS). They show that for every k > 1, we can compute in
polynomial time a subgraph H of G with at most 2kn edges that preserves the reachability
information from s even after k edge/vertex failures. Such a subgraph is referred as a k-FTRS
for G. Thus in this case a 2-FTRS serves as our data structure for answering reachability
queries. To answer a reachability query after two vertex failures, we can run any standard
graph traversal algorithm (BFS/DFS) from s in the 2-FTRS avoiding the failed vertices.

Another extreme solution to this problem is an O(n2) space data structure with O(1)
query time. This is possible by building n dominator trees, one for each graph G \ {y}, where
y ∈ V . Now on failure of vertices x, y, a vertex v will be reachable from s if and only if x is
not ancestor of v in the dominator tree of G \ {y}. To the best of our knowledge, these are
the only known solutions for the dual failure case.

This brings us to the following central question of our work - Is it possible to achieve the
best of the above two results? In other words, can we have an oracle of O(n) space that still
answers reachability queries in O(1) time? We give an affirmative answer to this question.
We also present a labeling scheme for this problem. Our results are summarized as follows:

Oracle: There exists a data structure of O(n) size that given any two failing vertices f1, f2
and a query vertex v, takes O(1) time to determine if v is reachable from s in G \ {f1, f2}.

Labeling Scheme: There exists a compact labeling scheme for answering reachability queries
under two failures. Each vertex stores a label of O(log3 n) bits such that for any two
failing vertices f1, f2 and any destination vertex v, it is possible to determine whether v is
reachable from s in G\{f1, f2} by processing the labels associated with f1, f2 and v only.

Our result also implies a data structure for the closely related problem of double dominator
verification. A pair of vertices (x, y) is said to be double-dominator of a vertex v if each
path from s to v contains either x or y, but none of x and y are dominators of v. Using
our data structure together with the dominator-tree of Lengauer and Tarjan [12], one can
obtain an O(n) space data structure that for any given triplet x, y, v ∈ V verifies in O(1)
time if (x, y) is double-dominator of v. The best previously known result for this could verify
double-dominators only for a fixed s, v pair in O(1) time using an O(n) space data structure
called dominator chain [16].

1.1 Related work
Demetrescu et al. [7] showed that any oracle for reporting distances from a single source,
rather than just the reachability information upon vertex failures in a directed weighted
graph must require Ω(m) space. Nonetheless, for the problem of reporting distances between
an arbitrary pair of vertices, they give a construction of O(n2 logn) size data structure that
for any u, v, x ∈ V reports the length of the shortest path from u to v avoiding x in constant
time. Duan and Pettie [9] extended this result to dual failures by designing a data structure
of O(n2 log3 n) space which could answer distance queries after any two vertex failures in an
O(logn) time.

Parter and Peleg [14] addressed the problem of computing a sparse subgraph that preserves
the distances from source s on failure of a single vertex. In particular, they show that for
any given unweighted graph G we can compute a subgraph H with O(n3/2) edges such that

K. Choudhary 130:3

for any two vertices v, x, the distance of v from s in the graph H \ {x} is the same as that in
G \ {x}. They also show that this bound is tight. Parter [13] extended this result to dual
failure in undirected graphs by showing an upper bound of O(n5/3), and also showed that
this bound is tight. Baswana and Khanna [2] showed that for the undirected and single
failure case if one is willing to settle for an approximation then there is a subgraph with
O(n logn) edges that preserves the distances up to a multiplicative error of 3. Parter and
Peleg [15] improved this result and obtained a subgraph with at most 3n edges.

Another closely related problem is the replacement paths problem. In this problem we
are given a source s and a target t and for each edge e on the shortest path from s to t the
algorithm computes the shortest path from s to t avoiding e. Many variants of this problem
were studied along the years. For a recent overview see [17] and references therein.

The questions of finding graph spanners, approximate distance oracles and compact
routing schemes that are resilient to f vertex or edge failures in undirected graphs were
studied in [8, 5, 4].

1.2 Our Techniques

Consider a reachability tree T rooted at source s. Let v be any vertex in T , and P be the
path from s to v in T . Let us first consider the simple case when only a single vertex, say x,
fails in G. If x lies on P and v is still reachable from s, then we can find an alternate path
consisting of - a prefix of P , followed by a “detour”, say D, avoiding P (and x), followed by
a suffix of P . This simple decomposition can be used to easily handle reachability queries for
one vertex failure. However, in the case of the dual failure, non trivialities arise when the
second failing vertex lies on detour D. A natural direction to proceed from here is to define
secondary detours which are disjoint from both P as well as D, but handling secondary
detours is quite complicated.

So we take an alternative approach in which instead of initially starting with a single
tree we begin with two independent trees - T1 and T2, defined by Georgiadis and Tarjan [11].
They satisfy the condition that for any v, the path from s to v in two trees intersect only
at the dominators of v. This allows us to reduce the problem to the case when exactly one
failure is an ancestor of v in T1, and the other failure is ancestor of v in T2. Now let P1, P2
be the paths from s to v in T1, T2, and let f1, f2 be the failed vertices lying respectively on
P1, P2. Then, the structure of an alternate path to v gets simplified as follows: It consists of
a prefix of either P1 or P2 up to a vertex a (lying respectively before f1 or f2) followed by a
detour which is disjoint from P1, P2 (and f1, f2), and followed again by a suffix of P1 or P2.
Note that the starting and terminating vertices of detour need not lie on the same tree-path.

So, we get a very clean and simple representation of detours. The main challenge lies in
how to efficiently search for an appropriate detour avoiding f1, f2. The problems arising and
how they are tackled is discussed in detail in Section 4.

1.3 Organization of the paper

We describe notations and terminologies in Section 2. In Section 3, we briefly sketch the
solution for the single failure case using detours. The overview of the paper is presented in
Section 4. In Section 5, we present the reachability oracle for a simpler class of graphs that
are 2-vertex strongly connected. In Section 6, we present the oracle for general graphs. The
construction of the labeling scheme can be found in the full version of the paper.

ICALP 2016

130:4 An Optimal Oracle for Dual Fault Tolerant Reachability

2 Preliminaries

Given a directed graph G = (V,E) on n = |V | vertices and m = |E| edges, and a source
vertex s ∈ V , the following notations will be used throughout the paper.

f1, f2: A given pair of failed vertices.
parT (x): The parent of vertex x in tree T .
depthT (x): The depth of vertex x in tree T .
PathT (x, y): The path from vertex x to vertex y in tree T .
PathT (x̄, y): PathT (x, y) \ {x}
PathT (x, ȳ): PathT (x, y) \ {y}
PathT (x̄, ȳ): PathT (x, y) \ {x, y}
idom(x): The immediate dominator of vertex x. (See Definition 1).
T1, T2: A pair of independent trees for G rooted at s. (See Definition 2).
P [x, y]: The subpath of path P lying between vertices x, y, assuming x precedes y on P .
P ::Q : The path formed by concatenating paths P and Q in G. Here it is assumed that
the last vertex of P is the same as the first vertex of Q.

We now define immediate dominators and independent spanning trees which are crucial
to our fault tolerant reachability oracle.

I Definition 1 ([12]). A vertex w is said to be the immediate dominator of v if (i) w is a
dominator of v, and (ii) every dominator of v (other than v itself) is also a dominator of w.

I Definition 2 (Georgiadis and Tarjan [11]). Given a directed graph G and a designated
source s, a pair of trees T1, T2 rooted at s are said to be independent spanning trees if for
each v 6= s the paths from s to v in T1 and T2 intersect only at the dominators of v. (It was
shown by Georgiadis and Tarjan [11] that such a pair of trees can be computed in an O(m)
time).

Below we state a few basic properties of dominators in a directed graph.

I Property 1. Let T be a reachability tree rooted at s, and y0, y1 be vertices such that
y0 = idom(y1). Then for any z ∈ PathT (ȳ0, y1), idom(z) belongs to PathT (y0, y1).

I Property 2. Let T be a reachability tree rooted at s, and y1, y2 be vertices such that y1 is
ancestor of y2, and idom(y1) = idom(y2). Then for any z ∈ PathT (y1, y2) either y1 is a
dominator of z or idom(z) = idom(y1).

For efficient implementation of our oracle, we use the following optimal result by Demaine
et. al [6] for answering the range minima queries on tree paths.

I Theorem 3 (Demaine et al. [6]). A tree T on n vertices and edge weights in the range
[0, n3] can be preprocessed in O(n logn) time to build a data structure of O(n) size so that
given any u, v ∈ T , the edge of smallest weight on the tree path from u to v can be reported
in O(1) time.

The following corollary is immediate from Theorem 3.

I Corollary 4. Given a tree, say T , on n vertices, with each vertex assigned an integral
weight in range [0, n3], we can obtain in polynomial time an O(n) size data structure that for
any two vertices x, y, outputs in O(1) time the vertex with minimum weight on PathT (x̄, y).

K. Choudhary 130:5

(i) (ii) (iii)

Figure 1 (i) Representation of a path bypassing f in the single vertex failure case; (ii) Represent-
ation of sets SA(v) and SB(v) when condition C is satisfied for vertex v; (ii) A path from a ∈ SA(v)
to b ∈ SB(v) when v is reachable from s in G \ {f1, f2}.

3 Review of reachability oracle for single failure

In order to understand the dual fault tolerant reachability oracle we first briefly discuss the
case of single failure. We here describe an alternative reachability oracle using detours instead
of dominator tree. Let T be any reachability tree of G rooted at s, and f, v be respectively
the failed and the query vertex. Also assume f is an ancestor of v in T . Notice that if
v is reachable from s in G \ {f}, then there must exist a path starting from PathT (s, f̄)
and terminating at PathT (f̄ , v) which, except for its endpoints, does not pass through any
ancestor of v in T . (See Figure 1(i)). So for each w ∈ V , we can define a detour D(w) to be
a path starting from the highest possible ancestor of w in T and terminating at w such that
none of the internal vertices of the path pass through an ancestor of w. Now on failure of f
it suffices to search whether there exists a vertex lying in PathT (f̄ , v) whose detour starts
from an ancestor of f . This can be achieved by assigning to each vertex w a weight equal to
the depth of the first vertex on D(w). By doing this the problem of reachability under one
vertex failure reduces to the problem of solving range minima on weighted trees, for which
already an optimal solution exists. (See Corollary 4).

4 Overview

Let us consider the failure of a pair of vertices f1, f2 in G, and let v be the query vertex. Note
that if any of the tree paths - PathT1(s, v) or PathT2(s, v) is intact, then v will be reachable
from s. Also, if both PathT1(s, v) or PathT2(s, v) contains a common failed vertex, say f1,
then v will not be reachable from s. This is because then f1 would be a dominator of v.
Thus the non-trivial case is when PathT1(s, v) contains only f1 and PathT2(s, v) contains
only f2, or the vice-versa. So whenever a query vertex v is given to us, we may assume that
the following condition is satisfied.

C : f1 lies on PathT1(s, v) \PathT2(s, v), and f2 lies on PathT2(s, v) \PathT1(s, v).

Now consider the sets SA(v) and SB(v) as defined below. (For a better understanding of
these sets see Figure 1(ii)).

SA(v): Set of vertices lying either above f1 on PathT1(s, v) or above f2 on PathT2(s, v).
SB(v): Set of vertices lying either below f1 on PathT1(s, v) or below f2 on PathT2(s, v).

ICALP 2016

130:6 An Optimal Oracle for Dual Fault Tolerant Reachability

(i) (ii) (iii)

Figure 2 (i) A graph G with in-degree of each vertex bounded by two; (ii) A pair of independent
spanning trees T1 and T2 for G; (iii) A path P from a ∈ SA(v) to b ∈ SB(v) in G \ {f1, f2}.

It turns out that if v is reachable from s in G \ {f1, f2}, then there must exists a path
from set SA(v) to SB(v) avoiding the vertices of both PathT1(s, v) and PathT2(s, v). This
fact is formally stated in the following lemma (refer to the full version of the paper for its
proof).

I Lemma 5. Given a pair of failed vertices f1, f2, a vertex v is reachable from s if and only
if G contains a path P satisfying the following conditions. (See Figure 1(iii)).
C1. The first and last vertices of P lies respectively in sets SA(v) and SB(v).
C2. None of the internal vertices of P lies on PathT1(s, v) or PathT2(s, v).

For simplicity we refer to a path satisfying the conditions C1 and C2 stated in the above
lemma as an SA,B(v) path. In order to efficiently compute such a path we define a pair of
detours D1(w) and D2(w) for each vertex w ∈ V as follows.

Di(w): a path starting from the highest possible ancestor of w in Ti and terminating at
w such that none of the internal vertices of the path are ancestor of w in T1 or T2.

Note that the detours D1(w) and D2(w) can be seen as a simple generalization of the
detour D(w) which was defined for the single failure case in Section 3. However, we show
that this simple generalization is not sufficient to answer the reachability queries in dual
failure. To understand this subtle point consider an SA,B(v) path with a, b as its endpoints.
If the endpoint b is equal to v, then P could be simply either D1(v) or D2(v). The problem
arises when b 6= v. This is because if b is an ancestor of v in T1, then P might contain vertices
from PathT2(s, b). (Recall that the internal vertices of P are disjoint from PathT2(s, v),
but not necessarily disjoint from PathT2(s, b)). So in this case P can neither be D1(b) nor
be D2(b). For a more clear insight into this consider the graph and its two independent
spanning trees in Figure 2. Since in-degree of each vertex in the graph is at most two, Di(w)
for each w ∈ V is simply the incoming edge from pari(w) to w. Thus the path P connecting
SA(v) to SB(v) is a concatenation of as many detours as there are number of edges in P .
Determining whether a concatenation of all these single-edge detours can give us an SA,B(v)
path is difficult to achieve in O(1) time.

This shows that a simple generalization of detours from a single tree to two trees is not
sufficient. To tackle the problem we extend the notion of detours to ‘Parent Detours’ and
‘Ancestor Detours’. These detours unlike the normal detour terminates at an appropriate
ancestor of w in T1 or T2. We formally define the parent-detours and ancestor-detours in
the following sections, and show how they can be used to solve the problem of dual fault
tolerant reachability.

K. Choudhary 130:7

!!! !

(i) (ii) (iii)

!!

Figure 3 (i) Possibilities for path P when b ∈ PathT1 (f̄1, v̄); (ii) Representation of PathT2 (s, c)
and z = LCA(c, v) in T2; (iii) Violation of assumption 2 if P ∩ PathT2 (z, c) is non-empty.

5 Reachability oracle for 2-vertex strongly connected graphs

In this section we describe an O(n) space and O(1) time reachability oracle for 2-vertex
strongly connected graphs. By 2-vertex strongly connectedness we have that on removal of
any vertex f (f 6= s), all the vertices in G \ {f} are still reachable from s. Thus each vertex
is dominated only by source s and by itself. This implies that for any vertex w, PathT1(s, w)
and PathT2(s, w) intersects only at the endpoints s, w.

Consider a query vertex v which is reachable from s in G \ {f1, f2}. Let us assume that
condition C is satisfied for v. Let P be any SA,B(v) path, and a, b be respectively the first
and last vertices on P . Without loss of generality we can assume that b lies on PathT1(s, v).
See Figure 3(i). We make the following additional assumptions.
1. None of the SA,B(v) paths terminates at v (i.e. b cannot be v).
2. b is the lowest vertex on PathT1(s, v) at which an SA,B(v) path terminates.

I Remark. The assumption 1 is justified since if b = v, then v will be reachable from s using
the detours D1(v) or D2(v).

We now state a lemma which provides the motivation for defining the parent detours.

I Lemma 6. Let a, b, P be as described above, and c be the child of b on PathT1(s, v).
Then,
(i) Vertex f2 is an ancestor of c in T2.
(ii) None of the internal vertices of P lie on PathT1(s, c) or PathT2(s, c).

Proof. Let z denote the LCA of vertices c and v in tree T2. (See Figure 3(ii)). Consider
the path Q = PathT2(z, c). It is easy to see that none of the internal vertices of Q lies on
PathT2(s, v). Also, the internal vertices of Q appearing on PathT1(s, v) must lie below c on
PathT1(s, v). This is because, by definition of independent spanning trees, PathT1(s, c) and
Q can intersect only at the vertices s and c.

We now prove claim 1. Let d be the first point of intersection of Q with PathT1(c, v).
(See Figure 3(ii)). Then the internal vertices of Q[z, d] are disjoint from both PathT1(s, v)
and PathT2(s, v). Now if z is an ancestor of f2 in T2, then Q[z, d] forms an SA,B(v) path,
terminating at descendant of b in T1, thereby violating assumption 2. Hence f2 must be
either same as z or an ancestor of z. This shows that f2 is an ancestor of c in T2.

In order to prove claim 2, we first show that P is disjoint from Q. Let us suppose on
the contrary, that there exists a vertex, say z′, belonging to P ∩Q. Also let d′ be the first
vertex of Q[z′, c] lying on PathT1(c, v). (See Figure 3(iii)). Then P [a, z′]::Q[z′, d′] forms an

ICALP 2016

130:8 An Optimal Oracle for Dual Fault Tolerant Reachability

SA,B(v) path terminating at a descendant of b in T1. This again violates assumption 2. Thus
P ∩Q = ∅. Now since the internal vertices of P are disjoint from PathT1(s, v),PathT2(s, v),
they must be disjoint from PathT1(s, c) and PathT2(s, z)::Q = PathT2(s, c), as well. J

The above lemma implies that f1 is an ancestor of c in T1, and f2 is an ancestor of c in
T2. Thus SA(v) = SA(c). Hence we have the following corollary.

I Corollary 7. P is an SA,B(c) path terminating at parT1(c).

In order to capture the above fact we define parent-detours for each w ∈ V which instead
of terminating at w terminates at either parT1(w) or parT2(w).

PDi
j(w): a path starting from the highest possible ancestor of w in Ti and terminating at

parTj
(w) s.t. none of the internal vertices of the path lie on PathT1(s, w) or PathT2(s, w).

By above definition of parent-detour it follows that P can be replaced by either PD1
1(c)

or PD2
1(c) depending upon whether it starts from an ancestor of c in T1 or T2. Now let x1

denote the child of f1 in T1 lying on PathT1(s, v), and x2 denote the child of f2 in T2 lying on
PathT2(s, v). Then the parent-detours of vertices x1, x2 may not be of any help, since they
would terminate at f1 and f2. However, the parent-detours of vertices in SB(v) \ {x1, x2}
will suffice to determine whether v is reachable from s or not.

Notice that in above discussion, we observed that P is an SA,B(c) path terminating at
b = parT1(c). This shows that for vertices lying on PathT1(x̄1, v), we only need to worry
about parent-detours terminating at parT1(·), i.e. PD1

1(·) and PD2
1(·). Whereas, for vertices

on PathT2(x̄2, v), we need to worry about parent-detours terminating at parT2(·), i.e. PD1
2(·)

and PD2
2(·). We thus have the following lemma.

I Lemma 8. Let x1 and x2 be as defined above. A vertex v is reachable from s in G\{f1, f2}
if and only if at least one of the following vertices lie in SA(v).
(i) The first vertex of D1(v) or D2(v).
(ii) The first vertex of either PD1

1(w) or PD2
1(w) for some w ∈ PathT1(x̄1, v).

(iii) The first vertex of either PD1
2(w) or PD2

2(w) for some w ∈ PathT2(x̄2, v).

5.1 Implementation of the oracle
We first introduce the following notations for detours and parent detours.

βi(v): depthTi
(first vertex on Di(v)).

γi
j(v): depthTi

(first vertex on PDi
j(v)).

Now let f1, f2 be a given pair of failed vertices and v be a given query vertex. Our
first step is to check if condition C is satisfied. Recall that this requires only verifying the
ancestor-descendant relationship in trees T1 and T2. One simple method to achieve this for
any given tree T is to perform the pre-order and the post-order traversal of T , and store
the vertices in the order they are visited. Now x will be ancestor of y in T if and only if x
appears before y in the pre-order traversal, and after y in the post-order traversal.

Algorithm 1 presents the pseudo-code for answering reachability query for a vertex v
assuming condition C is satisfied. This can be explained in words as follows. For i = 1, 2, we
first check if Di(v) starts from an ancestor of fi in Ti or not. This is done by comparing the
value of βi(v) with the depth of fi in Ti. Next we compute the vertices x1, x2. Finally for
i, j ∈ {1, 2}, we compute a vertex w ∈ PathTj

(x̄j , v) for which γi
j(·) is minimum. If γi

j(w) is
less than the depth of fi in Ti, then it implies that PDi

j(w) starts from an ancestor of fi in
Ti, so we return True. If we reach to the end of code, that means we have not been able to
find any path for v, so we return False.

K. Choudhary 130:9

Algorithm 1: Oracle for reachability to v in 2-vertex strongly connected graphs.

1 if β1(v) < depthT1(f1) or β2(v) < depthT2(f2) then Return True;
2 ;
3 x1 ← the vertex with minimum depth on PathT1(f̄1, v);
4 x2 ← the vertex with minimum depth on PathT2(f̄2, v);
5 foreach i, j ∈ {1, 2} do
6 w ← a vertex on PathTj (x̄j , v) for which γi

j(·) is minimum;
7 if γi

j(w) < depthTi
(fi) then Return True;

8 ;
9 end

10 Return False;

The above oracle can be easily implemented in O(1) time, by having a total of six weight
functions – one each for storing the depth of a vertex in trees T1, T2, and the other four for
storing the values γi

j(·), for i, j ∈ {1, 2}. By doing this the vertices x1, x2 can be computed
in constant time since they are respectively the vertices with minimum depth on the paths
PathT1(f̄1, v) and PathT1(f̄1, v). Also Step 4 can be carried out in an O(1) time. We can
thus state the following theorem.

I Theorem 9. A 2-vertex strongly connected graph on n vertices can be preprocessed in
polynomial time for a given source vertex s to build a data structure of O(n) size such that
for any query vertex v, and pair of failures f1, f2, it takes O(1) time to determine if there
exists any path from s to v in G \ {f1, f2}.

6 Reachability oracle for general graphs

In this section we explain the reachability oracle for general graphs. Consider a query vertex
u in G. Let u0, u1, ..., uk be the dominators of u with u0 = s and uk = u. Thus PathT1(s, u)
and PathT2(s, u) intersect only at ui’s. (See Figure 4(i)). As in Section 5, we assume that
condition C holds for u, so none of the ui’s can be equal to f1 or f2. Now let i, j ∈ [1, k] be
such that f1 ∈ PathT1(ūi−1, ūi) and f2 ∈ PathT2(ūj−1, ūj). It is easy to see that if i 6= j,
then u is reachable from s by the path PathT1(s, ui−1)::PathT2(ui−1, ui)::PathT1(ui, u).
(See Figure 4(ii)). Thus we consider the case when i = j 1. For simplicity, we use symbols, v
and idom(v) to respectively denote the vertices ui and ui−1. Notice that in order to check
reachability of u from s, it suffices to check if v is reachable from s in G \ {f1, f2}.

We now divide our analysis into various different cases as follows:

Case 1. There exists an SA,B(v) path terminating at vertex v.
In this case v will be reachable from s using either of the detours D1(v) or D2(v).

Case 2. There exists a vertex w ∈ SB(v) for which idom(w) ∈ SA(v) \ {idom(v)}.
In this case also we can show that v is reachable from s by the following argument. Without
loss of generality let us assume that w is an ancestor of v in T1. Since idom(w) is an

1 One can verify in O(1) time whether ui−1 = uj−1 (i.e. if i = j) since vertex ui−1 = LCA(f1, v) and
vertex uj−1 = LCA(f2, v) in the dominator tree of G.

ICALP 2016

130:10 An Optimal Oracle for Dual Fault Tolerant Reachability

(i) (ii) (iii)

Figure 4 (i) Representation of dominators of u; (ii) A path from s to u (highlighted in yellow)
when f1 lies on PathT1 (ū1, ū2) and f2 lies on PathT2 (ū2, ū3); (iii) A path from s to u (highlighted
in yellow) when there exists a vertex w ∈ SB(v) for which idom(w) lies in the set SA(v) \ {idom(v)}.

ancestor of w in T1, it must lie on PathT1(idom(v), f̄1). (See Figure 4(iii)). Consider the
path Q = PathT2(idom(w), w). Note that f2 cannot lie on Q. This is because otherwise
PathT1(idom(v), w) and PathT2(idom(v), f2)::Q[f2, w] will form two vertex disjoint paths
from idom(v) to w, which would violate the fact that idom(w) 6= idom(v). Also f1 cannot
lie on Q, as Q is disjoint from PathT1(idom(w), w̄). Thus v is reachable from s by the path
PathT1(s, idom(w))::Q::PathT1(w, v).

Case 3. None of the SA,B(v) path terminates at v, and there does not exist a vertex in
SB(v) whose immediate dominator lies in SA(v) \ {idom(v)}.
This is the most non-trivial case of dual fault tolerant reachability oracle. We now provide
analysis for this case.

Let us suppose v is reachable from s in G \ {f1, f2}. Then without loss of generality we
can assume that there exists an SA,B(v) path (say P) terminating at an ancestor of v in T1.
In case there are multiple SA,B(v) paths, then we take P to be that path which terminates
at lowest vertex on PathT1(f̄1, v̄). Let a, b be respectively the first and last vertices on P .
By Property 1, we know that idom(b) cannot be an ancestor of idom(v) in T1. Therefore,
idom(b) must be equal to idom(v). This is because idom(b) cannot lie in SA(v) \ {idom(v)},
and if idom(b) lies in SB(v) then P ∩ SB(v) will contain both b and idom(b), which would
violate the definition of an SA,B(v) path.

Now consider the vertex c which is child of b on PathT1(s, v). It turns out that in a
general graph the parent-detours of c may not be of any help. This is because the analysis for
2-vertex strongly connected graphs crucially exploited the fact that idom(b) = idom(c) = s.
But in general graphs, if idom(b) is not equal to idom(c), then it can be shown that Lemma 6
no longer holds. To be more precise, we can show that the internal vertices of P might not
be disjoint from PathT2(s, c).

However, the problem can be resolved if we take c to be the first descendant of b on
PathT1(s, v) whose immediate dominator is the same as that of b. This motivates us to
define the notion of pseudo-child (and pseudo-parent) as follows.

I Definition 10. Given a reachability tree T rooted at s, a vertex x is said to be pseudo-
parent of y in T (and y is said to be pseudo-child of x) if x is the nearest ancestor of y in T
whose immediate dominator is the same as that of y.

K. Choudhary 130:11

Note that in a 2-vertex strongly connected graph, the definition of pseudo-parent and
pseudo-child degenerates to normal notion of parent and child. This is because, immediate
dominator of all the vertices (other than s) in such graph is equal to s.

We now state a lemma which is an analogue of Lemma 6 for general graphs.

I Lemma 11. Let a, b, P be as described above, and c be the pseudo-child of b on PathT1(s, v).
Then,
(i) Vertex f2 is an ancestor of c in T2.
(ii) None of the internal vertices of P lie on PathT1(s, c) or PathT2(s, c).

As a corollary of the above lemma we get that P is an SA,B(c) path terminating at
pseudo-parent of c in T1. We thus define ancestor-detours which are a generalization of
parent-detours as follows.

ADi
j(w): a path starting from the highest possible ancestor of w in Ti and terminating

at pseudo-parent of w in tree Tj such that none of the internal vertices of the path lie on
PathT1(s, w) or PathT2(s, w).

Now let x1 be the first descendant of f1 on PathT1(s, v) whose immediate dominator
is equal to idom(v). Similarly, let x2 be the first descendant of f2 on PathT1(s, v) whose
immediate dominator is equal to idom(v). Then the ancestor-detours of x1, x2 will not be of
any help as they would terminate at either f1, f2 or their ancestors. Now as in Section 5,
we can argue that ancestor-detours of vertices on PathT1(x̄1, v) ∪ PathT2(x̄2, v) suffice to
answer the reachability query for vertex v. This completes the analysis of the third case.

We thus have the following lemma.

I Lemma 12. Let v be a vertex satisfying condition C such that f1 ∈ PathT1(idom(v), v)
and f2 ∈ PathT1(idom(v), v). Also let x1 and x2 be as defined above. Then v is reachable
from s in G \ {f1, f2} if and only if either of the following statements holds true.
(i) [Case 1] The first vertex of D1(v) or D2(v) lies in SA(v).
(ii) [Case 2] There exists a vertex w ∈ SB(v) for which idom(w) ∈ SA(v) \ {idom(v)}.
(iii) [Case 3] There exists a vertex w ∈ PathT1(x̄1, v) such that idom(w) = idom(v) and the

first vertex of either AD1
1(w) or AD2

1(w) lies in SA(v).
(iv) [Case 3] There exists a vertex w ∈ PathT2(x̄2, v) such that idom(w) = idom(v) and the

first vertex of either AD1
2(w) or AD2

2(w) lies in SA(v).

6.1 Implementation of the oracle
We now explain the implementation of reachability oracle for general graphs. As in Section 5,
we define the following notations.

αi(v): depthTi(idom(v)).
βi(v): depthTi

(first vertex on Di(v)).
γi

j(v): depthTi(first vertex on ADi
j(v)).

Let f1, f2 be a given pair of failed vertices and v be a given query step. We assume
that condition C is satisfied, and failures f1, f2 lies respectively on PathT1(idom(v), v) and
PathT2(idom(v), v). We first check for i = 1, 2, if Di(v) starts from an ancestor of fi in Ti

or not. This is done by comparing the value of βi(v) with the depth of fi in Ti.
Next we compute the vertices x1, x2 as follows. Recall that x1 is the highest ancestor

of v in PathT1(f̄1, v) whose immediate dominator is equal to idom(v). So to obtain x1, we
call the range minima query for vertices on PathT1(f̄1, v) with 〈α1(·), depthT1(·)〉 as the
weight function. By comparing the value of α1(·), it is able to filter out those vertices in

ICALP 2016

130:12 An Optimal Oracle for Dual Fault Tolerant Reachability

PathT1(f̄1, v) whose immediate dominator is at minimum depth in T1, i.e. it is equal to
idom(v). After this it assigns x1 to be that vertex which has minimum depth in T1. Vertex
x2 is computed in a similar manner.

Now notice that to find whether there exists a vertex in SB(v) whose immediate dominator
lies in SA(v) \ {idom(v)}, we only need to restrict ourself to paths PathT1(f̄1, x̄1) and
PathT1(f̄1, x̄1). This is because Property 2 implies that immediate dominator of vertices
in PathT1(x1, v) is either equal to idom(v) or lies in PathT1(x1, v) itself. Similarly, for
PathT2(x2, v). So for i = 1, 2, we perform the range minima query to find a vertex, say w,
on PathTi

(f̄i, x̄i) for which αi(w) is minimum. If αi(w) is less than the depth of fi in Ti,
then we report that v is reachable from s.

Finally for i, j ∈ {1, 2}, we compute a vertex w ∈ PathTj
(x̄j , v) for which 〈αi(·), γi

j(·)〉 is
minimum. The term αi(·) is added in front so that we are able to filter out those vertices
whose immediate dominator is equal to idom(v). Now if γi

j(w) is less than the depth of fi in
Ti, then it implies that ADi

j(w) starts from an ancestor of fi in Ti, so we return True.
If we reach to the end of code, that means we have not been able to find any path for v,

so we return False.

Algorithm 2: Oracle for reachability to v in general graphs.

1 if β1(v) < depthT1(f1) or β2(v) < depthT2(f2) then Return True;
2 ;
3 x1 ← a vertex on PathT1(f̄1, v) for which 〈α1(·), depthT1(·)〉 is minimum;
4 x2 ← a vertex on PathT2(f̄2, v) for which 〈α2(·), depthT2(·)〉 is minimum;
5 foreach i ∈ {1, 2} do
6 w ← a vertex on PathTi

(f̄i, x̄i) for which αi(·) is minimum;
7 if αi(w) < depthTi

(fi) then Return True;
8 ;
9 end

10 foreach i, j ∈ {1, 2} do
11 w ← a vertex on PathTj

(x̄j , v) for which 〈αi(·), γi
j(·)〉 is minimum;

12 if γi
j(w) < depthTi(fi) then Return True;

13 ;
14 end
15 Return False;

As in Algorithm 1, we can argue that the Steps 2, 3, 5 and 9, can be implemented in
O(1) time. Thus Algorithm 2 takes constant time to answer reachability queries. We thus
conclude with the following theorem.

I Theorem 13. A directed graph G = (V,E) on n vertices can be preprocessed in polynomial
time for a given source vertex s ∈ V to build a data structure of O(n) size such that for any
f1, f2, v ∈ V , it takes O(1) time to determine if there exists a path from s to v in G\{f1, f2}.

Acknowledgements. I am very grateful to my advisor, Prof. Surender Baswana, for many
helpful discussions and for reviewing this paper.

K. Choudhary 130:13

References
1 Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault tolerant subgraph for

single source reachability: Generic and optimal. In Proceedings of the 48th Annual ACM
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 19-21,
2016 (to appear), 2016.

2 Surender Baswana and Neelesh Khanna. Approximate shortest paths avoiding a failed
vertex: Near optimal data structures for undirected unweighted graphs. Algorithmica,
66(1):18–50, 2013.

3 Adam L. Buchsbaum, Loukas Georgiadis, Haim Kaplan, Anne Rogers, Robert Endre
Tarjan, and Jeffery Westbrook. Linear-time algorithms for dominators and other path-
evaluation problems. SIAM J. Comput., 38(4):1533–1573, 2008.

4 Shiri Chechik. Fault-tolerant compact routing schemes for general graphs. Inf. Comput.,
222:36–44, 2013.

5 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f-sensitivity distance
oracles and routing schemes. Algorithmica, 63(4):861–882, 2012.

6 Erik D. Demaine, Gad M. Landau, and Oren Weimann. On cartesian trees and range
minimum queries. Algorithmica, 68(3):610–625, 2014.

7 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318,
2008.

8 Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In
Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing,
PODC 2011, San Jose, CA, USA, June 6-8, 2011, pages 169–178, 2011.

9 Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In SODA’09:
Proceedings of 19th Annual ACM – SIAM Symposium on Discrete Algorithms, pages 506–
515, Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics.

10 Wojciech Fraczak, Loukas Georgiadis, Andrew Miller, and Robert Endre Tarjan. Finding
dominators via disjoint set union. J. Discrete Algorithms, 23:2–20, 2013.

11 Loukas Georgiadis and Robert Endre Tarjan. Dominators, directed bipolar orders, and
independent spanning trees. In Automata, Languages, and Programming – 39th Interna-
tional Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, pages
375–386, 2012.

12 Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators in a
flowgraph. ACM Trans. Program. Lang. Syst., 1(1):121–141, 1979.

13 Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián,
Spain, July 21-23, 2015, pages 481–490, 2015.

14 Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In Algorithms – ESA
2013 – 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013.
Proceedings, pages 779–790, 2013.

15 Merav Parter and David Peleg. Fault tolerant approximate BFS structures. In Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 1073–1092, 2014.

16 Maxim Teslenko and Elena Dubrova. An efficient algorithm for finding double-vertex dom-
inators in circuit graphs. In 2005 Design, Automation and Test in Europe Conference and
Exposition (DATE 2005), 7-11 March 2005, Munich, Germany, pages 406–411, 2005.

17 Virginia Vassilevska Williams. Faster replacement paths. In Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Fran-
cisco, California, USA, January 23-25, 2011, pages 1337–1346, 2011.

ICALP 2016

	Introduction
	Related work
	Our Techniques
	Organization of the paper

	Preliminaries
	Review of reachability oracle for single failure
	Overview
	Reachability oracle for 2-vertex strongly connected graphs
	Implementation of the oracle

	Reachability oracle for general graphs
	Implementation of the oracle

