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—— Abstract

We consider a network of sellers, each selling a single product, where the graph structure repres-
ents pair-wise complementarities between products. We study how the network structure affects

revenue and social welfare of equilibria of the pricing game between the sellers. We prove positive
and negative results, both of “Price of Anarchy” and of “Price of Stability” type, for special fam-
ilies of graphs (paths, cycles) as well as more general ones (trees, graphs). We describe best-reply
dynamics that converge to non-trivial equilibrium in several families of graphs, and we use these
dynamics to prove the existence of approximately-efficient equilibria.
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1 Introduction

Sellers typically do not operate in isolated markets but in conjunction with other sellers and
buyers. In particular, sellers need to take into account the fact that buyers may value the
goods they sell as substitutes or complements to goods sold by others. This has a tremendous
impact on how sellers compete with each other. Indeed, in Cournot’s [8] famous paper from
1838 about sellers who compete through quantities, Cournot also describes a model of a
duopoly selling perfect complements, zinc and copper. In Cournot’s example, a manufacturer
of zinc may observe that some of her major customers produce brass (made of zinc and
copper); Therefore, zinc manufacturers compete not only with other zinc sellers, but they
also indirectly compete with manufacturers of copper, as both target the money of brass
producers. We are interested in a more complicated competition structure, where as zinc
can be also used for Galvanization of iron, zinc sellers compete at the same time with sellers
of iron. In a similar way, iron is also demanded by car manufacturers that need to purchase
glass from other sellers, and so on.

Another classic example is by Ellet [10], who studied how owners of two consecutive
segments of a canal determine the tolls for shippers; Clearly, every shipper must purchase
a permit from both owners for being granted the right to cross the canal. Another, more
contemporary, example might be a high-tech or pharmaceutical firm that must use two
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registered patents to manufacture its product; The owners of the two patents quote prices for
the usage rights, and these patents can be viewed as perfect complements for the firm. As a
final example, consider an international trader who wishes to export goods from country X to
country Y, and needs to pay license fees to both countries. In the last two examples, one can
see how licenses have a network structure, as each patent may be needed for the production
of several different products, and trade may occur between country X and country Y, but
also between country X and another country Z, etc.

In this paper, we study markets where goods are complementary to several other goods,
but not substitutes. Price discrimination is impossible, and sellers need to offer the same
price in all markets. This situation creates a global price competition between sellers, which
raises interesting questions we aim to explore: What kinds of equilibria exist in these games?
How efficient are the equilibria in this game? Will natural dynamics reach highly efficient
equilibria?

The structure of the market plays a central role in our analysis. We model the market
using a weighted undirected graph, where each vertex represents a seller of a certain good.
An edge with weight v between vertices ¢ and j indicates that there is a buyer that is willing
to pay an amount v for the bundle of goods {i,j}.> In the above example, a market with
sellers of copper, zinc, iron and glass can be represented as a path-graph with 4 vertices (See
Figure 1), where edges connect copper and zinc, zinc and iron, and iron and glass.

We study the following simultaneous full-information pricing game between sellers on
a graph: the sellers observe the values of the buyers, which are common knowledge; each
seller then posts a single price to all buyers; a buyer on an edge buys the two goods on this
edge if the total price (the sum of the prices of the two goods) is no larger than her value.
Sellers have zero manufacturing costs and unlimited supply, and the profit of each seller is
the price she posted times the number of buyers that accepted this price. In a (pure) Nash
equilibrium, no seller would benefit from changing its price given the prices offered by the
other sellers.

There are two natural benchmarks for measuring the quality of equilibria in such games.
The first is the mazimum welfare, which is the sum of values of all buyers.2 This is the
welfare that would be achieved with zero prices for all goods. The second benchmark is the
optimal monopolist revenue, which is the optimal total revenue achievable by a monopolist
that owns all the goods in the network. (Clearly, the optimal monopolist revenue is always at
most the maximum welfare.) Several papers studied the problem of computing the optimal
pricing for a monopolist in our setting. The problem was proposed by [12] which showed
that it is APX-hard and presented an approximation algorithm that is logarithmic in the
number of buyers. A 1/4-approximation algorithm was later presented by [3] when buyers are
interested in bundles of size 2, and recently [19] showed that this bound is tight under some
computational assumptions. A similar algorithm for this problem was suggested by [20] in
the context of setting up peering connections in networks. [18] provided an improved bound
for monopolist revenue maximization with buyers having the same value but interested in one
or two items. Unlike these papers which focus on the monopolist’s algorithmic problem, we
focus on analyzing equilibria in the game between competing sellers and on how the welfare
and revenue of these equilibria approximate the above benchmarks.

Throughout this paper, for the simplicity of presentation, we consider buyers that demand bundles of
size 2 which we can model using graphs; Buyers that demand bundles of arbitrary sizes can be modeled
as hyper-edges on a hyper-graph. We show how some of our results extend to hyper-graphs in the full
paper.

Assuming 0 production costs for sellers, and payments cancel out.
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Figure 1 A market with 4 sellers and 3 buyers. The weight on each edges is the amount this
buyer is willing to pay for the bundle of the two adjacent goods. For example, the middle edge
represents a buyer that is willing to pay $6 for a bundle of zinc and iron, but has value 0 for each
good alone.

It is straightforward to see that some equilibria in these games demonstrate a complete
market failure. For example, a vector of prices of oo posted by all sellers forms a Nash
equilibrium that yields zero welfare and revenue. Yet, there might be multiple equilibria in
these games, and one may hope that other equilibria perform better. Indeed, we prove that
for some families of graphs the best equilibria (“price of stability”) have high revenue and
welfare. Observe that we cannot hope for full efficiency as even for path graphs, the most
efficient equilibria are sometimes not fully efficient: For example, in Figure 1, if either the
seller of zinc or of iron offer a price above 1, then one of its edges will not be sold. However,
there is no equilibrium in which these two sellers offer prices at most 1: if this occurs, each
seller gains at most 2 (from selling to its two edges) but they can get revenue of at least 5 by
offering 5 and selling to the middle edge only.

Another way to alleviate the problem of low welfare and revenue of some equilibria
is by restricting attention to equilibria with natural properties. For instance, it may be
unreasonable for a seller that does not sell any good to insist on a very high price despite
having zero costs; Such behavior might be considered as a malicious behavior towards his
neighboring sellers. We therefore sometimes restrict attention to non-malicious equilibria,
where all sellers that are not selling at all offer a price of 0. Non-malicious equilibria serve as
a main tool for proving the existence of approximately-optimal equilibria: we show that the
revenue of every such equilibrium approximates the maximum welfare, and we show cases
where such equilibria exist.

Our Results

Our main goal is to understand how the network structure affects various properties of
equilibria in markets. We aim to understand how well can the welfare and revenue in
equilibrium approximate the maximum welfare and the optimal revenue. We explore whether
best-response dynamics can lead to approximately-optimal equilibria, and we prove the
existence of such equilibria in several settings. We study graphs of different complexities,
like paths, cycles, trees and general graphs.

We start by considering some special families of graphs (paths and cycles) and show that
there is a natural best response dynamics that reaches equilibria with a constant fraction
of the optimal welfare as revenue. For path graphs, we consider a dynamics starting with
all sellers pricing at infinity. Then, we change the price of a seller on one side of the path
to zero, and let each seller in turn best reply to current prices. We show that when this
best-reply process reaches the other end of the path, it ends up in an equilibrium. Moreover,
for at least one of the end points, the revenue when starting from that point is at least half
the maximum welfare. An extension of this dynamics for cycles converges to an equilibrium
with revenue of at least one quarter of the optimal welfare.
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After we prove that for some families of graphs there exist Nash equilibria with good
revenue guarantees, the immediate question is whether this generalizes to more complex
graphs. It turns out that non-maliciousness of equilibria can be used to prove bounds on
the revenue. In particular, we show that for any tree, every non malicious equilibrium has
revenue that is at most O(logd) factor smaller than the optimal welfare, where d is the
maximum degree. One might hope that such a result can be achieved for general graphs
as well, but unfortunately this is not the case. For a clique of degree d, the loss can be
linear in d,> and therefore we cannot hope for a logarithmic fraction for general graphs. Our
main positive result presents a refined bound that depends not only on the maximum degree,
but also on the arboricity of the graph (see, e.g., [22]). This additional parameter nicely
captures the difference between trees and cliques (and other graphs). The arboricity of an
undirected graph is the minimum number of forests into which its edges can be partitioned.
(For example, a tree has arboricity 1, a cycle has arboricity 2, and a clique of n nodes
has arboricity n/2.) We prove the following bound on the revenue of any non-malicious
equilibrium:*

» Theorem. In every graph with mazimum degree d and arboricity w and every non-malicious

equilibrium in it, the total revenue of all sellers is at least Q(ﬁogd) of the maximum welfare.

The above theorem does not claim anything about the existence of non-malicious equilibria,
but only bounds the revenue obtained by such equilibria if they exist. For this result to imply

5 one needs to show that non-malicious

a bound on the “price of stability” in such games,
equilibria actually exist. We prove the existence of non-malicious equilibria via the natural
heuristic of repeated best-reply dynamics. Such a dynamics starts with arbitrary prices; At
each step, a seller who is not best replying is chosen, and he updates his price to a best reply
(breaking ties non-maliciously - towards 0 price). Our main result in this context shows that

in tree graphs, a specific sequence of best replies does stop at a non-malicious equilibrium.

» Theorem. In every tree, for every initial profile of prices, there exists a sequence of best
replies that terminates in a non-malicious Nash equilibrium.

In particular, this result implies the existence of non-malicious equilibria in trees, and
together with the approximation theorem above, we conclude that the price of stability in
trees (i.e., the approximation achieved by the best equilibrium in every tree) is at least
Q(@). Of course, it would be interesting to strengthen this result and show that for any
graph such dynamics terminate in a (non-malicious) equilibrium. Based on simulations we
have executed, we conjecture that this is indeed the case.

» Conjecture. In every graph any non-malicious best response dynamics starting from any
price vector converges to an equilibrium in polynomial number of steps.

This is the strongest version of our conjecture. One can also try to prove weaker versions
of the conjecture by restricting the graph structure, order of plays, and relaxing the required
time to convergence.

Consider a clique of degree d with all edges with the same value of 1. Such a clique has a non-malicious
equilibrium in which one seller prices at 0 while all others price at 1. The welfare in this non-malicious
equilibrium is only linear in d, while the optimal welfare is quadratic in d, and thus there is a linear loss
in d.

We note that the theorem holds also for non-simple graphs that have parallel edges.

Our result above also has a “price-of-anarchy” flavor, as we prove that all non-malicious equilibria (when
exist) exhibit the approximation guarantee.
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We also prove several impossibility results. We first show that the Q(loé ) approximation

for trees is tight, by presenting trees in which the welfare of every non-malicious equilibrium
is at most an Q(loé -) fraction of the monopolist revenue (and thus of the optimal welfare).
However, this bound is proved using constructions for which there are other (“malicious”)
equilibria that achieve a constant approximation. We therefore strengthen this impossibility
result and show instances where all equilibria, malicious or not, achieve bad results. In
particular, we would like to find out whether the revenue of the best equilibrium is always a

constant fraction of the monopolist’s revenue. Our main lower bounds show that the answer

is negative, even for trees.

» Theorem. For graphs with mazimum degree d:

There are graphs for which the welfare in every Nash equilibrium is at most O(\/hljﬂ)

fraction of the monopolist’s revenue.
There are trees for which the welfare in every Nash equilibrium is at most O(m)
fraction of the monopolist’s revenue.

Note that the fact that the revenue in every equilibrium is low compared to the monopolist
revenue, implies that it is also low compared to the maximum welfare. Moreover, our bounds
are actually stronger, showing that not only the revenue in equilibrium is low, but also the
welfare.

Related Literature

The analysis of price competition goes back to Cournot [8] and Bertrand [4]. The famous
competition model of [8] describes producers who compete through quantities, but in the
same work he also described a model of a duopoly selling perfect complements.

[21] consider buyers interested in perfect complements, where each bidder is interested in
one specific bundle (single-minded bidders); They study mechanism design for a single seller
and buyers with private information, where our focus is on competition between multiple
sellers with complete information. Auctions for networks of buyers and sellers with private
information were studied in [17].

There is a line of literature studying interactions of sellers and buyers over networks.

Among them, [16] considered bargaining in networks, where agents can choose whom they
want to negotiate with and the solution implies matching of buyers and sellers. In our model,
neighbouring sellers also “negotiate” on dividing the value of the buyer on the edge between
them, but unlike [16], a seller can serve several neighbouring buyers simultaneously (with the
constraint of non-discriminatory pricing). Sub-game perfect equilibria in bargaining games
were studied in [7]. [13] studied general equilibrium models on networks with linear utilities
of buyers.

[2] considered a similar model of sellers that compete in prices, and a trade network that
is modeled as graph, with one main difference from this paper: items are substitutes for the
buyers. Namely, a buyer is interested in buying either from one seller or from the other seller
on the edge, while here we consider buyers that are interested in both. This difference implies
significant differences in results. For example, there, unlike our paper, pure Nash equilibria
hardly ever exist. For trees, equilibrium utilities of the sellers are uniquely defined, while
here they are not.%

5 Our framework can be also viewed as a variant of graphical games [15]. There are several known
algorithms for computing equilibria in graphical games (see survey [14]). Another related family of
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2 Model

We study trade networks which are modeled as weighted undirected graphs, where sellers
are represented by nodes and buyers by weighted edges. The set of edges is denoted by
FE, let N be the set of nodes and let i,j € N denote generic sellers. Sellers have no costs
and can supply any number of items. The sellers are the players in the game, interested in
maximizing revenue. Each buyer is single minded and is interested in the bundle of items
sold by both sellers that lie on that edge. The weight v; ; on the edge represents the value of
this buyer for buying the bundle {i,j}. In particular, buyers gain zero value from buying
each item alone. A seller ¢ posts a single price p; > 0 that will be available to all incident
edges (cannot price discriminate between buyers). A buyer of bundle {i,j} buys if and only
if v j > pi + pj.

For a given price vector p we denote the set of sold edges by S(p). The edge (4, 7) is tight
if p; + p; = v; ; (the sum of prices of the sellers on the edge equals the value of the edge).
We say that an edge (i,7) has slack if p; + p; < v; ;. For a given seller ¢ and an edge (i, 7),
the slack of seller i on that edge is v; ; — p; (that is, it equals to the difference between the
value of the edge and the price of the other seller on that edge).

For a given price vector p, the revenue r; of seller ¢ with price p; is p; - |{j|(4,7) € S(p)}],
that is, p; for every adjacent edge that is sold. The total revenue is ), r; and the welfare is
2t )es(p) Vi

The sellers compete in a game in which they simultaneously post prices. These prices
form a (pure) Nash equilibrium (NE) if each seller maximizes his revenue given the prices of
all other sellers. In this paper we only consider pure Nash equilibria.

For a given network, the revenue of the monopolist is the supremum of the total revenue
over all price vectors for the sellers. The maximum welfare is simply the sum of values of all
edges (this can be obtained when every seller prices at 0). We study the ratio between the
revenue in equilibrium and either the revenue of the monopolist or the maximum welfare
(whichever bound is harder to prove): For our positive results we show that the equilibrium
revenue is some fraction of the maximum welfare (which clearly implies approximation to
the monopolist revenue), while for our negative results we prove inapproximability of the
monopolist revenue (which implies the same result with respect to the maximum welfare).

Non Malicious Equilibria. We have already observed that the welfare of the worst equilib-
rium is arbitrarily low. Thus, we sometimes study an equilibrium refinement in which sellers
with 0 utility price at 0. We say that a losing seller (seller with 0 utility) is non malicious if
she prices at 0. A price vector for the sellers is called non malicious if every losing seller is
non malicious. This, in particular, implies that every seller’s revenue is at least as high as
the price he sets. We use the concept of non-malicious NE when proving our main result: we
first show that such equilibria always approximate the optimal welfare, and we then show
that they always exist in trees. This implies a positive result on the price-of-stability in trees.

games is Polymatrix games (see [5, 9, 6]), where an action of a player is played in several simultaneous
bimatrix games (the games in our paper have continuous action spaces); This class of games played an
important role in showing hardness of equilibrium computation results. Our goal in this paper is to find
equilibria with good economic properties, and compare their properties to the optimal non-strategic
solution. Our paper shows that allowing losing sellers to price “maliciously” might be beneficial to
society as a whole, this phenomenon was termed the “Windfall of Malice” by [1].
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3 Special Families of Graphs: Paths and Cycles

In this section, we present positive results for special cases of graphs and algorithms that
compute Nash equilibria with high revenue for those cases. These algorithms consist of
a particular sequence of best responses of the sellers. We present a linear time algorithm
for path graphs that finds an equilibrium that obtains revenue that is at least half of the
maximum welfare. We use it to present a linear time algorithm for cycles that computes an
equilibrium with revenue at least a quarter of the maximum welfare.

3.1 Path Graphs

We first consider the simplest non-trivial graphs: path graphs. Our algorithm (Algorithm

1) assumes that sellers are indexed from left to right, with the leftmost seller indexed by 1.

The algorithm starts with all sellers pricing at oo and then changes the price of the leftmost
seller to 0. Then, it goes over the sellers from left to right, letting each seller to choose a
best response. If the seller cannot get positive utility, he prices at the value of the previous
edge (not at 0 - and thus the equilibrium might be malicious). The way we break ties for
sellers with O utility ensures that after seller ¢ best responds, all previous sellers are still best
responding (as seller 4 leaves no slack to the previous seller). Our algorithm may achieve
terrible revenue when executed in a certain direction on the path (for example, when the
weights of the edges are monotonically decreasing), but in such cases we show that running
it from for the opposite direction will perform well. This is essentially since every time the
value of the edge is larger than the previous edge, it is sold tightly. The algorithm thus picks
the better equilibrium out of executing the above procedure starting from one end, or from
the other.”

Algorithm 1 A %-Approximation for path graphs.

1. Initialize all prices to infinity, and the price of the first (leftmost) seller to 0.

2. Starting from the second seller, go over the sellers from left to right and let each seller best
respond to the current prices. If every price of the current seller ¢ gets him 0 utility, set his price
to the value of edge (¢ — 1,4) (the value of the previous edge).

3. Mirror the path left to right (mapping node ¢ to become node n + 1 — ) and repeat the above
algorithm. Output one of these two price vectors with the higher total revenue.

This algorithm terminates in a NE with revenue of at least half the maximum welfare
(proof appears in the full paper):

» Proposition 1. For any path graph, Algorithm 1 terminates in a NE after a linear number
of steps. The total revenue in this equilibrium is at least half of the maximum welfare.

3.2 Cycles

Our next result shows that in any cycle graph there is always a NE with high revenue.
Moreover, we show how to compute such a NE in linear time; The algorithm runs the above

7 We illustrate the algorithm for the path graph of Figure 1: The algorithm chooses a price of 0 for the
copper seller, then a price of 1 for the zinc seller, a price of 5 for iron and a price of 1 for glass. This is
a NE with revenue 7 (out of maximum welfare of 8). By symmetry, the revenue starting from the other
end would be the same.
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path-graph algorithm for one full round on all sellers, and then initiates a best-response
dynamic that will end up in such an equilibrium.

Fix an arbitrary seller and mark him as seller 1. Going clockwise along the cycle starting
from seller 1, number the other sellers 2 to n. We present the algorithm as Algorithm 2.

Algorithm 2 A i-Approximation for Cycles

1. Initialize all prices to be infinity, initialize the price of seller 1 to 0.

2. Going clockwise: Starting from the second seller till the first seller (inclusive), go over the sellers
clockwise and let each seller best response to the current prices. If every price of the considered
seller 7 gets him 0 utility, set his price to the value of edge (i — 1,4) (the value of the previous
edge in the cycle, with edge (n, 1) being the edge prior to 1).

3. Run a best response dynamics (by iteratively letting a seller that is not best responding to
update his price) till it stops.

4. Mirror the cycle and repeat the above algorithm (i.e. the new order after seller 1 is n,n —
1,...,2,1). Output one of these two price vectors with the higher total revenue.

» Theorem 2. For any cycle, Algorithm 2 terminates in a Nash equilibrium after linear
number of steps. The total revenue in this equilibrium is at least one quarter of the mazimum
welfare.

The details of the proof can be found in the full paper. We next present an informal
description of the algorithm together with an outline of the proof. First, the algorithm
essentially runs Algorithm 1 in one direction, starting with a price of 0 for seller 1 and going
clockwise, letting each seller best respond (pricing at the value of the prior edge if his utility
is 0) including the first seller as the last seller to change his price. We note that the first
seller is now best responding (as the edge to the second seller had no slack, so he could not
get any utility out of it). After that cycle completes, we argue that there is at most one seller
(the second seller) that is not best responding. From this point on, the algorithm runs a best
response dynamics till it stops. We argue that at each point, the only seller that might not
be best responding is the next seller, and once he best responds, either the sellers are in a
NE or the edge with the previous seller is tight. As we show, it follows that this dynamics
will stop after a linear number of steps. We also show that the algorithm running either
clockwise or counter-clockwise gets revenue that is at least one quarter of the maximum
welfare: the path-graph algorithm gets at least half, and from then edges are only added
(and sold tightly), except the edge following the last seller to update his price that might be
dropped. We show that the revenue of the dropped edge is no larger than the remaining
revenue, thus we lose at most half the revenue obtained by the path algorithm.

4 A Positive Result

We start by presenting our main positive result, showing that the revenue in some NE is at
least some fraction of the maximum welfare (and thus also some fraction of the monopolist
revenue). We prove this claim by showing that this is true for any non-malicious NE. For
any network for which a non-malicious equilibrium exists (like in trees, see Theorem 9), this
implies that at least the same fraction can be obtained in the highest revenue equilibrium.®

8 This result actually holds for a more general graph model, where some buyers are interested in a single
good, not a pair, and also for graphs that contain parallel edges (that is, there might be multiple buyers
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The bound we present is in terms of the maximum degree and the arboricity of the graph.
The mazimum degree is the largest degree of any node: the maximal number of buyers that
demand an item from the same seller. The arboricity of an undirected graph is the minimum
number of forests into which its edges can be partitioned. Equivalently, it is the minimum
number of spanning forests needed to cover all the edges of the graph.

To gain some intuition for the notion of arboricity, here are some simple examples. A
forest (and a tree) has arboricity 1. A cycle has arboricity 2 as it clearly cannot be spanned
by a single forest, but it can be partitioned into two trees, a spanning tree and the missing
edge. A clique of size n has arboricity [n/2]: the arboricity is at least n/2 as any tree has at
most n — 1 edges and the clique has n(n — 1)/2 edges, and it is at most [n/2] as it can be
covered by |n/2| Hamiltonian paths, plus a star for odd n.

» Theorem 3. In every graph with mazimum degree d and arboricity w and every non-
malicious NE in it, the total revenue of all sellers is at least m fraction of the
mazximum welfare.

Proof. Fix a graph and a non malicious Nash equilibrium in it. We will say that a vertex u
is low for the edge (v,u) if u’s price in the equilibrium is at most half of the value of the edge
(v,u). We will say that an edge is all-high if both of the vertices on it are not low for the
edge (in this case clearly the edge does not buy). Let E denote the set of all-high edges.
For a vertex v let E¥ denote the set of edges (v, u) (edges adjacent to v) such that u is low
for (v,u). Observe that since every edge is either all-high or low for some node, the set of all
edges E is covered as follows: E = Ef U (U,E"). Thus

Z V(v,u) < Z V(wv,u) + Z Z V(v,u) -

(v,u)eE (v,u)eEH v (v,u)EEY

Denote the total revenue by r. To complete the proof we bound each of the two terms
separately, the first by 2w - r and the second by 2(Ind + 1) - r, together proving the theorem.

We start by bounding the edges that are not all-high. Let r, denote the revenue of v.
This claim is well known (e.g., [11]) and we present the proof for completeness in the full
paper.?

» Claim 4. For every node v it holds that 3_, , cpo Vwu) < 1o 2(Ind + 1)

By the claim we derive that

S Y v <Y r-2(nd+ 1) =2(nd +1) .

v (v,u)EEY

We next bound the total value of the all-high edges. To take care of the total weight of the
all-high edges we will use the fact that in a graph of arboricity w there exists a mapping from
edges to vertices such that every edge is mapped to one of its two vertices and no vertex has
more than w edges mapped to it (this is true as we can just root each tree and map every
edge to its child node). Since the edge is all-high and the equilibrium is non malicious, the
price — and thus also the revenue — of each of the two vertices on the edge is at least half
the value of the edge. Summing, again, over all vertices, we get that the total weight of all

interested in each pair of goods).

9 The claim essentially says that a single price can gain revenue of at least a logarithmic fraction of the
total demand (in our case, it is the residual demand given the prices of the neighbours- which is at least
half the value of each edge as these edges are not all-high.).
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all-high edges is at most 2w the total revenue of all vertices. Stated formally, consider the
mapping M from E¥ to the set of nodes N that maps each edge to an adjacent node and
never maps more than w edges to the same node. For every node v that incident at least
one high edge, define u*(v) to be a vertex such that for all u such that (v,u) € E¥ we have
V(w,u*(v)) = V(v,u)- Then, it holds that

Z V(w,u) < Z Z UV(w,u) < Z W = V(y,u*(v)) (1)

(v,u)eEH v u|M(v,u)=v v|3u M(v,u)=v

gw-z2-m§2w-r (2)

<

For any network for which a non-malicious equilibrium exists, the theorem ensures that
some Nash equilibrium has high revenue. Thus, it can be viewed as a “Price of Stability”
result for such networks. In particular, it bounds the price-of-stability for trees, as for
any tree a non-malicious equilibrium exists by Theorem 9. It also ensures that every non-
malicious equilibrium has high revenue, thus can be viewed as a “Price of Anarchy” result
for non-malicious equilibria.

The theorem implies a bound on trees that is only logarithmic in the maximum degree.

» Corollary 5. In any tree with mazimum degree d and every non-malicious equilibrium in
it, the total revenue of all sellers is Q(1/1Ind) fraction of the mazimum welfare.

5 Impossibility Results

Theorem 3 gives a positive result, ensuring that the revenue in equilibrium is some fraction
of the welfare. Yet, it might be possible that an improved bound can be shown. Specifically,
we would like to answer the following question: Is the revenue of best equilibrium always a
constant fraction of the revenue of the monopolist? Unfortunately, the answer is no, even
for trees. We first present a lower bound for general graphs. This bound is slightly weaker
than the logarithmic bound (in the maximum degree) of Theorem 3. We then present a
lower bound for trees, showing that the best equilibrium revenue is not necessarily a constant
fraction of the monopolist revenue. For missing proofs see the full paper.

5.1 General Graphs

We start with the lower bound for general graphs. For proving the theorem, we construct
graphs with arboricity that is much smaller than their maximum degree.

» Theorem 6. There exists a family of graphs with maximum degree d and arboricity w for
which w? = O(Ind) and the revenue that a monopolist seller can get is factor Q(w) larger
than the revenue (and welfare) in any Nash equilibrium. It terms of d, the factor can be as

large as Q(vVInd) when w? = O(Ind).

The bound is proven using the following construction (see Figure 2). There is a clique of
size w + 1 and any node in the clique is connected to an “harmonic gadget”: d edges with
values 1,1/2,1/3, ...,1/d. The value of an edge connecting two nodes in the clique is 4. We
first claim that for these parameters, a monopolist would price all the clique nodes at 0 and
get full revenue from all the harmonic gadgets. In any NE, however, at most one seller prices
below 1/w, thus not much revenue is gained from the harmonic gadgets.
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1/ %

_ 3 % Harmonic
Harmonic gadget gadget
4 1/d

Clique of 2
size w+l

Harmonic gadget Harmonic gadget

Figure 2 The construction of Theorem 6. A clique of w + 1 sellers, each edge in it is of value 4.

Each node in the clique is connected to an “harmonic gadget”.

5.2 Trees

For trees, the above bound (when w = 1) is a constant. We next present a different
construction that shows that for some trees, the revenue of a monopolist can be factor
Q(Inlnd) larger than the revenue of the best equilibrium. In particular, it show that a
constant upper bound is impossible.

» Theorem 7. There exists a family of trees with maximum degree d for which the revenue
that a monopolist seller gets is factor Q(Inlnd) larger than the revenue (and welfare) in any
NE.

For proving this impossibility result we construct the following graph, fixing an integer m
(to be determined later). Consider a path with 2m + 1 edges. The first edge has value 5. For
any 7 = 1,2,...m, given that edge 2j — 1 has value v, set the value of the edge 25 to be 2v+2
and the value of edge 2j + 1 to be 2v+6. Any node of even index is additionally connected to

an “harmonic gadget” with d — 2 spikes: d — 2 edges with values 1,1/2,1/3,1/4,...,1/(d—2).

We first argue that in any Nash equilibrium there is at most a single seller of even index
on the path with price that is at most 1. We then argue that a monopolist seller can get
revenue of at least mIn(d — 2) by pricing every seller on the path at 0 and gaining all the
revenue from the m harmonic gadgets. We conclude that the ratio of the monopolist revenue
to equilibrium revenue (and welfare) is at least %. For m = ©(Inlnd) this
ratio tends to Q(m) as we aimed to prove. Full details appear in the full paper.

For trees, there is still a gap between this ©(In In d) bound and the upper bound of O(ln d)

for non-malicious NE as implied by Corollary 5. Closing this gap is left as an open problem.

5.3 Non malicious Nash equilibrium

We have observed that the worst Nash equilibrium might have zero revenue, even for a single
edge. In this section, we consider non-malicious NE and present two simple examples that
show that the upper bound of Theorem 3 is tight in both parameters for the non-malicious
NE with the worst revenue (“Price of Anarchy”).

» Proposition 8. The following holds:
For any w > 2 there exists a graph (symmetric clique) with 2w nodes and arboricity w
for which the revenue in some non-malicious equilibrium is smaller than the monopolist
revenue by a factor of at least w. Moreover, for that graph, every best-response dynamics
starting at zero prices converges to such an equilibrium.
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For any d > 2 there exists a tree (star) with maximum degree d for which the revenue in
some non-malicious NE is smaller than the monopolist revenue by a factor of at least
Ind.

The two claims directly follow from the following simple examples. Consider first the
clique graph of n = 2w nodes with all weights being 1. Note that such a clique has arboricity
w. Here is a non-malicious Nash equilibrium: one of the sellers prices at 0 and all others price
at 1. The total revenue (and total welfare in this NE) is exactly (n — 1). Note that there
exists a fully-efficient fully-revenue-extracting non-malicious equilibrium where each seller
prices at 1/2. In this NE the revenue (and welfare) is exactly n(n — 1)/2. Thus, the ratio
between the best non-malicious equilibrium revenue and the worst non-malicious equilibrium
revenue is n/2 = w. Finally, observe that in any best response dynamics starting at 0, sellers
keep increasing prices from 0 to 1, except when there is only one seller pricing at 0, and the
others at 1. Thus, any best response dynamics starting at 0 prices will end at a non-malicious
NE in which one seller prices at 0 and all others price at 1.

Consider now a star with d spikes, with edge i of value 1/i. There is a non-malicious NE
with revenue of 1: the center prices at 1 and all other price at 0. Revenue (and welfare) of
Z?:l 1/i > Ind can be achieved by pricing the center at 0 and any other seller at the price
of its edge. The second claim follows.

6 Best Reply Dynamics

Our main positive result (Theorem 3) ensures that for any graph for which a non-malicious
equilibrium exists, there is an equilibrium with high revenue. Thus, one naturally wonders
if all graphs admit a non-malicious equilibrium. If so, can one find such an equilibrium in
polynomial time? Is there a natural dynamics that ends in such an equilibrium?

A natural procedure for converging to an equilibrium is repeated best-reply dynamics,
and one might hope that such dynamics will indeed always converge to a non-malicious
equilibrium in polynomial time. Such a dynamics starts with arbitrary prices, and at each
step a seller that is not best replying is chosen, and he updates his price to a best reply. If
the goal is finding a non malicious equilibrium, then one needs to consider a seller with 0
utility that is not pricing at 0 as a seller that is not best replying. We conjecture that for
any graph, such a process terminates in an equilibrium (which is clearly non malicious). A
stronger conjecture is that such an equilibrium will be reached in polynomial time.!°
In this section, we prove the existence of non-malicious equilibria in ¢rees by presenting

some best-reply dynamic that converges to equilibrium in a finite number of iterations.!!

» Theorem 9. In every tree, for every initial profile of prices, there exists a sequence of
player best replies that terminates in a non-malicious Nash equilibrium.

The full proof appears in the full paper. We now present a sketch of the proof, and
recursively define the sequence of best responses. We pick a leaf u of the tree that is connected
to the rest of the tree via vertex v. Let xg be the initial price of u and yy be the initial price
of v. Our best reply dynamics will proceed by repeatedly, for i = 1..., let ; be u’s reply
to y;_1, and then recursively use a best reply sequence that updates the rest of the tree,
assuming that u’s price is set to z;. Note that this recursive best-reply sequence starts with

10We remark that we have simulated best response dynamics on general graphs with arbitrary order, and
they always terminated in equilibrium very fast.
1 Qur proof only ensures that the dynamics will stop, but does not ensure terminating in polynomial time.
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v updating his price (since all the other vertices are already best-replying from the previous

recursive call, but then other vertices may update their price and v may update again, and

so on). The v’s price at the end of the recursive call is called y;. The recursive call on the

sub-tree terminates due to an inductive use of the theorem (i.e., the theorem is proved by
induction on the number of vertices in the tree). To ensure that the induction hypothesis
applies to the recursive call which is applied not just to a subtree, but rather to a subtree to
which an extra leaf u with a fized value z; is attached, we prove the theorem (inductively)
also for trees in which each vertex may have an arbitrary number of leaves with a fixed value
attached to them.
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