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Abstract
We study voting models on graphs. In the beginning, the vertices of a given graph have some
initial opinion. Over time, the opinions on the vertices change by interactions between graph
neighbours. Under suitable conditions the system evolves to a state in which all vertices have the
same opinion. In this work, we consider a new model of voting, called the Linear Voting Model.
This model can be seen as a generalization of several models of voting, including among others,
pull voting and push voting. One advantage of our model is that, even though it is very general,
it has a rich structure making the analysis tractable. In particular we are able to solve the basic
question about voting, the probability that certain opinion wins the poll, and furthermore, given
appropriate conditions, we are able to bound the expected time until some opinion wins.
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1 Introduction

Graphs are very popular as a simple model of the complex environment in which individuals
interact. In this paper we focus in voting models on finite graphs, in which vertices of a given
graph have opinions and by interacting with their neighbours they change such opinions.
Voting models can be used to mimic real-life situations such as the spread of opinions or
infections in a society, the evolution of species or models of particle interaction in physics.

While many models has been proposed in the literature, we do not aim to propose a new
particular model, but to unify some of the existing models in a tractable way. With this in
mind, we propose a general model of voting, called the Linear Voting Model. This model
subsumes several models proposed in the past, including, for example, the push model and
the very popular pull model.

Even though the voter model has been widely studied in the case of infinite structures,
one of the first rigorous studies on finite structures was made by Donnelly and Welsh [4]. In
that work, the authors studied a continuous-time version of the pull voting model and, under
the name of infection model, the push voting model. In the continuous time version, each
vertex has an exponential clock and when it rings, the vertex selects a random neighbour and
pulls its opinion (in the case of pull voting) or pushes its opinion on the neighbour (in the
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case of push voting). On the other hand, Hassin and Peleg [6] and Nakata et al. [8] studied
the discrete time version of pull voting, in which vertices do not have a clock but at each
round each vertex synchronously pulls an opinion. Both papers considered the two-party
model and studied its possible application to distributing computing, in particular to the
agreement problem. The focus of [6] and [8] is on the probability that all vertices eventually
adopt the opinion which was initially held by a given subset of vertices. They proved that
the probability that opinion A wins is d(A)/d(V ), where d(X) is the sum of the degrees of
the vertices of X ⊆ V and A is the set of vertices whose initial opinion was A.

The consensus time of G, i.e., the time needed for the vertices of a graph G to agree
on an opinion during voting, has attracted a lot of attention, especially because a low
consensus time implies a better distributed algorithm for the agreement problem. In the
continuous-time setting, Oliveira [9] shows that the expected consensus time is O(Hmax),
where Hmax = maxv,u∈V H(v, u) and H(v, u) is the hitting time of u of a random walk
starting at vertex v. Furthermore, in a later work [10], Olivera proved that under certain
conditions on the underlying graph G, the consensus time is concentrated around 2m(G),
where m(G) is the meeting time of two independent random walk starting in stationary
distribution. It is however, not clear whether the continuous-time results apply to the
discrete-time setting. Hassin and Peleg [6] using a dual process, the coalescing random walk,
proved that the expected consensus time is O(m(G) log(n)), where m(G) is the meeting time
of independent discrete-time random walks, thus giving O(n3 log(n)) in the worst case. By
using the same approach, Cooper et al. [2] improved the previous result and proved that
the consensus time is O(n/(ν(1− λ2))), where n is the number of vertices of G and ν is a
parameter that measures the regularity of the degree sequence, ranging from 1 for regular
graphs to Θ(n) for the star graph. The result of Cooper et al. achieves an upper bound of
O(n3) in the worst case. Berenbrink et al. [1] used a more ad hoc approach and proved that
the consensus time is O((dave/dmin)(n/Φ)) where Φ is the conductance of the graph, and
dave, dmin are the average and minimum degrees respectively.

The consensus time for the push model has not been so widely studied. Push voting is a
particular class of the so-called Moran process. Díaz et al. [3] proved that the the consensus
time is O(n4q) where q is the square of the sum of the inverses of the degree sequence of G,
giving a consensus time of O(n6) in the worst case.

1.1 Our model and results
Let G = (V,E) be a graph with |V | = n. Define a configuration of opinions as a n× 1 vector
ξ ∈ QV , where Q = {0, 1} for the two party model, or Q = {1, . . . , n} if we want to allow
more parties.

LetM(V ) be the set of all n× n matrices indexed by the elements of V , with exactly
one 1 entry per row and all other elements 0. Also, define Π(V ) as the set of probability
measures onM(V ). If no confusion arises, we will just writeM instead ofM(V ) and Π
instead Π(V ).

Let l ∈ Π be a distribution over matrices in M. Given an initial configuration ξ, we
define the process (ξt)t≥0, with t running over the non-negative integers, as

ξt =
{
ξ, if t = 0,
Mt−1ξt−1, if t > 0,

(1)

where Mt are i.i.d matrices sampled from l, and Mξ is the standard matrix-vector multi-
plication. The above process is called a linear voting model with parameters (l, ξ) and it
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is denoted by (ξt) ∼ LVM(l, ξ). Clearly, ξt(v) represents the opinion of vertex v at round
t. Consider M ∈M and ξ′ = Mξ, then if al vertices have different opinions, we have that
ξ′(v) = ξ(w) if and only if M(v, w) = 1. Since M has only one 1 in each row, the voting is
well-defined in the sense at every round each vertex adopts the opinion of only one vertex
(including itself). Examples of linear voting models include the pull voting (asynchronous or
synchronous) and the push voting model.

We proceed to present our contribution. Theorem 1 of this paper gives the probability a
particular opinion wins. This generalises the approach used in [6]. Theorem 2 gives an upper
bound to the expected consensus time. Our technique is qualitatively different from the
approach of previous authors which depended on a detailed dualisation of the voting process,
indeed, we follow an approach similar to Levin et al. [7, chapter 17] or Berenbrink [1].

Let l ∈ Π and define the mean matrix H of l as

H = H(l) =
∑
M∈M

l(M)M.

From Lemma 4 we have that H is the transition Matrix of a Markov Chain with state space
V . We denote by µ the stationary distribution of H (if any). Define the consensus time τcons
as the first time all the opinions are the same, i.e, there exists c such that ξτcons(v) = c for
all v ∈ V . Observe τcons is a stopping time and that c is the final opinion of the vertices. We
have the following theorem about the winning probability.

I Theorem 1. Let (ξt) ∼ LVM(l, ξ) be a linear voting model with mean matrix H with
ξ ∈ {0, 1}V . Assume that H has a unique stationary distribution µ and that τcons <∞, then

P(opinion 1 wins|ξ0 = ξ) =
∑
v∈V

µ(v)ξ(v).

The above theorem solves the winning probability problem under reasonable conditions, so
we focus on the consensus time problem.

Consider the two party model and let St be the set of vertices with opinion 1 at the
beginning of round t. Denote µ(St) =

∑
v∈St

µ(v), where µ is the stationary distribution of
H, and Zt = µ(St+1)− µ(St). Let µ∗ = minv∈V µ(v). Define the quantity Ψ as

Ψ = µ∗ min
S⊆V

S 6=∅,V

E(|Z0||S0 = S)
min{µ(S), 1− µ(S)} , (2)

where the minimum is over all S ⊆ V except S = ∅ and S = V . Using the above definitions
we prove the following theorem.

I Theorem 2. Let (ξt)t≥0 ∼ LVM(l, ξ) with ξ ∈ {0, 1}V be a voting model with Ψ > 0 then

E(τcons) ≤ 64/Ψ.

The structure of the paper is as follows. In Section 2 we introduce the model and give some
examples to gain some intuition and demonstrate the flexibility of the model. In Section 3,
we introduce the necessary notation to prove Theorem 1. In Section 4 we prove Theorem 2.

Notation. G = (V,E) stands for a simple graph. We assume |V | = n. For v ∈ V we denote
by N(v) the neighbourhood of v and define d(v) = |N(v)|. Moreover, given X ⊆ V , we
define d(X) as the sum of the degrees of the vertices in X. We use the notation v ∼ w to
say that v and w are adjacent vertices. Q stands for the set of possible opinions, in general
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Q = {0, 1} or Q = {1, . . . , n}. We denote byM the set of n× n matrices with exactly one 1
in each row and 0 in the other positions. Let Π be the set of probability distribution onM,
and l ∈ Π be a given probability distribution over matrices inM. M> denotes the transpose
of the matrix M .

2 The linear voting model.

Recall the definition of a linear voting model. Given l ∈ Π and ξ ∈ QV we say (ξt)t≥0 ∼
LVM(l, ξ) if ξ0 = ξ and ξt+1 = Mtξt, t ≥ 0, where the Mt are i.i.d. samples from l. The
following models are examples of linear voting.
(a) Synchronous pull model. At each round each vertex samples a random neighbour and

adopts the opinion of such neighbour.
(b) Asynchronous pull model. At each round one vertex v is selected at random, then it

samples a random neighbour and v adopts the opinion of this neighbour.
(c) Asynchronous push model. At each round a vertex v is selected at random, then it

samples a random neighbour and the neighbour adopts the opinion of v.
(d) Abusive push model. At each round one vertex v is selected at random and the whole

neighbourhood adopts the opinion of v.
(e) Pull-push model. At each round one vertex v is selected at random, and two neighbours

u1, u2 are selected randomly (with replacement). Then at the same time, u1 adopts the
opinion of v while v adopts the opinion of u2.

I Remark. To be precise, the changes in the opinions happen at the end of a round t, prior
to round t+ 1. In particular if v adopts the opinion of w at round t, it means that at round
t+ 1, vertex v has the opinion of w at round t.

I Lemma 3. The five models defined above are linear voting models.

Proof Sketch. We just prove it for the first and second model. For the other models the
proof is similar. Let ξt be the configuration of opinions at round t. In the synchronous pull
voting at each round each vertex v samples a random neighbour w(v) and then v adopts the
opinion of w(v). Call ξt+1 the new configuration of opinion. We check that ξt+1 = Mξt where
the (random) matrix M is given by M(v, w(v)) = 1 for all v ∈ V , and 0 for the others entries.
It is straightforward to check that Mξt(v) = M(v, w(v))ξ(w(v)) = ξt(w(v)) = ξt+1(v) and
also that M has only one 1 in each row and thus M ∈M.

For the asynchronous pull model, observe that only one vertex v is selected and then
v adopts the opinion of a random vertex w(v), while all other vertices keep their opinions
unchanged. Call ξt+1 the new configuration. Define M as M(v, w(v)) = 1, M(u, u) = 1 for
all u 6= v and 0 for all other entries (M is like the identity matrix, except in the column of
v). It is not hard to check that the random matrix M mimics the asynchronous pull model,
i.e. ξt+1 = Mξt, and that M ∈M. J

Remember we define the mean matrix of l ∈ Π as H = H(l) =
∑
M∈M l(M)M . Since

most of the models are described by rules rather than by giving the explicit distribution l, it
might be hard to compute H(l). Nevertheless, the following lemma helps us to compute H
without exhibiting l explicitly.

I Lemma 4. For any distribution l over matrices in M, the matrix H = H(l) is the
transition matrix of a Markov chain. Moreover, for every t ≥ 0, and v, w ∈ V ,

H(v, w) = P(v adopts the opinion of w at round t) . (3)
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Proof. Note that, as each element of M is a transition matrix (the rows sum up to 1), H is
the convex combination of transition matrices and thus is a transition matrix. To prove the
second part note that by conditioning on the configuration ξt we have that

E(ξt+1|ξt) =
∑
M∈M

l(M)(Mξt) =
( ∑
M∈M

l(M)M
)
ξt = Hξt. (4)

Choose ξt such that the opinion of w is 1 and all other opinions are 0. Then the event
{v adopts the opinion of w at round t} is equal to {ξt+1(v) = 1}. Thus, from equation (4)

P(ξt+1(v) = 1|ξt) = E(ξt+1(v)|ξt) = (Hξt)(v) =
∑
w∈V

H(v, w)ξt(w) = H(v, w). J

Let P be the transition matrix of a simple random walk on G, A the adjacency matrix
of G and let I denote the identity matrix. Let L = D −A be the combinatorial Laplacian
where D is the diagonal matrix containing the degree sequence of G. Moreover, let F be the
diagonal matrix defined by F (v, v) =

∑
w:w∼v 1/d(w). The next theorem gives the matrix H

for the linear voting models used in our examples.

I Theorem 5. The mean matrix of the synchronous pull, asynchronous pull, push, abusive
push, pull-push models are, respectively, Ha = P [6] and

Hb = n− 1
n

I+ 1
n
P, Hc = I+ 1

n
P>− 1

n
F, Hd = I− 1

n
L, He = 1

n
(P+P>)+n− 1

n
I− 1

n
F.

Proof Sketch. We compute Ha. Observe that Ha(v, w) is the probability that v adopts
the opinion of w. That happens only if the random neighbour selected for v is w. Then
Ha(v, w) = 1

d(v)1v∼w, concluding that Ha = P . For Hb, remember that in asynchronous pull
we select a random vertex v and then v adopts the opinion of a random neighbour w(v).
Observe that for a vertex u we have Hb(u, u) is the probability that u adopts the opinion of
u, i.e. the probability that u does not change the opinion. That happen with probability
(n− 1)/n, On the other hand if w ∼ v then we have Hb(v, w) = 1/nd(v) because v has to
be initially selected and then v has to select w from its neighbourhood. We conclude that
Hb = ((n− 1)/n)I + (1/n)P . The other cases are similar. J

3 Winning probability

The most basic question in any voting model is, ‘who wins?’. In order to answer this question
we use some martingale arguments. Assume the two-party model, Q = {0, 1}. Since the
mean matrix H of a linear voting model is a transition matrix, then all its eigenvalues
lie in [−1, 1]. We order the eigenvalues in decreasing order, i.e. 1 = λ1 ≥ λ2 . . . ,≥ λn.
Let λ be an eigenvalue of H> (H and H> have the same eigenvalues) with corresponding
eigenvector f , that is H>f = λf . Given f, g ∈ RV , we denote 〈f, g〉 =

∑
v∈V f(v)g(v) the

standard inner product. Observe that Q ⊆ R, so if ξ ∈ QV and f ∈ RV , the inner product
〈f, ξ〉 =

∑
v∈V f(v)ξ(v) is well-defined.

I Lemma 6. The process (〈f, ξt〉/λt)t≥0 is a martingale with respect to (ξt)t≥0

Proof. Since 〈f, ξt〉 is bounded, we can check that E(〈f, ξt+1〉|ξt) = λ〈f, ξt〉 and divide both
sides by λt+1. By linearity of (conditional) expectation and equation (4) we have

E(〈f, ξt+1〉 |ξt) = 〈f,Hξt〉 = 〈H>f, ξt〉 = λ 〈f, ξt〉 . J
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Since H is a transition matrix, if the associated Markov chain is recurrent and aperiodic then
the Markov chain has a unique stationary distribution. Denote this stationary distribution
by µ. It is a classic result of the theory of finite Markov chains that µ, interpreted as a
vector, is the unique eigenvector of H> with eigenvalue 1. We assume the vector µ is scaled
so that

∑
v∈V µ(v) = 1. Since, among all eigenvectors, µ is the most important we denote by

mt = 〈µ, ξt〉 the martingale associated with the eigenvalue 1, and we call this martingale the
voting martingale.

Proof of Theorem 1. Denote by 1 and 0 the vector where all components are 1 and 0
respectively. Since (ξt)t≥0 always reaches consensus, it converges to 1 or 0 and thus (mt)t≥0
converges to 1 or 0. Moreover, 0 ≤ mt =

∑
v∈V µ(v)ξt(v) ≤ 1 for every ξt ∈ {0, 1}V , so

(mt)t≥0 is a bounded martingale. These two properties of (mt)t≥0, together with the fact
that τcons is a stopping time, allows us to apply the optional stopping theorem [5] to conclude
E(m0) = E(mτcons). Since ξ0 = ξ is a deterministic quantity then E(m0) = m0. Moreover

E(mτcons) = 〈µ,1〉P(ξτcons = 1|ξ0 = ξ) + 〈µ,0〉P(ξτcons = 0|ξ0 = ξ) = P(ξτcons = 1|ξ0 = ξ).

Hence P(ξτcons = 1|ξ0 = ξ) = m0 = 〈µ, ξ〉, therefore

P(opinion 1 wins|ξ0 = ξ) =
∑
v∈V

µ(v)ξ(v). J

I Corollary 7. Assume the same conditions of Theorem 1 but consider Q = {1 . . . , , n}.
Suppose that ξ ∈ QV . Then the probability that k ∈ Q wins is

P(ξτcons = k1|ξ0 = ξ) =
∑

v∈V :ξ(v)=k

µ(v).

Proof. Replace opinion k by opinion 1 and all other opinions by opinion 0, and then use
Theorem 1 J

I Theorem 8. Let G be a connected graph. Let A be the set of vertices whose initial opinion
is 1. Then, given that the models reach consensus, the probability p that opinion 1 wins is
(a) synchronous pull model: pa = d(A)/d(V )
(b) asynchronous pull model: pb = d(A)/d(V )
(c) push model: pc = (

∑
v∈A d(v)−1)/(

∑
v∈V d(v)−1)

(d) abusive pushing model: pd = |A|/n
(e) pull-push model : pe = |A|/n.

Proof. We apply Theorem 1. For that we need to find the stationary distribution of the
above models. The stationary distribution of P is π(v) = d(v)/d(V ), that gives us the result
for synchronous pull. Observe that (n− 1)/nI + (1/n)P is a lazy version of the random walk
of P , then it has the same stationary distribution, giving us the result for the asynchronous
pull model. For the push model we just guess the stationary distribution and check it. Let
C = 1/(

∑
v∈V d(v)−1) and let π′(v) = C/d(v), then as F = F>

(H>c π)(v) = ((I + 1
n
P − 1

n
F )π′)(v) = π′(v) + 1

n

∑
w∈V

P (v, w)π′(w)− 1
n
F (v, v)π′(v)

= π′(v) + 1
n

∑
w:w∼v

1
d(v)

C

d(w) −
C

d(v)n
∑
w:w∼v

1
d(w) = π′(v)

proving that π′ is the stationary distribution of the mean matrix of the push model. For
the abusive pushing model observe that as I − (1/n)L is a symmetric matrix, its stationary
distribution is uniform. He is also symmetric, giving the result for the push-pull model. J
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4 Consensus Time

In this section we assume the two-party model with opinions Q = {0, 1}. Let (ξt)t≥0 ∼
LVM(l, ξ) be a linear voting model. Assume H = H(l) has a unique stationary distribution
and let (mt)t≥0 be the voting martingale defined in Section 3. We use the following
convenient notation. Let St be the set of vertices with opinion 1 at the beginning of round t,
let µ(St) = mt = 〈µ, ξt〉, and let Zt = µ(St+1)−µ(St). Note that, since µ(St) is a martingale,
E(Zt|St = S) = 0. The random variable Zt gives us information about the change in the
measure of the set St. A larger value of |Zt| implies voting finishes faster.

Let η(S) = min{µ(S), µ(Sc)}, where µ(Sc) = 1− µ(S). Denote by ηt the process η(St).
Since µ(St) ∈ [0, 1] we have ηt ∈ [0, 1/2]. Recall that µ(V ) = 1 and µ(∅) = 0. Note that
ηt+1 = min{µ(St) + Zt, µ(Sct )− Zt}. Noting that if ηt = µ(St), i.e. µ(St) ≤ µ(Sct ), then

ηt+1 ≤ µ(St+1) = µ(St) + Zt = ηt + Zt,

and if ηt = µ(Sct ), the same applies by noticing that µ(Sct+1)− µ(Sct ) = −Zt, i.e.

ηt+1 ≤ µ(Sct+1) = µ(Sct )− Zt = ηt − Zt,

then in both cases we get

ηt+1 ≤ ηt + ρtZt, (5)

where ρt = ρ(St) = 21{µ(St)≤µ(Sc
t )} − 1. Observe ρt ∈ {−1,+1}. We are going to study the

process √η
t
, in particular, E(√ηt). Define Υ(S) by

Υ(S) = E
(
Z2
t 1{ρtZt<0}

∣∣St = S
)

(6)

and define Υ = min Υ(S)
η(S) , where the minimum is over all S ⊆ V but S 6= ∅ and S 6= V . With

these ingredients we are ready to prove a technical lemma, which is fundamental for the
proof of Theorem 2.

I Lemma 9. Let (ξt)t≥0 ∼ LVM(l, ξ) with ξ ∈ {0, 1}V be a voting model with Υ > 0 then

E(τcons) ≤ 32/Υ.

Proof. We borrow part of the argument from [1]. Let S ⊆ V but S 6= ∅ and S 6= V . By
conditioning on St = S, from equation (5) we have ηt+1 ≤ ηt + ρtZt = η(S) + ρtZt (we
replace ηt by η(S) as St = S is fixed). Then, by taking expectations

E(√ηt+1|St = S) ≤
√
η(S)E

(√
1 + ρtZt

ηt

∣∣∣∣∣St = S

)

=
√
η(S)E

((√
1 + ρtZt

ηt

)
1{ρtZt≥0}

∣∣∣∣∣St = S

)
(7)

+
√
η(S)E

((√
1 + ρtZt

ηt

)
1{ρtZt<0}

∣∣∣∣∣St = S

)
. (8)

Let x = ρtZt/ηt. It can be checked that x ≥ −1. Indeed, from equation (5) we have
ρtZt ≥ ηt+1 − ηt ≥ −ηt, concluding x ≥ −1.

ICALP 2016
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For x ≥ −1 the following partial Taylor expansions are valid,
√

1 + x ≤ 1 + x

2 , (9)

√
1 + x ≤ 1 + x

2 −
x2

8 + x3

16 . (10)

To upper bound (7) use (9), and for (8) use (10). Recall that, since µ(St) is a martingale,
then E(Zt|St = S) = 0. After some rearrangement, we obtain

E(√ηt+1|St = S) ≤
√
η(S)−

√
η(S)E

((
(ρtZt)2

8η2
t

− (ρtZt)3

16η3
t

)
1{ρtZt<0}

∣∣∣∣St = S

)
≤

√
η(S)−

√
η(S)E

(
Z2
t

8η2
t

1{ρtZt<0}

∣∣∣∣St = S

)
=

√
η(S)− Υ(S)

8η(S)3/2 ≤
√
η(S)− Υ

8η(S)1/2 (11)

In the second inequality we used the fact that we are working in {ρtZt < 0} and after
that we used the definition of Υ(S) from (6) and Υ = min(Υ(S)/η(S)). Remember that
η(∅) = η(V ) = 0, then

E(√ηt+1) =
∑
S⊆V

E(√ηt+1|St = S)P(St = S) =
∑

S:S 6=∅,V

E(√ηt+1|St = S)P(St = S)

≤
∑

S:S 6=∅,V

(√
η(S)− Υ

8η(S)1/2

)
P(St = S) (12)

= E(√ηt)−
∑

S:S 6=∅,V

(
Υ

8η(S)1/2

)
P(St = S|τcons > t)P(τcons > t)

= E(√ηt)−
Υ
8 E

(
1
√
ηt

∣∣∣∣τcons > t

)
P(τcons > t), (13)

where (12) follows using equation (11). As 1/x is convex for x > 0, apply Jensen’s inequality
to the random variable x = √ηt, to obtain

E

(
1
√
ηt

∣∣∣∣τcons > t

)
≥ 1

E
(√
ηt
∣∣τcons > t

) = P(τcons > t)
E
(√
ηt
) . (14)

The last equality holds because the event {τcons ≤ t} implies that the vertices reached
consensus, then St = ∅ or St = V , hence ηt = 0, and then

E(√ηt) = E(√ηt|τcons > t)P(τcons > t) + E(√ηt|τcons ≤ t)P(τcons ≤ t)
= E(√ηt|τcons > t)P(τcons > t).

By substituting (14) into (13) we obtain

E(√ηt+1) ≤ E(√ηt)−
Υ
8
P(τcons > t)2

E
(√
ηt
) ,

then as ηt ∈ [0, 1/2]

Υ
8 P(τcons > t)2 ≤ E(√ηt)(E(√ηt)− E(√ηt+1)) ≤

E(√ηt)− E(√ηt+1)
√

2
.
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Summing from t = 0 up to a time T − 1 we have

Υ
T−1∑
t=0

P(τcons > t)2 ≤ 8
E(√η0)− E(√ηT )

√
2

≤ 4. (15)

Let T be the minimum time t such that P(τcons > t) < 1/2, then for every t < T we have
P(τcons > t) ≥ 1/2. Therefore, from equation (15), it holds that

T ≤ 16/Υ.

Note that our bound for T is independent of the initial position, so we assume the worst case.
We compute E(τcons) by looking at the process every T steps. If at round T the process
finished then τcons ≤ T , otherwise, we restart the process and look again after T steps until
we reach consensus. As the probability the process does not finish in T steps is at most 1/2,
we conclude that

E(τcons) ≤
∞∑
k=1

kT

(
1
2

)k
≤ 2T ≤ 32

Υ . J

We need the following simple lemma.

I Lemma 10. Let X be an integrable random variable with mean 0 then

E(|X|1{X<0}) = E(|X|)/2.

Proof. Let X+ = X1{X>0} and X− = |X|1{X<0}. Clearly X = X+ − X− and |X| =
X+ +X−. Then we have the system of equations

E(X+)− E(X−) = E(X) = 0,
E(X+) + E(X−) = E(|X|).

Then E(X−) = E(X+) = E(|X|)/2. J

We proceed with the proof of Theorem 2

Proof of Theorem 2. From Lemma 9 we have

E(τcons) ≤ 32/Υ,

where Υ = min Υ(S)
η(S) and the minimum is over all S ⊆ V other than S = ∅ and S = V .

Observe that if |Zt| > 0, it means that at least one vertex changes its opinion, thus
|Zt| ≥ µ∗ = minv∈V µ(v). From there

Υ(S) = E
(
Z2
t 1{ρtZt<0}

∣∣St = S
)

= E
(
(ρtZt1{ρtZt<0})2∣∣St = S

)
≥ µ∗E

(
|ρtZt1{ρtZt<0}|

∣∣St = S
)

(16)

Note that E(ρtZt|St = S) = ρ(S)E(Zt|St) = 0 because µ(St) is a martingale. Using
Lemma 10 in equation (16), gives Υ(S) ≥ µ∗E(|Zt||St)/2. Hence Υ ≥ µ∗min 1

2
E(|Zt||St)
η(S) .

Recalling the definition of Ψ in equation 2, we conclude Υ ≥ Ψ/2 and therefore

E(τcons) ≤
64
Ψ . J

We apply the above theorems to our examples. We use the following notation. Given
S ⊆ V , denote by E(S : Sc) the number of edges going from S to Sc. Denote by dS(v) the
number of vertices of S adjacent to v. Observe that E(S : Sc) =

∑
v∈S dSc(v) =

∑
v∈Sc dS(v).

We denote the graph conductance by Φ(G) = minS⊆V E(S:Sc)
min{d(S),d(Sc)} where 0/0 =∞.

ICALP 2016
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I Example 11. Consider the asynchronous pulling model on a graph G.

E(|Zt||St = S) =
∑
v∈S

d(v)
d(V )

1
n

dSc(v)
d(v) +

∑
v∈Sc

d(v)
d(V )

1
n

dS(v)
d(v) .

Why? With probability 1/n we select vertex v and this vertex selects a random neighbour
w with probability 1/d(v), and adopts its opinion. The stationary distribution of v is
µ(v) = d(v)/d(V ). If w has the same opinion as v, then Zt = 0, but if w has the opposite
opinion then |Zt| = d(v)/d(V ). Then

E(|Zt||St = S) = 1
nd(V )

(∑
v∈S

dSc(v) +
∑
v∈Sc

dS(v)
)

= 2E(S : Sc)
nd(V ) (17)

therefore from (2)

Ψ = dmin

d(V )
2
n

min
S

E(S : Sc)
min{d(S), d(Sc)} (18)

Hence we conclude that E(τcon) = O(nd(V )/dminΦ). This gives a consensus time of O(n2)
for expanders, which is optimal up to a constant. For the cycle, O(n3) optimal as well.

I Example 12. Consider the push model on a graph G. Let C = (
∑
v∈V d(v)−1)−1.

E(|Zt||St = S) =
∑
v∈S

C

d(v)
∑

w:w∼v,w∈Sc

1
nd(w) +

∑
v∈Sc

C

d(v)
∑

w:w∼v,w∈S

1
nd(w) .

The above equation holds because to change the opinion of a vertex v ∈ S, the push model
needs to select a vertex w ∈ Sc adjacent to v and then w needs to push its opinion on v.
That happens with probability 1/(nd(w)). In such case, the change in |Zt| is µ(v) = C/d(v).
The same applies if v ∈ Sc. Then

E(|Zt||St = S) = 2C
n

∑
v∈S

∑
w∈Sc

1v∼w

d(v)d(w) . (19)

By using the notation J(S) =
∑
v∈S d(v)−1 and that the stationary distribution is µ(v) =

C/d(v) we have

Ψ = 2C
ndmax

min
S

∑
v∈S

∑
w∈Sc

1v∼w

d(v)d(w)

min{J(S), J(Sc)} .

The parameter Ψ does not seem related to the classical graph parameters.

I Example 13. We continue with the abusive push model on a graph G.

E(|Zt||St = S) =
∑
v∈S

1
n

dSc(v)
n

+
∑
v∈S

1
n

dS(v)
n

.

The above equation holds because with probability 1/n we sample a vertex v. Then v

pushes its opinion on all its neighbours. Since the stationary distribution for this model
is µ(v) = 1/n, then the change in |Zt| is dSc(v)/n if v ∈ S and dS(v)/n if v ∈ Sc. Then
E(|Zt||St) = 2

n2E(S : Sc). Then it holds that

Ψ = 2
n2 min

S

E(S : Sc)
min{|S|, |Sc|} (20)
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The parameter minS E(S:Sc)
min{|S|,|Sc|} is very similar to the graph conductance, indeed, for d-

regular graphs minS E(S:Sc)
min{|S|,|Sc|} = dΦ(G). In such case we have that

E(τcons) = O
(
n2

dΦ

)
.

That gives us a O(n2/d) time for regular expanders, which is optimal when the degree is
constant. For the complete graph it gives us O(n), which is far from optimal, since the
abusive push model finishes in just one round on the complete graph. For a cycle it gives us
a O(n3) time which is optimal.

I Example 14. Our final example is for the pull-push model. In this model the stationary
distribution is uniform. Then the only way to produce a positive change in |Zt| is that when
the random vertex v is chosen to pull and push, it selects one neighbour in S and the other
in Sc. In that case, the change in |Zt| will be of 1/n, then

E(|Zt||St = S) =
∑
v∈V

1
n2
dSc(v)dS(v)

d(v)2 .

Then

Ψ = 1
n2 min

S

∑
v∈V

dSc(v)dS(v)
d(v)2

/
min{|S|, |Sc|}.

Once again Ψ does not seem related to the classical graph parameters.

5 Discussion

In this paper we introduced and studied the linear voting model. The model can be seen as
a generalisation of many models of voting. Despite its generality, the process is tractable
and we can compute the probability that a given opinion wins. Moreover, by using a
suitable potential function we were able to provide a bound for the expected consensus time.
Furthermore, applying this bound in specific cases led to classical graph parameters, such as
conductance, as well to other less familiar, or even new, parameters.

Future work includes the study of particular models on interesting graph families, like
expanders, transitive graphs or random graphs, as well as the development of new techniques
to analyse the model.
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