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Abstract
Geometric inhomogeneous random graphs (GIRGs) are a model for scale-free networks with un-
derlying geometry. We study bootstrap percolation on these graphs, which is a process modelling
the spread of an infection of vertices starting within a (small) local region. We show that the
process exhibits a phase transition in terms of the initial infection rate in this region. We determ-
ine the speed of the process in the supercritical case, up to lower order terms, and show that its
evolution is fundamentally influenced by the underlying geometry. For vertices with given posi-
tion and expected degree, we determine the infection time up to lower order terms. Finally, we
show how this knowledge can be used to contain the infection locally by removing relatively few
edges from the graph. This is the first time that the role of geometry on bootstrap percolation
is analysed mathematically for geometric scale-free networks.
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1 Introduction

One of the most challenging and intriguing questions about large real-world networks is how
activity spreads through the network. “Activity” in this context can mean many things,
including infections in a population network, opinions and rumours in social networks, viruses
in computer networks, action potentials in neural networks, and many more. While all these
networks seem very different, in the last two decades there was growing evidence that most
of them share fundamental properties [4, 24]. The most famous property is that the networks
are scale-free, i.e. the degrees follow a power-law distribution Pr[deg(v) ≥ d] ≈ d1−β , typically
for some 2 < β < 3. Other properties include a large connected component which is a small
world (poly-logarithmic diameter) and an ultra-small world (constant or poly-loglog average
distance), that the networks have small separators and a large clustering coefficient. We refer
the reader to [15] for more detailed discussions.

Classical models for random graphs fail to have these common properties. For example,
Erdős-Rényi graphs or Watts-Strogatz graphs do not have power-law degrees, while Chung-Lu
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graphs and preferential attachment (PA) graphs fail to have large clustering coefficients
or small separators. The latter properties typically arise in real-world networks from an
underlying geometry, either spatial or more abstract, e.g., two nodes in a social networks
might be considered “close” if they share similar professions or hobbies. It is well-known
that in real-world networks the spread of activity (of the flu, of viral marketing, ...) is
crucially governed by the underlying spatial or abstract geometry [41]. For this reason, the
explanatory power of classical models is limited in this context.

In recent years models have been developed which overcome the previously mentioned
limitations, most notably hyperbolic random graphs (HypRGs) [13, 12, 10, 44] and their gen-
eralisation1 geometric inhomogeneous random graphs (GIRGs) [15]2, and spatial preferential
attachment (SPA) models [2, 22, 35]. Apart from the power-law exponent β, these models
come with a second parameter α > 1, which models how strongly the edges are predicted by
their distance. Due to their novelty, there are only very few theoretical results on how the
geometry impacts the spreading of activity through these networks.

In this paper we make a first step by analysing a specific process, bootstrap percolation [20],
on the recent and very general GIRG model. In this process, an initial set of infected (or
active) vertices iteratively infects all vertices which have at least k infected neighbours, where
k ≥ 2 is a parameter. It was originally developed to model various physical phenomena (see [1]
for a short review), but has by now also become an established model for the spreading of
activity in networks, for example for the spreading of beliefs [32, 25, 48, 45], behaviour [30, 31],
or viral marketing [38] in social networks (see also [19]), of contagion in economic networks [6],
of failures in physical networks of infrastructure [52] or compute architecture [39, 28], of
action potentials in neuronal networks (e.g, [47, 49, 5, 21, 50, 43, 26, 27], see also [40] for a
review), and of infections in life networks [25].

1.1 Our contribution
We investigate bootstrap percolation on GIRGs with an expected number of n vertices. We
fix a ball B in the underlying geometric space, and we initially infect each vertex in B

independently with probability ρ. In this way, we model that an infection (a rumour, an
opinion, ...) often starts in some local region, and from there spreads to larger parts of
the network. In Theorem 1 we determine a threshold ρc such that in the supercritical case
ρ� ρc whp3 a linear fraction of the graph is infected eventually, and in the subcritical case
ρ� ρc infection ceases immediately. In the critical case ρ = Θ(ρc) both options occur with
non-vanishing probability. If there are enough (at least k) “local hubs” in the starting region,
i.e. vertices of relatively large expected degree, then they become infected and facilitate the
process. On the other hand, without such local hubs the initial infection is not dense enough,
and comes to a halt.

For the supercritical case, we show that it only takes O(log logn) rounds until a constant
fraction of all vertices is infected, and we determine the number of rounds until this happens
up to a factor 1± o(1) in Theorem 2. For the matching lower bound in this result, we need
the technical condition α > β − 1, i.e. edge-formation may not depend too weakly on the

1 It is non-obvious that GIRGs are a generalization of HypRGs, see [15, Theorem 6.3].
2 Other than in [15] we do not condition on the number of vertices to be exactly n, which leads to slightly

less technical proofs.
3 with high probability, i.e. with probability tending to 1 as n→∞. All unspecified limits and asymptotics

will be with respect to n→∞. For example, for a function f = f(n) the notation f = O(1) means that
there is n0 > 0 and an absolute constant C > 0 that depends only the constant parameters α, β, d, wmin, k
of the model, such that f(n) ≤ C for all n ≥ n0. Similarly, f = ω(1) means limn→∞ f(n) =∞ etc.
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geometry. Notably, if the starting region B is sufficiently small then the number of rounds
agrees (up to minor terms) with the average distance in the network. In particular, it does
not depend on the infection rate ρ, as long as ρ is supercritical.

Finally we demonstrate that the way the infection spreads is strongly governed by the
geometry of the process, again under the assumption α > β − 1. Starting from B, the
infection is carried most quickly by local hubs. Once the local hubs in a region are infected,
they pass on their infection a) to other hubs that are even further away, and b) locally
to nodes of increasingly lower degree, until a constant fraction of all vertices the region is
infected. Indeed, given a vertex v (i.e. given its expected degree and its distance from B),
and assuming that v is not too close to B, we can predict whp (Theorem 4) in which round
it will become infected, again up to a factor 1± o(1). In real applications such knowledge is
invaluable: for example, assume that a policy-maker only knows initial time and place of
the infection, i.e. she knows the region B and the current round i. In particular, she does
not know ρ, she does not know the graph, and she has no detailed knowledge about who
is infected. Then we show that she is able to identify a region B′ in which the infection
can be quarantined. In other words, by removing (from round i onwards) all edges crossing
the boundary of B′ whp the infection remains contained in B′. The number of edges to be
deleted is relatively small: it can be much smaller than n (in fact, any function f = f(n)
satisfying f = ω(1) can be an upper bound, if i and Vol(B) are sufficiently small), and it is
even much smaller than the number of edges inside of B′, as was already noted in [15].

1.2 Related work
The GIRG model was introduced in [15], and we rely on many results from this paper. The
average distance of a GIRG (which, as we show, agrees with the time until the bootstrap
percolation process has infected a constant portion of all vertices) was determined in [16] in
a much more general setup.

Bootstrap percolation has been intensively studied theoretically and experimentally on a
multitude of networks, including trees [20, 9], lattices [3, 8], Erdős-Rényi graphs [36], various
geometric graphs [49, 42, 14, 29], and scale-free networks [23, 11, 7, 38]. On geometric
scale-free networks there are some experimental results [18], but little is known theoretically.
Recently, Candellero and Fountoulakis [17] determined the threshold for bootstrap percolation
on HypRGs (in the threshold case α = ∞, cf. below), but they assumed that the initial
infection takes place globally, i.e. whether any vertex is infected initially is independent of
its position, and not locally as in our paper, where no vertex outside of a certain geometric
region is infected initially. This has two major consequences. Firstly, in the global setting,
the (expected) number of initially infected vertices needs to be polynomial in n in order for
the infection to start spreading significantly; while in our setting every ball containing an
expected number of ω(1) vertices can initiate a large infection whp. Secondly, using our
knowledge about how the process evolves in time with respect to the geometry, we show
that the infection time of any vertex is mainly governed by its geometric position and its
weight. On the other hand, with a global initial infection the infection times only depend
on the expected degrees. Note that we do not encode these expected degrees as geometric
information (in contrast to [17]), but rather in the weights. Similarly, the questions studied
in this paper do not apply for non-geometric random graph models.

While there is plenty of experimental literature and also some mean-field heuristics on other
activity spreading processes on geometric scale-free networks (e.g., [51, 53, 34, 54, 33, 46]),
rigorous mathematical treatments are non-existent with the notable exception of [37], where
rumour spreading is analysed in an SPA model with a push and a push&pull protocol.

ICALP 2016
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2 Model and notation

Graph model

A GIRG is a graph G = (V,E) where both the vertex set V and the edge set E are random.
Each vertex v is represented by a pair (xv, wv) consisting of a position xv (in some ground
space) and a weight wv ∈ R>0.

Ground space and positions. We fix a (constant) dimension d ≥ 1 and consider the
d-dimensional torus Td = Rd/Zd as the ground space. We usually think of it as the d-
dimensional cube [0, 1]d where opposite boundaries are identified and measure distances by
the ∞-norm on Td, i.e. for x, y ∈ [0, 1]d set ‖x− y‖ := max1≤i≤d min{|xi − yi|, 1− |xi − yi|}.

The set of vertices and their positions are given by a homogeneous Poisson point process
on Td with intensity n ∈ N. More formally, for any (Lebesgue-)measurable set B ⊆ Td, let
V ∩B denote (with slight abuse of notation) the set of vertices with positions in B. Then
|V ∩B| is Poisson distributed with mean nVol(B), i.e. for any integer m ≥ 0 we have

Pr [|V ∩B| = m] = Pr[Po (nVol(B)) = m] = (nVol(B))m exp(−nVol(B))
m! ,

and if B and B′ are disjoint measurable subsets of Td then |V ∩B| and |V ∩B′| are inde-
pendent. Note in particular that the total number of vertices |V | is Poisson distributed with
mean n, i.e. it is also random. An important property of this process is the following: Given
a random vertex4 v = (xv, wv), if we condition on xv ∈ B, where B is some measurable
subset of [0, 1]d, then the position xv is uniformly distributed in B.

Weights. For each vertex, we draw independently a weight from some distribution D on
R>0. We say that the weights follow a weak power-law for some exponent β ∈ (2, 3) if a
D-distributed random variable D satisfies the following two conditions: There is a constant
wmin ∈ R>0 such that Pr [D ≥ wmin] = 1, and for every constant γ > 0 there are constants
0 < c1 ≤ c2 such that

c1w
1−β−γ ≤ Pr [D ≥ w] ≤ c2w1−β+γ (1)

for all w ≥ wmin. If this condition is also satisfied for γ = 0, then we say that the weights
follow a strong power-law.

Edges. Next we fix a constant α ∈ R>1 ∪ {∞}. Then (conditional on the Poisson point
process) two distinct vertices u = (xu, wu) and v = (xv, wv) form an edge independently of
all other pairs with probability p(xu, xv, wu, wv), where the function p satisfies

p(xu, xv, wu, wv) = Θ(1) min
{(

wuwv
‖xu − xv‖dn

)α
, 1
}
,

if α <∞. In the threshold model α =∞ we instead require that p satisfies

p(xu, xv, wu, wv) =
{

Ω(1) if ‖xu − xv‖ ≤ C1
(
wuwv
n

)1/d
0 if ‖xu − xv‖ > C2

(
wuwv
n

)1/d
for some constants 0 < C1 ≤ C2 . Note that for C1 6= C2 the edge probability may be
arbitrary in the interval

(
C1
(
wuwv
n

)1/d
, C2

(
wuwv
n

)1/d).
4 By abuse of notation, xv and wv may either denote random variables or values.
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Bootstrap percolation

Let k ≥ 2 be a constant, let B0 ⊆ Td be measurable, and let 0 ≤ ρ ≤ 1. Then the bootstrap
percolation process with threshold k, starting region B0, and initial infection rate ρ is the
following process. For every integer i ≥ 0 there is a set V i ⊆ V of vertices which are infected
(or active) at time i. The process starts with a random set V 0 ⊆ V which contains each
vertex in V ∩B0 independently with probability ρ, and which contains no other vertices. For
all integers i ≥ 0 we then define the set V i+1 iteratively by

V i+1 := V i ∪
{
v ∈ V

∣∣ v has at least k neighbours in V i
}
.

Moreover, we set V∞ :=
⋃
i∈N V

i, and for convenience of notation we extend this definition
to real parameters i ∈ R>0 by setting V i := V die. For a vertex v ∈ V , we define its infection
time as Lv := inf

{
i ≥ 0

∣∣ v ∈ V i} and Lv :=∞ if the infimum does not exist.
We denote by ν = ν(n) := nVol(B0) the expected number of vertices in B0. Throughout

the paper we will assume that B0 is a ball, which is – without loss of generality due to
symmetry of Td – centred at 0. Moreover, we will assume that ν = ω(1).

Further notation

We denote the neighbourhood of a vertex v ∈ V by N (v) := {u ∈ V | {u, v} ∈ E}. Further-
more, for any two sets of vertices U1 and U2, we denote the set of edges between them by
E (U1, U2) := {e = {u1, u2} | u1 ∈ U1, u2 ∈ U2}. For any λ ≥ 0 and any closed ball B ⊆ Td
of radius r ≥ 0 centred at 0 we denote by λB the closed ball of radius λr around 0. By abuse
of notation, if S ⊂ V and B ⊆ Td then S ∩B := {v ∈ S | xv ∈ B}.

3 Main results

First of all we show that bootstrap percolation on a GIRG has a threshold with respect to
the initial infection rate ρ. Since HypRGs are a special instance of GIRGs, this contains in
particular the result of [17] on (threshold) HypRGs, where the case ν = n was studied.

I Theorem 1. Consider a bootstrap percolation process on a GIRG G = (V,E) with constant
parameters α, β, d, wmin, k, initial infection rate ρ = ρ(n) ∈ [0, 1], and initial infection region
B0 with volume ν/n, where ν = ν(n) = ω(1). We set

ρc = ρc(n) := ν−
1

β−1 .

If the weights follow a strong power-law, then as n→∞ we have:
(i) If ρ = ω(ρc), then |V∞| = Θ(n) whp.
(ii) If ρ = Θ(ρc), then |V∞| = Θ(n) with probability Ω(1), but also V∞ = V 0 with probability

Ω(1).
(iii) If ρ = o(ρc), then V∞ = V 0 whp.
If the weights follow a weak power-law, then as n→∞ we have:
(iv) If there is a constant δ > 0 such that ρ ≥ ρ1+δ

c , then |V∞| = Θ(n) whp.
(v) If there is a constant δ > 0 such that ρ ≤ ρ1−δ

c , then V∞ = V 0 whp.

Whenever we refer to the supercritical regime we mean case (i) and (iv). Similarly, (iii)
and (v) form the subcritical regime and (ii) is the critical regime. Note in particular that
there is a supercritical regime regardless of how small the expected number ν of vertices in
the starting region is, provided that ν = ω(1). This is in sharp contrast to non-geometric

ICALP 2016
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graphs like Chung-Lu graphs, where the expected number of initially infected vertices must
be polynomial in n (if the set of initially infected vertices is chosen at random).

Indeed the proof of Theorem 1 will grant a deeper insight into the evolution of the process.
Since the process whp stops immediately in the subcritical regime, we may restrict ourselves
to the other cases. We show a doubly logarithmic upper bound on the number of rounds
until a constant fraction of all vertices are infected. Furthermore, we prove that this bound
is tight up to minor order terms if the influence of the underlying geometry on the random
graphs is sufficiently strong (α > β − 1). Remarkably, the bounds do not depend on the
initial infection rate ρ, as long as ρ is supercritical. Moreover, if the expected number ν of
vertices in the starting region is sufficiently small (if log log ν = o(log logn)), then the bound
coincides with the average distance in the graph, again up to minor order terms.

I Theorem 2. In the situation of Theorem 1, let ε > 0 be constant and set

i∞ := log logν n+ log logn
| log(β − 2)| .

Then in the supercritical regime whp, and in the critical regime with probability Ω(1) we have
|V (1+ε)i∞ | = Θ(n), as n→∞.
If furthermore α > β − 1 and ν = no(1) then in all regimes we have whp |V (1−ε)i∞ | = o(n),
as n→∞.

In fact, we can still refine the statement of Theorem 2 tremendously, at least in the case
α > β − 1. In the following, we determine for every fixed vertex v its infection time Lv, up
to minor order terms (with the restriction that v may not be too close to the starting region).
We will show that it is given by the following expression (see also Remark 6 below).

I Definition 3. For any x ∈ Td \B0 and w ∈ R>0 we define

Λ(x,w) :=


max

{
0, log logν(‖x‖dn/w)

| log(β−2)|

}
, if w > (‖x‖dn)1/(β−1),

2 log logν(‖x‖dn)−log logν w
| log(β−2)| , if w ≤ (‖x‖dn)1/(β−1).

(2)

In the first case we use the convention that the second term is −∞ if ‖x‖dn/w < 1, and thus
does not contribute to the maximum.

Note that in the second case, the sign of log logν w may be either positive or negative.
However, then we have the lower bound Λ(x,w) ≥ log logν(‖x‖dn)/| log(β − 2)|+O(1) due
to the upper bound of w and thus, in particular Λ(x,w) ≥ 0, since x ∈ Td \B0.

I Theorem 4. Assume we are in the situation of Theorem 1 in the supercritical regime.
Let v = (xv, wv) be any fixed vertex such that xv ∈ Td \ B0, wv = ω(1) and Λ(xv, wv) ≤
log2(‖xv‖dn/ν2/(β−2)). Then, as n→∞, the infection time Lv satisfies whp

Lv ≤ (1 + o(1))Λ(xv, wv) +O(1).

If additionally α > β − 1 then, as n→∞ we also have whp

Lv ≥ (1− o(1))Λ(xv, wv)−O(1).

As in Theorem 2, the bounds do not depend on the initial infection rate ρ, as long as it
is supercritical.
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I Remark 5. The technical restrictions in Theorem 4 are necessary: if a vertex v has weight
wv = O(1) then the number of neighbours is Poisson distributed with mean Θ(wv) (see
Lemma 8), so v is even isolated with probability Ω(1). In particular, we cannot expected
that whp v is ever infected.

The restriction Λ(xv, wv) ≤ log2(‖xv‖dn/ν2/(β−2)) ensures that v is not too close to the
starting region. If v is too close, then it may have neighbours inside of B0, and in this
case it does depend on ρ when they are infected. (And of course, this process iterates.)
The term log2(‖xv‖dn/ν2/(β−2)) is not tight and could be improved at the cost of more
technical proofs. However, there are already rather few vertices that violate the condition
Λ(xv, wv) ≤ log2(‖xv‖dn/ν2/(β−2)). For example, recall that it only takes O(log logn) steps
until a constant fraction of all vertices are infected. At this time, we only exclude vertices
which satisfy ‖xv‖dn ≤ ν2/(β−2) · (logn)O(1), so the expected number of affected vertices
is also at most ν2/(β−2) · (logn)O(1). Even this is a gross overestimate, since the vertices
close to the origin have much smaller infection times Lv, and thus only very few of them are
affected by the condition.

I Remark 6. The first case in Definition 3 is not needed if we restrict ourselves to vertices as
they typically appear in GIRGs. More precisely, as we will see in Lemma 10, whp all vertices
v = (xv, wv) ∈ V ∩ (Td \B0) satisfy wv ≤ (‖xv‖dn)1/(β−1−η) where η > 0 is an arbitrary
constant. In the border case (‖xv‖dn)1/(β−1) ≤ wv ≤ (‖xv‖dn)1/(β−1−η) both expressions
in (2) agree up to additive constants, i.e.

Λ(xv, wv) = 2 log logν(‖xv‖dn)− log logν wv
| log(β − 2)| ±O(1). (3)

Therefore, we could also use (3) as definition for Λ if we would exclude vertices which are
unlikely to exist in Theorem 4 .

Finally, we give a strategy how to contain the infection within a certain region when only
the starting set and the current round are known, but not the set of infected vertices. Note
that the number of edges that need to be removed is substantially smaller than the expected
number ν̃i of vertices in a containment area B̃i, see Definition 11.

I Theorem 7. Assume that we are in the situation of Theorem 1, and that α > β− 1. If the
starting region B0 is known, then by removing all edges crossing the boundary of B̃i before
round i+ 1, whp (as n→∞) the infection is contained in B̃i. The expected number of edges
crossing the boundary of B̃i is ν̃max{3−β,1−1/d}+o(1)

i .

4 Basic properties of GIRGs

In this section we list briefly some basic properties of GIRGs (without proofs). The first
lemma, based on [16, Lemma 4.4 and Theorem 7.3], tells us that the expected degree of a
vertex equals its weight, up to constant factors. Moreover, it gives the marginal probability
that two vertices u, v of fixed weights but random positions in Td are adjacent. This
probability remains the same if the position of one (but not both) of the vertices is fixed.

I Lemma 8. Let v = (xv, wv) be a vertex with fixed weight and position. Then deg(v) is
Poisson distributed with mean Θ(wv). Moreover, if u = (xu, wu) is a vertex with fixed weight,
but with random position xu ∈ Td, then

Pr [{u, v} ∈ E | wu, wv, xv] = Θ
(

min
{wuwv

n
, 1
})

. (4)

ICALP 2016
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Note in particular that the right hand side of (4) is independent of xv, so the same formula
still applies if also the position xv of v is randomised.

We often need to bound the expected number of neighbours of a given vertex in some
geometric region, which we may do by the following lemma.

I Lemma 9. Let η > 0 and C > 1 be constants, define m := min{α, β− 1− η} and consider
a closed ball B ⊆ Td of radius r > 0 centred at 0. Let v = (xv, wv) be a vertex with fixed
weight and position. Then

E [|N (v)∩B|] = O(nVol(B)) ·

min
{

wv
nVol(B) , 1

}
, if ‖xv‖ ≤ Cr,

min
{(

wv
‖xv‖dn

)m
, 1
}

if ‖xv‖ ≥ Cr.

The last lemma states that whp there are no vertices whose weight is much larger than
their distance from the origin.

I Lemma 10. Let η > 0 be a constant and consider a closed ball B ⊆ Td of radius r > 0
centred at 0, satisfying nVol(B) = Θ(rdn) = ω(1). Then with probability 1− (rdn)−Ω(η) there
is no vertex v = (xv, wv) with xv ∈ Td \B and wv ≥ (‖xv‖dn)1/(β−1−η).

5 Proof outline

5.1 Intuition
Due to space limitations we can only give a very rough sketch of the main ideas. We warn
the reader that the statements as they are formulated in this section are not literally true,
but they are only true if appropriate error margins (slightly smaller/larger weights or regions)
are taken into account. The same holds for definitions within this section. The rigorous
definitions and statements with full technical details can be found in Section 5.2 and 5.3.

For the subcritical regime, we distinguish between high-weight vertices (wv = ω(w0),
where w0 := ν1/(β−1)) and low-weight vertices (wv = O(w0)). By an easy computation, the
expected number of low-weight vertices in B0 that are infected in round 1 is o(1), so by
Markov’s inequality no low-weight vertex becomes infected whp. On the other hand, whp no
high-weight vertex exists in B0, and the expected number of infected vertices outside of B0
is also o(1) because they are too far away from infected vertices. In order words, whp no
vertex is infected in round 1.

In the critical regime, the calculation is similar, but if there exist vertices of weight Θ(w0)
then these vertices are infected with probability Ω(1). The number of vertices of weight
Θ(w0) is Poisson distributed with mean Θ(1), so it may happen (both with probability Ω(1))
that either no such vertex exists (so percolation stops) or that there are at least k such
vertices, and all of them are infected. In the supercritical regime, whp k vertices of weight
(slightly less than) w0 are infected. Whp, these k vertices infect all other vertices of similar
weight in two more rounds. This is sufficient to start an avalanche of infection, and for the
rest of this section we will restrict ourselves to this case.

If the infection gets started, then it evolves as follows. Let ζ := 1/(β − 2) > 1, and
consider the sequence Bi of nested balls of volume νi/n centred at 0, where νi := νζ

i . Then
in the i-th round, all vertices of weight roughly wi := ν

1/(β−1)
i in Bi are infected. In the next

round, whp the vertices of weight wi in Bi infect all vertices of weight wi+1 in Bi+1, thus
spreading the infection to new regions. Note that this statement is easy to prove inductively
since we assumed that all vertices of weight wi in Bi are infected, so for the vertices in Bi+1
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it suffices to count the number of neighbours of a certain weight in Bi, which is a Poisson
distributed random variable. This gives a lower bound on how fast the infection spreads
geometrically. It can not spread faster since whp there are no edges from Bi to Td \Bi+1.
This latter fact already allows us to execute a containment strategy.

On the other hand, if in round j every vertex of weight w in some region has a large
probability to be infected, then in round j + 1 every vertex of weight at least w1/ζ in this
region has a large (though slightly smaller) probability to be infected. To prove this formally,
we consider a vertex of weight w1/ζ . Such a vertex (but not vertices of smaller weight) has at
least wδ neighbours of weight w, with probability at least 1− exp[−wδ]. So we pick k such
neighbours, and bound the probability that at least one of them is not infected by a union
bound. In this way, we lose a factor of k in each round, but by going through the proof
details it turns out that this factor is still negligible compared to the error term exp[−wδ/ζ ].

Complementing this infection pathway by a matching upper bound is the most challenging
and technical part of the proof. In round i − 1 there is no infected vertex in Bi, so it is
not hard to argue that in round i only vertices of large weight in Td \ Bi−1 are infected.
However, in subsequent rounds it does happen that vertices of very small weight in Td \Bi−1
become infected. Fortunately, this only happens with rather small probability, which we can
explicitly bound (Theorem 13 (f)) as a function of the weight. Once we have such a bound
in some round, we use that whp no vertex in Td \Bi−1 (not too close to the boundary) has
strictly more than one neighbour in Bi−1. Therefore, in order to be infected, at least one of
its neighbours in Td \Bi−1 must have been infected in the previous round, and we can bound
the probability of this event by the expected number of previously infected neighbours in
Td \Bi−1. It turns out that this simple bound is sufficient to provide the desired matching
upper bound, safe quite some technical details which we omit.

We remark that it is in this last step where we use the assumption α > β − 1 since
otherwise there do exist vertices in Td \ Bi−1 that have several neighbours in Bi−1, and
these vertices exist in a substantial part of Bi. Even worse, in some (large) subregion of Bi,
the number of infections in round i+ 1 that come from neighbours in Bi−1 dominates the
number of infections that come from neighbours in Bi. For investigating the case α ≤ β − 1
(which we don’t in this paper), it will no longer be possible to use a bound on the infection
probability that is uniform within Td \Bi−1, or within Bi \Bi−1.

Once the claims outlined above are proven (Theorem 13 and 14) we have almost complete
control over the process. In particular, for a each vertex v with fixed weight and position
(outside of the starting region B0), and for each round j we have lower and upper bounds
for the probability that v has already become infected by round j. We can thus compute
rounds j1, j2 for which the probability is at most o(1) and at least 1− o(1), respectively, and
we find that these rounds coincide up to lower order terms. It is still rather complicated to
actually perform the calculations of j1 and j2 due to the many technical details which we
omitted in this outline, but no further knowledge about the infection process is required.

5.2 Formal statements and sketch of proofs
In this section we will give two theorems which describe the geometrical evolution of the
process in detail, and which make the intuitions from Section 5.1 precise. Theorem 13
states that a) certain regions cannot be reached too early by the infection, and b) within
an infected region, vertices of too low weight have a small probability to be infected early.
Hence, the theorem gives an upper bound on the speed of the infection process. Note that this
already gives the quarantine statement (Theorem 7), see Section 5.3 for details. Afterwards,
Theorem 14 gives lower bounds on the probability that a vertex in a given region is infected
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at a given time, in the supercritical case. In particular, a vertex of weight wv = ω(1) will
eventually be infected whp. Thus the theorem provides a lower bound on the speed of the
process. This lower bound also applies in the critical regime if in the first step sufficiently
many heavy vertices became infected, an event which holds with at least constant probability.

In Section 5.1 we introduced balls Bi which essentially correspond to the region of infected
vertices in round i. For the formal statements we need slightly smaller and larger balls, which
we now define formally. In general, ν̃i, B̃i etc. will denote the upper bound variants.

I Definition 11. For all 0 < ε < ζ = 1/(β − 2) and all i ≥ 0, we set

ν0 := ν and νi = νi(ε) := ν
(ζ−ε)i
0 ,

ν̃0 = ν̃0(ε) := ν(β−1)/(β−2)+ε and ν̃i = ν̃i(ε) := ν̃
(ζ+ε)i
0

We define Bi := Bi(ε) and B̃i := B̃i(ε) to be the closed ball centred around 0 of volume
min{νi(ε)/n, 1} and min{ν̃i(ε)/n, 1}, respectively. Note that Bi(ε) ⊆ B̃i(ε′) for all i ≥ 0 and
all 0 < ε, ε′ < ζ.

First we give an upper bound on the speed of the process. For a formal statement, we
define the following families of “good” events.

I Definition 12. Let ε > 0 be a constant and let η = η(ε) > 0 be a constant which is
sufficiently small compared to ε. Moreover, let h = h(n) be a function satisfying h(n) = ω(1),
h(n) = o(logn), and h(n) = νo(1). Then for all i, `, j ≥ 0 we define the following families of
events:
E(i) := {V i∩ (Td \ B̃i) = ∅};
For all w ≥ wmin let S(w, `) := {v ∈ V ≤` | wv ≥ w}. We set

F(`, w) = Fε,η,h(`, w) :=
{
|S(w, `)| ≤ h`w2−β+η ν̃

1−(ζ+ε)−`(β−1)−1

0
}
,

and F(`) = Fε,η,h(`) :=
⋂
w′≥wmin

F(`, w′);
G(j) = Gε,η,h(j) :=

⋂j
j′=0(E(j′) ∩ F(j′)).

In other words, E(i) means that no vertex outside of B̃i is infected at time i, and F(`) is
the event that there are not “too many” vertices which have small weight, are close to the
starting region, and are infected at time `. Finally, G(j) is the event that all “good” events
hold up to time j.

I Theorem 13. Let ε, η, h be given as in Definition 12 and assume α > β − 1. Then, for
sufficiently large n,
(a) E(0) is always satisfied;
(b) Pr[F(0)] ≥ 1−O(h−1);
(c) For all i ≥ 1 we have Pr [E(i) | G(i− 1)] ≥ 1− h−Ω(i);
(d) For all ` ≥ 1 we have Pr [F(`) | G(`− 1)] ≥ 1− h−Ω(`);
(e) Whp, the events G(j) hold for all j ≥ 0;
(f) For all i ≥ 1 and ` ≥ 0, and for every fixed vertex v = (xv, wv) such that xv ∈

Td \ 2`+1B̃i−1 and wv ≥ wmin we have

Pr
[
v ∈ V i+`

∣∣ G(i+ `− 1)
]
≤ wv2`dν̃−(ζ+ε)−`−2/(β−1)

i .

The theorem can be proven by induction on i+ `, with the strategies from Section 5.1,
and using the lemmas from Section 4. We next state the complementary lower bound.

For all i, ` ≥ 0, let wi,` = wi,`(ε) := ν(ζ−ε)i−`/(β−2), and let Ui be the set of vertices in
Bi of weight at least wi,0. Furthermore, we denote by H(i) the event that in round i+ 3 all
vertices in Ui are infected.
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I Theorem 14. Let 0 < ε < ζ and η = η(ε) > 0 be sufficiently small. Assume that we are
in the supercritical case, or instead that |Ui ∩ V 1| ≥ k. Then the following is true:
(a) Whp |Ui| = ν

Ω(η)
i and |Ui| = O(νi) uniformly for all i ≥ 0.

(b) Whp all the events H(i) occur.
(c) There exist constants C0, C1, C2 > 0 such that the following holds: Let v = (xv, wv)

be any vertex with fixed position and weight and let i, ` ≥ 0 be such that xv ∈ Bi and
wv ≥ max{wi,`, C0}. Then for sufficiently large n ∈ N,

Pr[v ∈ V i+3+` | H(0), . . . ,H(i)] ≥ 1− exp
[
−C1ν

C2(ζ−ε)−`
i

]
.

Again, the theorem can be proven inductively, with the strategies from Section 5.1.

5.3 Proof sketches for main results
In this section we highlight the main steps used to deduce the results from Section 3 from
Theorem 13 and Theorem 14.

Threshold and speed of the process: Theorem 1 and Theorem 2

We split the (combined) proof into six claims:
We first show the second statement of Theorem 2, so let 0 < ε < ζ be a constant.

I Claim 15. Assume that α > β − 1 and ν = no(1), then |V (1−ε)i∞ | = o(n) whp.

We define integers i ≥ 0 and ` ≥ 0 such that i + ` ≥ (1 − ε)i∞ and ν̃i = n1−o(1) but
2iν̃i = o(n). Then whp there are only o(n) vertices inside of 2`B̃i, by Markov’s inequality,
and for vertices outside we obtain the corresponding bound from Theorem 14 (f).

In the subcritical regime, (iii) or (v), we will indeed show that whp the process does not
infect any vertices in the first step and therefore terminates immediately.

I Claim 16. V 1 = V 0 whp.

Since the initial infection occurs only within B0 and all vertices have the same probability of
being infected, the number of neighbours of a given vertex is Poisson distributed, and we
can bound the mean by Lemma 9. Thus we can compute the expected number of vertices in
V =1, which is o(1), and this proves the claim by Markov’s inequality.

Next we show that in the critical regime, (ii), with constant probability no further vertices
ever become infected.

I Claim 17. V 1 = V 0 with probability Ω(1).

The number of “heavy” vertices of weight Θ(w0) is Poisson distributed with expectation
Θ(1). Thus, with probability Ω(1) there are no heavy vertices. Conditioned on this event,
the calculations of the subcritical regime carry over.

On the other hand, also with probability Ω(1), at least k heavy vertices exist. Each such
vertex is infected in the first round with probability Ω(1) by vertices very close to it, and all
these events are positively associated. This proves the following claim.

I Claim 18. V 1∩B0 contains at least k heavy vertices with probability Ω(1).

Next we assume that we are in the supercritical regime (i) or (iv), or in the critical regime (ii)
where we also assume that at least k heavy vertices are infected in the first round. Then we
need to show the following claim.
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I Claim 19. |V (1+ε)i∞ | = Ω(n) in expectation and whp.

We (carefully) choose i ≥ 0 and ` ≥ 0 such that i+` ≤ (1+ε) Bi = Td and wi,l = O(1). Then
Theorem 14 (c) tells us immediately that every vertex of weight at least C has probability
Ω(1) to be infected by time i + ` + 3, and since the expected number of such vertices is
Ω(n), thus proving the claim for the expectation. The whp statement follows from a small
technical alteration of the previous argument, which we omit for space limitations.

Now Theorem 1 follows from Claims 16, 17, 18 and 19, while Theorem 2 is proven by
Claims 15 and 19.

Infection times: Theorem 4

With our previous results, the idea is very simple: given a v vertex which satisfies the
assumptions of Theorem 4 we show an lower bound on its infection time Lv by Theorem 14
and an upper bound by Theorem 13, respectively. The details become quite long and
technical, and are therefore omitted.

Quarantine strategies: Theorem 7

By Theorem 13, whp there is no vertex outside of B̃i which is infected in round i. Therefore,
it suffices to (permanently) remove by the end of round i all edges that cross the boundary
of B̃i, i.e. all edges in E(B̃i,Td \ B̃i). Using an argument very similar to the one used in [15,
Lemma 7.1 and Theorem 7.2], where the number of edges cutting a grid is considered, we
can bound |E(B̃i, 2B̃i)| the expected number of close-range edges by ν̃max{3−β,1−1/d}+o(1)

i .
On the other hand using Lemma 9, we can estimate the expected number |E(B̃i,Td \ 2B̃i)|
of long-range edges by ν̃3−β

i and the result follows. We omit the details.

6 Concluding remarks

We have shown that in the GIRG model for scale-free networks with underlying geometry,
even a small region can cause an infection that spreads through a linear part of the population.
We have analysed the process in great detail, and we have determined its metastability
threshold, its speed, and the time at which individual vertices becomes infected. Moreover, we
have shown how a policy-maker can utilise this knowledge to enforce a successful quarantine
strategy. We want to emphasise that the latter result is only a proof of concept, intended
to illustrate the possibilities that come from a thorough understanding of the role of the
underlying geometry in infection processes. In particular, we want to remind the reader that
bootstrap percolation is not a perfect model for viral infections (though it has been used to
this end), but is more adequate for processes in which the probability of transmission grows
more than proportional if more than one neighbours is active, like believes spreading through
a social network (“What I tell you three times is true.”), or action potential spreading through
a neuronal network.

Therefore, this paper is only a first step. There are many other models for the spread of
an infection, most notably SIR and SIRS models for epidemiological applications, and we
have much yet to learn from analysing these models in geometric power-law networks like
GIRGs. From a technical point of view, it is unsatisfactory that our analysis does not include
the case α ≤ β − 1. We believe that also in this case, the bootstrap percolation process is
essentially governed by the geometry of the underlying space, only in a more complex way.
Understanding this case would probably also add to our toolbox for analysing less “clear-cut”
processes.
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