
Diameter and k-Center in Sliding Windows∗

Vincent Cohen-Addad1, Chris Schwiegelshohn2, and
Christian Sohler3

1 Département d’informatique, École normale supérieure, Paris, France
vincent.cohen@ens.fr

2 Efficient Algorithms and Complexity Theory, TU Dortmund, Dortmund,
Germany
chris.schwiegelshohn@tu-dortmund.de

3 Efficient Algorithms and Complexity Theory, TU Dortmund, Dortmund,
Germany
christian.sohler@tu-dortmund.de

Abstract
In this paper we develop streaming algorithms for the diameter problem and the k-center clus-
tering problem in the sliding window model. In this model we are interested in maintaining a
solution for the N most recent points of the stream. In the diameter problem we would like to
maintain two points whose distance approximates the diameter of the point set in the window.
Our algorithm computes a (3 + ε)-approximation and uses O(1/ε lnα) memory cells, where α is
the ratio of the largest and smallest distance and is assumed to be known in advance. We also
prove that under reasonable assumptions obtaining a (3 − ε)-approximation requires Ω(N1/3)
space.

For the k-center problem, where the goal is to find k centers that minimize the maximum
distance of a point to its nearest center, we obtain a (6 + ε)-approximation using O(k/ε lnα)
memory cells and a (4 + ε)-approximation for the special case k = 2. We also prove that any
algorithm for the 2-center problem that achieves an approximation ratio of less than 4 requires
Ω(N1/3) space.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Streaming, k-Center, Diameter, Sliding Windows

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.19

1 Introduction

Analyzing big data sets from streams is a topic that has received considerable attention
among theoretical and applied researchers. One of the most popular summarization and
aggregation tasks studied in this context is to determine k clusters that represent key features
of the input data with respect to certain properties.

In this paper we focus on variants of the k-center problem where we aim to find k points
such that the maximum distance over all points to their closest center is minimized.

In the standard streaming setting, we constrain our algorithms to use as little space as
possible while computing high-quality solutions. The complexity of clustering in general
and k-center in particular is well understood for insertion-only streams where input points
arrive one by one. The more general settings like dynamic streams and the sliding window

∗ Supported by Deutsche Forschungsgemeinschaft within the Collaborative Research Center SFB 876,
project A2

EA
T

C
S

© Vincent Cohen-Addad, Chris Schwiegelshohn, and Christian Sohler;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 19; pp. 19:1–19:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Diameter and k-Center in Sliding Windows

model have also received some attention for other clustering objectives. Both models aim to
incorporate dynamic behavior; in dynamic streams input points are removed via a dedicated
delete operation and in the sliding window model older input expires as new elements arrive.
In this paper, we consider a fixed window size consisting of N points, which is the most
widely studied variant of this model in theoretical computer science, but our algorithms also
work in the case that the maximum number of points within the window is a function of
time.

Our Contribution

The metric diameter problem is to find two points of maximum distance among a set of points
lying in some metric space. For this problem, we give a (3+ε)-approximation algorithm in the
sliding window model that stores O(1

ε logα) points, where α = maxp,q dist(p,q)
minp,q dist(p,q) is the ratio of

largest and smallest possible distance between the points. This is a substantial improvement
over the best and to our knowledge only sliding window algorithm for diameter in general
metric spaces by Chan and Sadjad [8] which computes a (2m+2 − 2 + ε) approximation with
O(N1/(m+1) logα) points for any m > 0.

Under reasonable assumptions (which are common for our model of computation), we
obtain a lower bound of Ω(3

√
N) for any algorithm achieving a 3− ε approximation to the

diameter problem for any ε > 0.
To our knowledge there exists no previous work on k-center in sliding windows. For 2

centers our diameter algorithm yields a (4 + ε)-approximate clustering. Under the afore-
mentioned assumptions, we are also able to obtain a matching lower bound. For arbitrary
values of k, we are able to obtain a (6 + ε)-approximate algorithm using O(k/ε logα) points
in metric spaces.

Techniques

The popular histogram approaches introduced by Datar et al. [12] and Braverman and
Ostrovsky [6] do not seem to be applicable to max-norm objectives such as diameter and
k-center. Our algorithm for the diameter (see Section 3) aims to find for each estimate
of the value γ of the diameter two certificate points with distance greater than γ, while
maintaining the two most recent points close to the two points forming the certificate. With
every additional input point, we check whether we are able to update the certificate to a
more recent timestamp.

For our lower bounds, we utilized the fact that any algorithm working in the metric
distance model is restricted to storing only input points. For deterministic algorithms, we are
then able to insert an appropriately hard instance based on the points forgotten by the input.
For randomized algorithms, we add additional points in which we hide a hard, randomly
chosen instance for deterministic algorithms. A more in-depth description of our approach
as well as a discussion on the generality of our results can be found in Section 5.

The analysis of the 2-center algorithm is similar to that of the popular 2-approximation
by Gonzales [14] and Hochbaum and Shmoys [16]. Since it does not yield an approximation
of the optimum value, this technique seems difficult to generalize for larger values of k.

Related Work
Diameter

Feigenbaum et al. [13] were the first to consider the diameter in the sliding window model. For
d dimensions in Euclidean space, their algorithm uses O(

(1
ε

)(d+1)/2 log3 N(logα+ log logN +

V. Cohen-Addad, C. Schwiegelshohn, and C. Sohler 19:3

1
ε)) bits of space. They also give a lower bound of Ω(1

ε logN logα) for a (1+ε) approximation
factor in one dimension and, implicitly, a Ω(logα) space bound for any multiplicative
approximation factor. This lower bound was later matched by Chan and Sadjad [8], who also
gave an improved space bound of O(

(1
ε

)(d+1)/2 log α
ε) points for higher dimensions. For more

general metric spaces, they obtain a (2m+2 − 2 + ε) approximation with O(N1/(m+1)) points.
In the metric distance oracle model (formally defined in Section 2) there exists a folklore

2 approximation that maintains the first point p and the point with maximum distance from
p. Guha [15] showed this algorithm to be essentially optimal, as no algorithm storing less
than Ω(n) points can achieve a ratio better than 2− ε for any ε > 0. For Euclidean spaces,
the best streaming algorithm with a polynomial dependency on d is due to Agarwal and
Sharathkumar [2] with an almost tight approximation ratio of

√
2 + ε in O(dε−3 log(1/ε))

space. Agarwal et al. [1] proposed a (1 +ε)-approximation using O(ε−(d−1)/2) points. Similar
space bounds seem likely for dynamic streams although none have been published to our
knowledge. For large d, Indyk [17] gave a sketching scheme with approximation factor c >

√
2

and space O(dn1/(c2−1) logn).

k-Center

In one of the earliest works on clustering in streams, Charikar et al. [9] gave a number of
incremental clustering algorithms for metric k-center, among other results. While storing
no more than k + 1 points at any given time, they were able to derive a deterministic
8 approximation and a randomized 2e ≈ 5.437 approximation. They also show that no
incremental algorithm can be better than 3. McCutchen and Khuller [19] and Guha [15]
independently derived a (2 + ε)-approximate algorithm using O(k/ε log 1/ε) space, with
Guha giving an almost tight lower bound of Ω(n) space for any algorithm achieving a better
approximation ratio than 2. In their paper, McCutchen and Khuller [19] also studied the
problem with z outliers, giving a (4 + ε) approximate algorithm that stores O(ε−1kz) points,
see also Charikar et al. [10] for an earlier treatment of the problem. Further improvements
are possible in Euclidean spaces. Zarrabi-Zadeh showed how to maintain ε-coresets in streams
using O(kε−d) points for k-center [20]. For small values of k, Kim and Ahn [18] were able
to break the 2 barrier without having an exponential dependency on d, giving a 1.8 + ε

approximation while storing O(2k(k+ 3)!ε−1) points. The special case of k = 1 for Euclidean
distances also known as the minimum enclosing ball problem is one of the most extensively
studied topics in streaming literature. We only review the best known bounds. Zarrabi-
Zadeh gave an insertion-only algorithm storing O(ε−(d−1)/2 log 1/ε) points [21]. Agarwal and
Sharathkumar [2] showed that no algorithm with polynomial dependency on d can achieve a
better approximation ratio than (1 +

√
2)/2 ≈ 1.207 and provided an algorithm which after

a re-analysis by Chan and Pathak [7] is now known to give a 1.22 approximation with space
roughly O(d).

We are not aware of any work on k-center in sliding windows, though Babcock et al. [3]
and more recently Braverman et al. [4, 5] gave a O(1) approximation for metric and a (1 + ε)
approximation for Euclidean k-median and k-means problems. The related problem of cut
sparsification has also received some attention, see Crouch et al. [11].

The structure of the paper is as follows. Section 2 introduces the model and the definitions.
Section 3 is dedicated to the description and analysis of our algorithm for the diameter
problem. The analysis and description of our algorithm for the k-center problem is in Section
4. Finally, Section 5 contains the lower bounds for both the diameter and k-center problems.

ICALP 2016

19:4 Diameter and k-Center in Sliding Windows

Algorithm 1 Sliding Window Algorithm for (γ, 3 · γ)-gap Diameter

1: cold, q, r ← first point of the stream;
2: cnew ← null;
3: for all element p of the stream do
4: if certificate point cold expires then
5: if (cnew 6= null ∧ cold = q) then
6: cold ← r; cnew ← null;
7: if (cnew 6= null ∧ cold 6= q) then
8: cold ← q; cnew ← null;
9: if cnew = null then

10: cold ← r;
11: INSERT(p);
12: r ← p;

13: procedure Insert(p)
14: if cnew = null then
15: if dist(p, r) > γ then
16: cold, q ← r; cnew ← p;
17: else if dist(p, cold) > γ then
18: q ← r; cnew ← p;
19: else
20: if dist(p, r) > γ then
21: cold, q ← r; cnew ← p;
22: else if dist(p, cnew) > γ then
23: cold ← cnew; q ← r; cnew ← p;
24: else if dist(p, q) > γ then
25: if cold 6= q then
26: cold ← q; q ← r; cnew ← p;

2 Preliminaries

Let (A, dist) be a metric space where A is a set of points and dist : A×A 7→ R+ is a distance
function. A stream is a (potentially infinite) sequence of points from the metric space A
(note that a point can be appear multiple times in the stream). The sliding window of size
N contains the most recent N elements of the stream.

We introduce the Time To Live value of a point p: Upon insertion TTL(p) is set to the
window size N and with each subsequently inserted point it is decremented. We say that p
expires if TTL(p) = 0. We extend the common use of TTL to negative numbers to indicate
the number of points submitted after expiration, i. e., TTL(p) = −10 means that 10 points
were submitted after the expiration of p. We define the aspect ratio α = maxp,q∈A dist(p,q)

minp,q∈A dist(p,q) .
To query the distance between two points p and q, we invoke a distance oracle dist(p, q). We
assume that the oracle can accessed only for those points we currently keep in memory and
that the oracle itself requires no additional space.

3 The Metric Diameter Problem

For a given estimate γ of the diameter, our algorithm for the metric diameter problem either
produces two witness points at distance greater than γ or a point c that has a certain degree
of centrality among the points in the current window. More formally, all points of the window
inserted up to the insertion time of c will be proven to have distance at most 2γ from one
another and points inserted after c will have distance at most γ from c. Thus, the diameter
is at most 3γ.

Specifically, Algorithm 1 aims at maintaining a certificate for the diameter consisting
of two points cold and cnew such that dist(cold, cnew) > γ and TTL(cold) < TTL(cnew). In
addition, we also store the point q submitted immediately prior to cnew and the most recent
point r. When a new point arrives, we test whether, based on the points we currently keep in
memory, we can produce two points each with a larger TTL than TTL(cold) with distance
more than γ. If we find such a pair, we update the points accordingly, if not we update r
and possibly q.

V. Cohen-Addad, C. Schwiegelshohn, and C. Sohler 19:5

The algorithm has two different states depending on whether it found a pair of points of
distance more than γ or not. The first state is indicated by cnew = null and corresponds to
the case that no such pair of points has been found. In this case, the algorithm maintains
the following invariant, which certifies that the diameter of the points in the sliding window
is at most 3 · γ.

We first observe that cold is always inside the sliding window.

I Invariant 1. If cnew = null, the following statements hold:
(a) For any points a, b with 0 ≤ TTL(a), TTL(b) ≤ TTL(cold), we have dist(a, b) ≤ 2 · γ.
(b) For any point a with TTL(a) > TTL(cold), we have dist(a, cold) ≤ γ.

The second state corresponds to the case that we discover two points cold and cnew with
distance more than γ and is indicated by cnew 6= null. Besides the obvious invariant that
TTL(cnew) > TTL(cold), we also have to maintain the following technical invariants that
are required for a new assignment of cold when it expires from the window.

I Invariant 2. If cnew 6= null then the following statements hold:
(a) dist(cold, cnew) > γ.
(b) For any point a with TTL(cold) < TTL(a) < TTL(cnew), we have dist(a, cold) ≤ γ.
(c) For any point a with TTL(cnew) < TTL(a), we have dist(a, cnew) ≤ γ.
(d) If cold 6= q then for any point a with TTL(q) < TTL(a), we have dist(a, q) ≤ γ.

We observe that all the invariants hold initially, i.e. before line 3 of the algorithm is
executed the first time. We also observe that Invariants 2a)-d) only apply to points that
appear after cold. It suffices to focus on these points because we only change cold to points
that arrive later and so we maintain our certificate at least until the time when cold expires
(and so all earlier points are gone).

I Lemma 1. If cnew = null and Invariant 1 is satisfied before INSERT then one of the
following statements holds:
1. If cnew = null after line 12 then Invariant 1 is satisfied.
2. If cnew 6= null after line 12 then Invariant 2 is satisfied.

Proof. We never execute lines 19–26 of INSERT. If dist(p, r) > γ then cnew 6= null and
Invariant 2(a) holds due to line 16, Invariant 2(b) holds due to the fact that there exists no
point a with TTL(cold) < TTL(a) < TTL(cnew), Invariant 2(c) holds due to the fact that
there exists no point a with TTL(cnew) < TTL(a), and Invariant 2(d) holds due to cold = q.
If dist(p, r) ≤ γ and dist(p, cold) > γ then cnew 6= null, and Invariant 2(a) holds due to line
18, Invariant 2(b) holds due to Invariant 1(b), Invariant 2(c) holds due to the fact that there
exists no point a with TTL(cnew) < TTL(a), and Invariant 2(d) holds due to r = q (before
line 12) and line 15. If dist(p, r) ≤ γ and dist(p, cold) ≤ γ then Invariant 1 continues to be
satisfied for all points with TTL smaller than p and for the point p due to line 17. J

I Lemma 2. If cnew 6= null and Invariant 2 is satisfied before INSERT, then Invariant 2 is
satisfied after line 12.

Proof. If dist(p, r) > γ then Invariant 2(a) holds due to line 21, Invariant 2(b) holds due to the
fact that there exists no point a with TTL(cold) < TTL(a) < TTL(cnew), Invariant 2(c) holds
due to the fact that there exists no point a with TTL(cnew) < TTL(a), and Invariant 2(d)
holds due to cold = q. If dist(p, r) ≤ γ and dist(p, cnew) > γ then Invariant 2(a) holds due to
line 23, Invariant 2(b) and 2(d) hold due to Invariant 2(c) before INSERT, and Invariant 2(c)
holds due to the fact that there exists no point a with TTL(cnew) < TTL(a). If dist(p, r) ≤ γ

ICALP 2016

19:6 Diameter and k-Center in Sliding Windows

and dist(p, cnew) ≤ γ, and dist(p, q) > γ and q 6= cold then Invariant 2(a) holds due to line
26, Invariant 2(b) holds due to Invariant 2(d) before INSERT, Invariant 2(c) holds due to the
fact that there exists no point a with TTL(cnew) < TTL(a), and Invariant 2(d) holds due to
q = r and line 20. If dist(p, r) ≤ γ and dist(p, cnew) ≤ γ, and dist(p, q) > γ and q = cold or
dist(p, q) ≤ γ, the Invariants 2(a)–(d) hold for all points except for the newest, for which the
invariants hold due to lines 20, 22, 24 and 25. J

I Lemma 3. If cnew = null and Invariant 1 is satisfied before the line 4, then it is satisfied
before INSERT (line 11).

Proof. If cold does not expire, then the claim obviously holds. Otherwise we execute line
10. Let c′old be the expired point. Then we have for any two points a, b with TTL(c′old) <
TTL(a), TTL(b) ≤ TTL(r) dist(a, c′old), dist(b, c′old) ≤ γ due to Invariant 1(b) before line 4
and hence dist(a, b) ≤ 2γ. Invariant 1(b) follows from cold = r. J

I Lemma 4. If cnew 6= null and Invariant 2 is satisfied before the line 4, then one of the
following statements holds before INSERT (line 11):
1. cnew = null and Invariant 1 is satisfied.
2. cnew 6= null and Invariant 2 is satisfied.

Proof. If cold does not expire the second claim immediately holds. Otherwise, we denote by
c′old the expired point. If c′old = q, then we execute line 6. We set cold = r, naturally satisfying
Invariant 1(b). Further, at this time we have TTL(cnew) = 1, and for any two points a, b
with TTL(cnew) ≤ TTL(a), TTL(b) ≤ TTL(r) we have dist(a, cnew), dist(b, cnew) < γ due
to Invariant 2(c) before line 4 and hence dist(a, b) ≤ 2γ, satisfying Invariant 1(a).

If c′old 6= q, then we execute line 8. We set cold = q. For any two points a, b with
TTL(c′old) < TTL(a), TTL(b) < TTL(cnew) dist(a, c′old),dist(b, c′old) ≤ γ due to Invari-
ant 2(b) before line 4 and hence dist(a, b) ≤ 2γ, satisfying Invariant 1(a). For all points a
with TTL(a) > q, Invariant 1(b) after line 12 follows from Invariant 2(d) before line 4. J

The proof of the theorem is a direct consequence of the invariants but included for
completeness.

I Theorem 5. Given a set of points A with aspect ratio α and a window of size N , there
exists an algorithm computing a 3(1+ε)-approximate solution for the metric diameter problem
storing at most 8/ε · lnα points. The update time per point is O(ε−1 logα).

Proof. For any given estimate γ, we either have two points at distance at least γ, or
Invariant 1 holds. In the latter case, we can bound the maximum diameter of two points p
and q via the following case analysis.
T T L(p), T T L(q) ≤ T T L(cold): Then dist(p, q) ≤ 2γ.
T T L(p) ≤ T T L(cold) < T T L(q): Then dist(p, q) ≤ dist(p, cold) + dist(cold, q) ≤ 3γ.
T T L(cold) < T T L(p), T T L(q): Then dist(p, q) ≤ dist(p, cold) + dist(cold, q) ≤ 2γ.
Now define an exponential sequence to the base of (1 + ε), such that any value between
min dist(p, q) and max dist(p, q) is (1 + ε) approximated. For each power of (1 + ε), we run
Algorithm 1. Let γ be the largest value for which one of the instances of Algorithm 1 returns
two points. The next larger estimate γ · (1 + ε) guarantees us no diameter of size 3(1 + ε)γ,
proving an approximation guarantee of at most 3(1+ε)γ

γ = 3(1 + ε) The memory usage of the
algorithm consists of 4 points per instance of Algorithm 1 and log1+ε α = lnα

ln(1+ε) ≤
2
ε lnα

instances. J

V. Cohen-Addad, C. Schwiegelshohn, and C. Sohler 19:7

I Remark. To adapt this algorithm for windows where the maximum number of points are
time dependent (e. g., the diameter of all points seen in the last hour) rather than the last N
points, we can simply decouple the insertion procedure from the deletion routine. Whenever
a point we currently keep in memory expires, we execute lines (4-10) and whenever a new
point arrives, we call the INSERT procedure and line 12. Neither the invariants nor the proofs
are affected in any way by this change.

4 The k-Center Problem

A 4-Approximation for Metric 2 Center
We run Algorithm 1 and show that, in the case of k = 2, it outputs a solution of cost
at most 4 times the optimal solution. More precisely, let γ be the smallest estimate such
that Algorithm 1 produces one point c with dist(q, c) ≤ 2γ for any point q in the current
window. Further let a and b be the two points at distance greater than γ

1+ε outputted by
Algorithm 1 for the next smaller estimate. W.l.o.g let dist(a, c) ≥ dist(b, c). Then {a, c}
form a 4 approximation.

I Theorem 6. Given a set of points A with aspect ratio α and a window of size S, there
exists an algorithm computing a 4(1+ε)-approximate solution for the 2-center problem storing
at most 8/ε · lnα points. The update time per point is O(ε−1 logα).

Proof. For c, the conditions of Invariant 1 apply, i.e. for any point p in our current window,
we have dist(p, c) ≤ 2γ. We now distinguish between two cases.
OPT ≥ γ

2(1+ε) : We have dist(p, {a, c}) ≤ dist(p, c) ≤ 2γ ≤ 4 · (1 + ε) ·OPT.
OPT < γ

2(1+ε) : We first observe that a and b each fall into distinct clusters as their pairwise
minimum distance is at least γ

1+ε . If a and c lie in distinct clusters, we have a 2-
approximate solution, so we assume this not be the case. Then dist(a, c) ≤ 2 ·OPT and by
construction, dist(a, c) ≥ dist(b, c). Then for any point p in the same cluster as b we have
dist(p, b) ≤ 2 ·OPT and hence dist(p, c) ≤ dist(p, b) + dist(b, c) ≤ 2 ·OPT + 2 ·OPT =
4 ·OPT.

The proof of the space bound is analogous to that of Theorem 5. J

6-Approximation for Metric k-Center
A high level description of our algorithm is as follows, see also Algorithm 2 for pseudocode. We
maintain a set A of at most k+1 attraction points. For each attraction point a, we maintain the
newest point R(a) within radius 2γ as a representative, i.e. R(a) = argmax

p: dist(p,a)≤2γ
TTL(R(a)).

When an attraction point expires, the representative point remains in memory. Call the set
of representative points whose attraction points expired, the orphaned representatives O,
and the set of representative points whose attraction points are still in the current window
active representatives R. A new point p may become an attraction point if its distance is
greater than 2γ to any point in A upon insertion. If the cardinality of A is greater than k,
we retain the newest k+ 1 attraction points of A and all points with a greater TTL than the
minimum TTL of A.

When asked to provide a clustering, we iterate through all estimates and either provide a
counter example, or find a clustering which is then guaranteed to be a 6(1+ε)-approximation.
Our set of centers C first consists of an arbitrarily chosen point p ∈ A ∪R ∪O. Thereafter
we greedily add any point point q ∈ A ∪ R ∪ O with distance dist(q, C) > 2γ. If upon

ICALP 2016

19:8 Diameter and k-Center in Sliding Windows

termination |C| > k, we have a certificate for OPT > γ and move to the next higher estimate.
The smallest estimate with |C| ≤ k is then guaranteed to be a 6 approximation.

We start by giving the space bound.

Algorithm 2 Sliding Window Algorithm for (γ, 6 · γ)-gap k-Center

1: A,R,O ← ∅;
2: for all element p of the stream do
3: if q ∈ O expires then
4: O ← O \ {q};
5: if a ∈ A expires then
6: DELETEATTRACTION(a);
7: INSERT(p);
8: procedure DeleteAttraction(a)
9: O ← O ∪ {R(a)};

10: R← R \ {R(a)};
11: A← A \ {a};

12: procedure Insert(p)
13: D ← {a ∈ A | dist(p, a) ≤ 2 · γ};
14: if D = ∅ then
15: A← A ∪ {p}
16: R(p)← p

17: R← R ∪ {R(p)}
18: if |A| > k + 1 then
19: aold ← argmin

a∈A
TTL(a);

20: DELETEATTRACTION(aold);
21: if |A| > k then
22: t← min

a∈A
TTL(a);

23: for all q ∈ O do
24: if TTL(q) < t then
25: O ← O \ {q};
26: else
27: for all a ∈ D do
28: Exchange R(a) with p in R;

I Lemma 7. At any given time, the number of points kept in memory is bounded by at most
3(k + 1).

Proof. We number all attraction points we keep in memory via the sequence in which they
arrived, i.e. a1 is the first attraction point, a2 the second, etc. Call this sequence S. Note
that in this sequence a1 also expires before a2.

At any given time, we maintain at most k + 1 attraction points A and k + 1 active
representative points R due to lines 18-20 and the subroutine DELETEATTRACTION (lines
8-11). What remains to be shown is that the number of orphaned representative points O
also never exceeds k + 1.

First, we show that TTL(ai+k+1) > TTL(R(ai)) ≥ TTL(ai). We distinguish between two
cases. If ai expires, then ai+k+1 gets inserted after ai exits the window, hence TTL(ai+k+1) >
N + 1 +TTL(ai) and TTL(R(ai)) +N ≤ TTL(ai). Otherwise, ai gets deleted via lines 18-20
in the exact same time step in which ai+k+1 got inserted, in which case the claim also holds.

Now consider any point of time and let j be the maximum index of any attraction point
in S that has expired. By the above reasoning, any representative spawned by aj−(k+1) is no
longer in memory, and the space bounds holds. J

I Lemma 8. Let P be a set of points in a given window, γ > 0 an estimate of the
clustering cost, A ∪R ∪O the set of points we currently keep in memory with |A| ≤ k. Then
max
q∈P

dist(p,R ∪O) ≤ 4γ.

V. Cohen-Addad, C. Schwiegelshohn, and C. Sohler 19:9

Proof. We note that for any attraction point a, the representative R(a) has maximum TTL

among all points with distance at most 2γ. When a point p arrives, it has distance at most
2γ to some attraction point (which may be identical to p if we create a new one). Hence, if
R(a) is still in memory, the claim holds for p.

We now argue that by executing lines 18-25, all points p with dist(p,R ∪O) > 4γ have
TTL(p) < min

a∈A
TTL(a). If TTL(p) > min

a∈A
TTL(a), then there exists an attraction point

a′ such that dist(p, a′) ≤ 2γ. Then we have TTL(R(a′)) ≥ TTL(p) > min
a∈A

TTL(a) and
dist(p,R(a′)) ≤ 4γ. Due to lines 24-25, R(a′) is never deleted until it expires. J

Combining these lemmas and using arguments analogous to those of the proof of The-
orem 5, we have:

I Theorem 9. Given a set of points P with aspect ratio α and a window size N , there exists
an algorithm computing a 6(1 + ε)-approximate solution for the metric k-center problem
storing 6(k + 1) ln(α)/ε) points. The update time per point is O(k2ε−1 logα).

Proof. Again define an exponential sequence to the base (1 + ε) and run Algorithm 2 in
parallel for all powers of (1 + ε) as objective value estimates. The space bound then follows
from Lemma 7.

For each estimate γ, we greedily compute a clustering of A ∪R ∪O where the pairwise
distance between centers is greater than 2γ. Now consider the smallest estimate γ′ for which
the greedy clustering requires at most k centers C.

We have max
p∈A∪R∪O

dist(p, C) ≤ 2γ′. We further have for any point q in the current window

max
q∈P

dist(q, C) ≤ max
q∈P

dist(q,R ∪O) + max
p∈A∪R∪O

dist(p, C) ≤ 4γ′ + 2γ′ ≤ 6γ′ due to Lemma 8.

Since we have OPT > γ′

1+ε , C is a 6(1 + ε) approximation. J

5 Lower Bounds

Our lower bounds for the studied problems hold for the metric oracle distance model.
Whenever we wish to know the distance between two points p, q, we have to store the points
in their entirety in order to invoke the oracle. The fundamental assumption used in the
proofs of this section is that the algorithm cannot create new points, unlike, for instance, in
Euclidean spaces, where we can store projections, means and similar points. In particular,
this implies that once a point is discarded by the algorithm, it cannot be recalled by any
means at a later date. Without any assumptions as to how the points are encoded, we
measure the space complexity of an algorithm via the number of stored points, rather than
the number of bits. We do not consider the space required to store the distance oracle, the
TTL of each point or any other information we might wish to store. A similar reasoning can
be also found in the paper by Guha [15], where the author was able to derive a lower bound
of Ω(k2) points for any deterministic single-pass streaming algorithm approximating the cost
of the optimal k-center clustering up to a factor 2 + 1/k.

We first describe an adversarial input sequence for deterministic algorithms for the
diameter problem and give a proof for randomized algorithms. With some modification,
these ideas can be extended to the k-center problem, as well. We aim for a lower bound of
Ω(
√
N) points for deterministic algorithms. We divide the input into

√
N buckets containing√

N points each. Unless the distances between two points are further specified, we will
set these distances to 1. Denote the ith bucket by Bi and the jth point of bucket Bi by

ICALP 2016

19:10 Diameter and k-Center in Sliding Windows

pi,j with i, j ∈ {0, . . . ,
√
N − 1}. The points appear bucket by bucket, that is, pi,j is the

i ·
√
N + j + 1th input point.
We assume that an algorithm always stores less than

√
N points. Therefore, the algorithm

must discard at least one point of bucket Bi before reading the first point of bucket Bi+1.
Let fi be such a discarded point in Bi. To any point from some bucket Bj , j > i, we then
set the distance to fi to be 2. By the same reason, there is at least one bucket without any
stored points when the N + 1st input point is read. Let Bt be this bucket. We now introduce
the N + 1st input point p that satisfies the distances dist(p, pi,j) = 1 if i > t, dist(p, pi,j) = 3
and dist(p, pi,j) = 2 otherwise.

We proceed to insert copies of p until all points in buckets Bi with i < t are expired.
Therefore, there is no pair of points in memory with distance larger than 1. The algorithm
can only output two points at distance 1 whereas the true diameter is 3.

I Theorem 10. For windows of size N , any deterministic sliding window algorithm outputting
a solution of cost greater than 1

3OPT for the distance oracle metric diameter problem with
constant aspect ratio requires Ω(

√
N) points.

Recall that the algorithm by Chan and Sadjad [8] achieves a 2m+2 − 2 + ε approximation
using O(N1/(m+1) logα) points, and it also falls under the same computational restrictions
for the algorithms of this lower bound. Therefore, this lower bound cannot be strengthened
by much, as their algorithm achieves a better approximation than 3 using roughly N0.76

points by setting m < log 5/4.
To utilize this instance for randomized algorithms, we require two modifications. First, we

add additional points per bucket and uniformly choose fi such that a randomized algorithm
has little chance of retaining the correct point per bucket. Second, we use p (and its copies) to
uniformly select a bucket Bt which the algorithm will have discarded with good probability.

I Theorem 11. For windows of size N , any randomized sliding window algorithm outputting
a solution of cost greater than 1

3OPT with probability greater than 1
2 for the distance oracle

metric diameter problem with constant aspect ratio requires Ω(3
√
N) points.

Proof. For ease of exposition, we will use a window of size Θ(N). The theorem then follows
by rescaling N . We use 4N1/3 buckets consisting of 32N2/3 points each. In the following,
any distance that is not further specified is set to be 1.

We iteratively replace one randomly chosen point from bucket Bi with fi where fi has
distance 2 to any point from bucket Bj with j > i. At the end of the stream, we insert a
point p with the following distances. First, choose a random bucket Bt and set dist(p, ft) = 3
and dist(p, q) = 2, where q ∈ Bt \ {ft}. Any point inserted after bucket Bt has distance 1 to
p and any point inserted before Bt has distance 2. We then repeatedly add copies of p at
total of N times.

To show that the distances still satisfy the triangle inequality, we first observe that
only dist(p, ft) is neither 1 or 2 and thus requires special consideration. Here, we have
3 = dist(p, ft) ≤ dist(p, q) + dist(q, ft) = 1 + 2 for q ∈ Bi with i > t, and 3 = dist(p, ft) ≤
dist(p, q) + dist(q, ft) ≤ 2 + 1 for q ∈ Bi with i ≤ t.

At any given time, the algorithm has to output a pair of points whose distance is within
a factor 3 of the diameter of the current window. Observe that if the algorithm did not
store any of the replaced points {f0, . . . , f4N1/3−1} and not any point of bucket Bt then the
algorithm is not able to produce two points at distance greater than 1. Hence, by Yao’s
minimax principle, it is sufficient to bound the number of points used by any deterministic
algorithm against the above input distribution.

V. Cohen-Addad, C. Schwiegelshohn, and C. Sohler 19:11

We first bound the probability that the algorithm stores some point fi. Call this event
A. If we assume that the algorithm did not store any of the points {f1, . . . , fi} it follows
that the points in bucket Bi+1 all have the same distance to the stored points. This implies
that we can assume that the decision which points of bucket Bi+1 will be kept is already
fixed. The probability that fi is one of these points is bounded by the hypergeometric
distribution with population 32 ·N2/3, N1/3 samples and 1 success in both population and

sample: (32·N2/3−1
N1/3−1)·(1

1)
(32·N2/3

N1/3)
. Then the probability that no fi is stored for any of the 4 · N1/3

buckets can be lower bounded by

1− P[A] ≥

1−
(32·N2/3−1
N1/3−1

)
·
(1

1
)(32·N2/3

N1/3

)
4·N1/3

=
(

1− N1/3

32 ·N2/3

)4·N1/3

≥ 1− 1
8 = 7

8 .

Now we bound the probability that the algorithm retains any point from bucket t upon
submission, which we call event B. Again, conditioned on the event that A does not hold
(A), the buckets from which the algorithm stores at least one point are fixed. The probability
that Bt is among the stored buckets again follows a hypergeometric distribution with
population 4 ·N1/3, N1/3 samples and 1 success in both population and sample. Therefore

P[B|A] = (4·N1/3−1
N1/3−1)·(1

1)
(4·N1/3

N1/3)
= 1

4 . Since one of the events A or B has to hold for the algorithm to

output a solution with approximation factor greater than 1
3 , the probability that an algorithm

storing less than N1/3 points produces a solution with the desired approximation guarantee
is at most P[A∪B] ≤ P[A]+P[B] = P[A]+P[B|A] ·P[A]+P[B|A] ·P[A] ≤ 2 ·P[A]+P[B|A] ≤
2
8 + 1

4 = 1
2 . J

We only briefly describe the k-center lower bound. The instance is also divided into
sufficiently large buckets, from which the algorithm is forced to discard one point each. The
main difference with the previous proof will be that the distances between all the points
(except for a randomly chosen missing point ft) are 2 and the distance from ft to the more
recent buckets is 4.

I Theorem 12. For windows of size N , any randomized sliding window algorithm achieving
an approximation factor less than 4 with probability greater than 1

2 for the distance oracle
metric 2 center problem with constant aspect ratio requires Ω(3

√
N) points.

References
1 Pankaj K. Agarwal, Jirí Matousek, and Subhash Suri. Farthest neighbors, maximum span-

ning trees and related problems in higher dimensions. Comput. Geom., 1:189–201, 1991.
doi:10.1016/0925-7721(92)90001-9.

2 Pankaj K. Agarwal and R. Sharathkumar. Streaming algorithms for extent problems in
high dimensions. Algorithmica, 72(1):83–98, 2015. doi:10.1007/s00453-013-9846-4.

3 Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining
variance and k-medians over data stream windows. In Proceedings of the Twenty-Second
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June
9-12, 2003, San Diego, CA, USA, pages 234–243, 2003. doi:10.1145/773153.773176.

4 Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering on
sliding windows in polylogarithmic space. In 35th IARCS Annual Conference on Foundation
of Software Technology and Theoretical Computer Science, FSTTCS 2015, December 16-18,
2015, Bangalore, India, pages 350–364, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.350.

ICALP 2016

http://dx.doi.org/10.1016/0925-7721(92)90001-9
http://dx.doi.org/10.1007/s00453-013-9846-4
http://dx.doi.org/10.1145/773153.773176
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.350

19:12 Diameter and k-Center in Sliding Windows

5 Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering
problems on sliding windows. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 1374–1390, 2016. doi:10.1137/1.9781611974331.ch95.

6 Vladimir Braverman and Rafail Ostrovsky. Effective computations on sliding windows.
SIAM J. Comput., 39(6):2113–2131, 2010. doi:10.1137/090749281.

7 Timothy M. Chan and Vinayak Pathak. Streaming and dynamic algorithms for minimum
enclosing balls in high dimensions. Comput. Geom., 47(2):240–247, 2014. doi:10.1016/j.
comgeo.2013.05.007.

8 Timothy M. Chan and Bashir S. Sadjad. Geometric optimization problems over slid-
ing windows. Int. J. Comput. Geometry Appl., 16(2-3):145–158, 2006. doi:10.1142/
S0218195906001975.

9 Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental cluster-
ing and dynamic information retrieval. In Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages
626–635, 1997. doi:10.1145/258533.258657.

10 Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms
for clustering problems. In Proc. of the 35th Annual ACM Symp. on Theory of Computing,
June 9-11, 2003, San Diego, CA, USA, pages 30–39, 2003. doi:10.1145/780542.780548.

11 Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-
window model. In Algorithms – ESA 2013 – 21st Annual European Symposium, Sophia
Antipolis, France, September 2-4, 2013. Proceedings, pages 337–348, 2013. doi:10.1007/
978-3-642-40450-4_29.

12 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002. doi:10.1137/
S0097539701398363.

13 Joan Feigenbaum, Sampath Kannan, and Jian Zhang. Computing diameter in the
streaming and sliding-window models. Algorithmica, 41(1):25–41, 2004. doi:10.1007/
s00453-004-1105-2.

14 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci., 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.

15 Sudipto Guha. Tight results for clustering and summarizing data streams. In Database
Theory – ICDT 2009, 12th International Conference, St. Petersburg, Russia, March 23-25,
2009, Proceedings, pages 268–275, 2009. doi:10.1145/1514894.1514926.

16 Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. J. ACM, 33(3):533–550, 1986. doi:10.1145/5925.5933.

17 Piotr Indyk. Better algorithms for high-dimensional proximity problems via asymmetric
embeddings. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 12-14, 2003, Baltimore, Maryland, USA., pages 539–545, 2003.

18 Sang-Sub Kim and Hee-Kap Ahn. An improved data stream algorithm for clustering.
Comput. Geom., 48(9):635–645, 2015. doi:10.1016/j.comgeo.2015.06.003.

19 Richard Matthew McCutchen and Samir Khuller. Streaming algorithms for k-center cluster-
ing with outliers and with anonymity. In Approximation, Randomization and Combinatorial
Optimization. Algorithms and Techniques, 11th International Workshop, APPROX 2008,
and 12th International Workshop, RANDOM 2008, Boston, MA, USA, August 25-27, 2008.
Proceedings, pages 165–178, 2008. doi:10.1007/978-3-540-85363-3_14.

20 Hamid Zarrabi-Zadeh. Core-preserving algorithms. In Proc. of the 20th Annual Canadian
Conf. on Computational Geometry, Montréal, Canada, August 13-15, 2008, 2008.

21 Hamid Zarrabi-Zadeh. An almost space-optimal streaming algorithm for coresets in fixed
dimensions. Algorithmica, 60(1):46–59, 2011. doi:10.1007/s00453-010-9392-2.

http://dx.doi.org/10.1137/1.9781611974331.ch95
http://dx.doi.org/10.1137/090749281
http://dx.doi.org/10.1016/j.comgeo.2013.05.007
http://dx.doi.org/10.1016/j.comgeo.2013.05.007
http://dx.doi.org/10.1142/S0218195906001975
http://dx.doi.org/10.1142/S0218195906001975
http://dx.doi.org/10.1145/258533.258657
http://dx.doi.org/10.1145/780542.780548
http://dx.doi.org/10.1007/978-3-642-40450-4_29
http://dx.doi.org/10.1007/978-3-642-40450-4_29
http://dx.doi.org/10.1137/S0097539701398363
http://dx.doi.org/10.1137/S0097539701398363
http://dx.doi.org/10.1007/s00453-004-1105-2
http://dx.doi.org/10.1007/s00453-004-1105-2
http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/10.1145/1514894.1514926
http://dx.doi.org/10.1145/5925.5933
http://dx.doi.org/10.1016/j.comgeo.2015.06.003
http://dx.doi.org/10.1007/978-3-540-85363-3_14
http://dx.doi.org/10.1007/s00453-010-9392-2

	Introduction
	Preliminaries
	The Metric Diameter Problem
	The k-Center Problem
	Lower Bounds

