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Abstract
We study competition in a general framework introduced by Immorlica, Kalai, Lucier, Moitra,
Postlewaite, and Tennenholtz and answer their main open question. Immorlica et al. considered
classic optimization problems in terms of competition and introduced a general class of games
called dueling games. They model this competition as a zero-sum game, where two players are
competing for a user’s satisfaction. In their main and most natural game, the ranking duel, a
user requests a webpage by submitting a query and players output an ordering over all possible
webpages based on the submitted query. The user tends to choose the ordering which displays her
requested webpage in a higher rank. The goal of both players is to maximize the probability that
her ordering beats that of her opponent and gets the user’s attention. Immorlica et al. show this
game directs both players to provide suboptimal search results. However, they leave the following
as their main open question: “does competition between algorithms improve or degrade expected
performance?" (see the introduction for more quotes) In this paper, we resolve this question for
the ranking duel and a more general class of dueling games.

More precisely, we study the quality of orderings in a competition between two players. This
game is a zero-sum game, and thus any Nash equilibrium of the game can be described by minimax
strategies. Let the value of the user for an ordering be a function of the position of her requested
item in the corresponding ordering, and the social welfare for an ordering be the expected value
of the corresponding ordering for the user. We propose the price of competition which is the
ratio of the social welfare for the worst minimax strategy to the social welfare obtained by a
social planner. Finding the price of competition is another approach to obtain structural results
of Nash equilibria. We use this criterion for analyzing the quality of orderings in the ranking
duel. Although Immorlica et al. show that the competition leads to suboptimal strategies, we
prove the quality of minimax results is surprisingly close to that of the optimum solution. In
particular, via a novel factor-revealing LP for computing price of anarchy, we prove if the value
of the user for an ordering is a linear function of its position, then the price of competition is
at least 0.612 and bounded above by 0.833. Moreover we consider the cost minimization version
of the problem. We prove, the social cost of the worst minimax strategy is at most 3 times the
optimal social cost.

Last but not least, we go beyond linear valuation functions and capture the main challenge for
bounding the price of competition for any arbitrary valuation function. We present a principle
which states that the lower bound for the price of competition for all 0-1 valuation functions is
the same as the lower bound for the price of competition for all possible valuation functions. It is
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21:2 Price of Competition and Dueling Games

worth mentioning that this principle not only works for the ranking duel but also for all dueling
games. This principle says, in any dueling game, the most challenging part of bounding the price
of competition is finding a lower bound for 0-1 valuation functions. We leverage this principle to
show that the price of competition is at least 0.25 for the generalized ranking duel.
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Keywords and phrases POC, POA, Dueling games, Nash equilibria, sponsored search
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1 Introduction

The conventional wisdom is that competition among suppliers will increase social welfare
by providing consumers with competitive prices, high-quality products, and a wide range of
options. A classic example is the Bertrand competition [10] where suppliers compete in price
to incentivize consumers to buy from them and as a result the market price decreases to the
point that it matches the marginal cost of production. Indeed there are many theoretical and
empirical studies for supporting this belief in the economic literature (see, e.g., [29, 25, 24, 2]).
However while in many markets the competition steers businesses to optimize their solutions
for consumers, there are competitive markets in which businesses do not offer the best option
to consumers. An interesting example for describing this situation is a dueling game, namely,
a zero-sum game where two players compete to attract users. Immorlica, Kalai, Lucier,
Moitra, Postlewaite, and Tennenholtz [19] showed surprisingly if players are aimed to beat
their opponents in a dueling game, they may offer users suboptimal results. However, they
raised this question regarding the efficiency of the competition as the authors write, “Perhaps
more importantly, one could ask about performance loss inherent when players choose their
algorithms competitively instead of using the (single-player) optimal algorithm. In other
words, what is the price of anarchy1 of a given duel? . . .Our main open question is (open
question 1): does competition between algorithms improve or degrade expected performance?”
As we describe below, we study this open question for a set of dueling games and in particular
for the ranking duel which is an appropriate representative of dueling games due to Immorlica
et al. [19].

Dueling games. A dueling game G is a zero-sum game where two players compete for the
attention of a user 2. In a dueling game both players try to beat the other player and offer
a better option with a higher value to the user. In particular, while the user’s request is
unknown to both players and they only have access to probability distribution p, the goal
for each player is to maximize the probability that her offer is better than her opponent’s
offer. This framework falls within a general and natural class of ranking or social context
games [7, 11], where each player plays a base game separately and then ultimate payoffs are
determined by both their own outcomes and the outcomes of others. Immorlica et al. argue
that this class of games models a variety of scenarios of competitions between algorithm
designers, such as, competition between search engines (who must choose how to rank search

1 Indeed Immorlica et al. [19] use the term of the price of anarchy in their aforementioned open question
for the same concept of the price of competition in this paper.

2 One can see the user as a population of users with the same behavior.
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results), or competition between hiring managers (who must choose from a pool of candidates
in the style of the secretary problem).

To be more precise a dueling game is defined by 4-tuple G = (Ω, p, S, v), where Ω is the
set of all possible requests from the user, p is a probability distribution over set Ω i.e., pω is
the probability of requesting ω ∈ Ω by the user, S is the set of all possible pure strategies
for both players, and vω(s) is the value of pure strategy s ∈ S for the user upon request
ω ∈ Ω. Note that v is usually considered to be the valuation of the players, but in this paper
valuation function v denotes the value for the user. While a mixed strategy is a probability
distribution over all possible pure strategies in S, we write the value of mixed strategy x as
vω(x) = Es∼x[vω(s)].

A social planner is often interested in choosing a strategy which maximizes the social
welfare, even though it may be a bad strategy in the competition between players. This
means the social welfare maximizer strategy may not appear in any Nash equilibrium of the
game, and thus the competition between players results in a suboptimal outcome for the
users. Knowing the fact that Nash equilibria of a dueling game can be formed by suboptimal
strategies, the following question seems to be an important question to ask regarding the
inefficiency of this competition:

What is the social welfare of any Nash equilibrium in a dueling game in comparison
to the social welfare of the optimal strategy?

Price of competition. As aforementioned while in so many cases the competition motivates
businesses to optimize their solutions for consumers, there are competitive markets and
in particular dueling games of Immorlica et al. [19], in which businesses do not offer the
best option to consumers. We define price of competition in this paper to capture this
phenomenon.

First we note that since dueling games are two-player zero-sum games, Nash equilibria
of these games are characterized by minimax strategies. Therefore, one can measure the
inefficiency of any Nash equilibrium by comparing the welfare of any minimax strategy, in
a game of competition between two players, with the welfare achieved by a social welfare
maximizer. We are now ready to define the following criterion for measuring the quality of
minimax strategies in a dueling game.

I Definition 1. Price of competition (PoC) is the ratio between the social welfare of
the worst minimax strategy and the social welfare of the best possible strategy.

The proposed concept of the price of competition has the same spirit as the concept of
the price of anarchy, and both concepts try to measure the inefficiency of Nash equilibria
quantitatively. The price of anarchy, introduced by the seminal work of Koutsoupias and
Papadimitriou [23], is a well-known concept in game theory that measures the ratio of the
social welfare of the worst Nash equilibrium to the optimal social welfare. Although these
two concepts are defined to capture properties of Nash equilibria, they are meaningfully
different. In the price of anarchy, the social welfare is defined as the expected utility of all
players in an equilibrium “outcome”3 which is always zero for any zero-sum game. However,
in the price of competition, the social welfare is the expected utility of the user (which is not
a player) in a minimax “strategy”. In fact, the price of competition is aimed to analyze the
impact of the competition between players on an external user.

3 Which is essentially the same as the sum of utilities of all players.
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Since the price of competition captures the inefficiency of minimax strategies in two-player
zero-sum games and all Nash equilibria of any two-player zero-sum game can be described
by the set of minimax strategies, we believe the price of competition sheds new light on the
structural analysis of Nash equilibria in two-player zero-sum games. Indeed as Alon, Demaine,
Hajiaghayi, and Leighton [5] mention understanding the structure of Nash equilibiria, and
not just the price of anarchy, is very important in general and thus our work is exactly
toward this direction.

Due to the space constraints, all the missing proofs are provided in the appendices.

1.1 Our results
Ranking duel: To define the ranking duel more precisely, consider a ranking duel with two
players. When a user submits a query to a player, she is basically searching a webpage
which is unknown to the player. The player only has a prior knowledge about the requested
webpage, i.e., for each webpage the probability that this webpage is requested by the user
is known. The strategy of each player is an ordering for displaying webpages. When the
requested webpage is realized, the player which puts this webpage in a higher rank gets the
user attention, and thus wins the competition. The goal of each player is to maximize the
probability of winning the competition. In this situation, a social planner who wants to
minimize the expected rank of the requested webpage lists webpages in a decreasing order of
their probabilities. However, this strategy may lose the competition to another strategy.4

We first investigate the quality of minimax strategies and prove that surprisingly the
social welfare of any minimax strategy is not far from that of the optimal solution; it is 0.612
of the optimal solution for the linear valuation functions and 0.25 of the optimal for any
arbitrary valuation function.

I Theorem 1. Consider an instance of the raking duel. If the valuation function is a
non-negative linear function of the rank, the price of competition is at least 0.612 for |Ω| ≥ 10,
and at most 0.833.

Our proof needs a careful understanding of properties for minimax strategies and has three
main steps. First, we prove nice structural properties of minimax strategies. This step is the
main step toward bounding the price of competition and gives an insight into properties of
the polytope of minimax strategies. For example for every two webpages ω1 and ω2 with
pω1 > pω2 , we prove there is a lower bound on the probability that any minimax strategy
ranks webpage ω1 before webpage ω2. In the next step, we leverage these properties to
write a factor-revealing mathematical program for bounding PoC. At last, we find a linear
program where the set of its feasible solutions is a superset of the set of feasible solutions of
the former mathematical program. We find the optimal solution of this linear program to
formally prove the theorem for |Ω| ≥ 10. Moreover, we write a computer program to find the
optimal solution of the corresponding linear program and show the price of competition is at
least 0.637 for |Ω| ≥ 100 (which is slightly better the case that Ω ≥ 10). To the best of our
knowledge, we are the first to use factor-revealing techniques to bound the inefficiency of
equilibria.

4 For example consider a situation when the user submits a query and she is interested in webpages w1,
w2, and w3 with probabilities 0.35, 0.33 and 0.32 respectively. In this situation the social planner ranks
webpage wi at position i, for i = 1, 2, 3. However, if a player plays based on this strategy, her opponent
puts webpages w2, w3, and w1 at positions 1, 2, and 3 respectively, and thus wins the competition when
the user requests webpages w2 or w3. This means the social planner strategy loses the competition with
probability 0.65.
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Afterwards, we consider the cost minimization version of the ranking duel and prove a
constant upper bound for the social cost of the game using the same technique of Theorem 1.
Note that the only difference between the cost minimization and welfare maximization of a
dueling game is that function v is a cost function rather than a valuation function, and once
a webpage is searched the winner of the cost minimization game is the player who provides a
solution with a lower cost. Moreover, we define the PoCcost of the ranking duel as the ratio
between the minimax strategy with the highest cost and the strategy with the least cost. In
the following theorem we show that PoCcost ≤ 3.

I Theorem 2. For a ranking duel with a linear cost function, we have PoCcost ≤ 3.

It is worth mentioning that the structural properties of minimax strategies do not depend on
the valuation function, and thus the polytope of minimax strategies remains unchanged for
every valuation function which is a decreasing (increasing) function of rank in the welfare
maximization (cost minimization) variant of the game. Therefore, we leverage structural
properties of the polytope of minimax strategies, which is presented in Theorem 1, for
proving Theorem 2 and in general one can apply our techniques for characterizing the
polytope of minimax strategies for an arbitrary valuation function. Nevertheless, writing
the factor-revealing mathematical program totally depends on the linearity of the valuation
function.

General valuation functions: There are situations where the value of the user is not a
linear function of rank. For example, consider a user that only cares about the top search
results and will be satisfied if and only if her requested webpage is ranked higher than a
certain threshold. We investigate the efficiency of minimax strategies for any non-negative
non-linear valuation function. Moreover, we go beyond the ranking duel and consider other
dueling games, in the pioneering work of [19]. While bounding the social welfare for arbitrary
valuation functions and general dueling games seems to be challenging, we present a general
principle to capture the main challenge of this problem. The proposed principle has the same
spirit as the classic 0-1 principle in the sorting network which states: “a sorting network will
sort any given input if and only if it sorts any given 0-1 input [13].” The following principle
has the same message and shows if one can bound the social welfare for any 0-1 valuation
function, the same bound holds for any arbitrary valuation function. This means the main
challenge for bounding the social welfare is to bound it for 0-1 valuation functions. The
main idea for proving Theorem 3 is to decompose any valuation function into 0-1 valuation
functions.

I Theorem 3. 0-1 Principle: Consider a dueling game. If the price of competition is greater
than α when the social welfare is defined based on any 0-1 valuation function, then it is
greater than α when the social welfare is defined based on any valuation function.

One can leverage this principle to analyze the efficiency of competition in any dueling
game. For example, we show that the price of competition in the ranking duel is at least
0.25 for an arbitrary valuation function.

I Theorem 4. The price of competition is at least 0.25 for the ranking duel, when the social
welfare is defined based on an arbitrary valuation function.

In the proof of Theorem 4, based on the 0-1 principle, we first consider the problem with
pseudo-valuation functions in which the value of each position is either 0 or 1. We consider
x∗ as the minimax strategy with the least social welfare and construct a response strategy
x′i for the second player for every 1 ≤ i ≤ n as follows:
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21:6 Price of Competition and Dueling Games

Draw a permutation randomly based on strategy x∗. If the value of the position of the
i-th webpage is 1 then play that permutation. Otherwise, swap the position of the i-th
webpage with one of the positions with value 1 at random and play the new permutation.

Next, we use the fact that minimax strategy x∗ does not lose to strategy x′i for proving a set
of inequalities which later on helps us to bound the price of competition. Finally, we use the
0-1 principle to show that this lower bound holds for all possible valuation functions.

This principle also helps us to provide upper bounds on the price of competition when one
considers a general valuation function. For example we show that the PoC of the following
game introduced by Immorlica et al. [19] cannot be bounded by any constant value:
Binary search duel: The binary search duel is a dueling game where each player chooses a

binary search tree over the set of all possible requests Ω. When the user’s request ω ∈ Ω
is realized, the value for each strategy is defined based on the depth of request ω in the
corresponding binary search tree.

I Theorem 5. The price of competition is O( 1
|Ω| ) for the binary search duel, when the social

welfare is defined based on an arbitrary valuation function.

In order to construct bad instances for these duels, we design a valuation function which
is 1 for low depths, 0 for high depths, and a small positive value ε in between. We show
the price of competition is less than any given number β > 0 for the binary search duel by
constructing an instance of the binary search duel with |Ω| = Θ( 1

β ).

1.2 Related work
Immorlica et al. [19] are the first who considered the concept of dueling games. They present
dueling games in the context of dueling algorithms, where two competitive algorithms try
to maximize the probability of outperforming their opponent for an unknown stochastic
input. While we employ the same model in this paper, our goal completely differs from
that of Immorlica et al. [19]. Immorlica et al. [19] present polynomial-time algorithm for
finding a minimax strategy of a dueling game when the polytope of minimax strategies
can be represented by a polynomial number of linear constraints. Knowing the fact that
the polytope of minimax strategies of any ranking duel has polynomially many facets, they
propose a polynomial-time algorithm for finding a minimax strategy of ranking duels. This
method was later generalized by [3] to solve the Colonel Blotto game. Immorlica et al. [19]
leave the problem of analyzing the social welfare of competitive algorithms as their main
open question. In this paper, we do not deal with the computational complexity of finding
minimax strategies, but we focus on answering the posted open question and analyze the
social welfare of minimax strategies for a given duel.

As we are interested in quantifying the inefficiency of Nash equilibria, our proposed
concept of the price of competition has the same flavor as the concept of the price of anarchy
[23, 26]. The price of anarchy is commonly used for quantifying the inefficiency of a system
which is constructed by selfish agents. For example, it has been used to analyze the inefficiency
of Nash equilibria in congestion games [27, 12], network creation games [16, 14, 4, 5], and
selfish scheduling games [6, 20]. (See, e.g. [26] for more examples).

Kempe and Lucier [21] recently study the impact of competition on the social welfare
in a competitive sponsored search market. In their model, which is a departure from the
model of Immorlica et al. [19], search engines again compete to obtain more users. A user’s
request is defined by a set S of webpages which is unknown to search engines, and the user is
satisfied if and only if at least one of webpages in S is ranked in a better position than a given
threshold t. The strategy of each search engine is an ordering over all possible webpages.
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At last, the user chooses a search engine based on a selection rule which is a function of
probability of being satisfied by each search engine. Kempe and Lucier [21] prove that if
search engines extract utility from satisfied users or the search engine selection rule is convex,
then the social welfare of the game is at least half of the optimum social welfare. Moreover,
they show if the utility of search engines is driven from all customers and the search engine
selection rule is concave, then the social welfare of the game is bounded away from that of
the optimum solution by a factor of Ω(n), where n is the number of all possible webpages.
We would like to note that our model is a general model for studying all dueling games which
is exactly the same as the model of Immorlica et al. [19], and is significantly different from
that of Kempe and Lucier [21].

There is a line of research that study a competition between advertisers in sponsored
search auctions [1, 9, 17, 15, 22]. These works analyze the revenue of a single search engine
in various settings regarding users’ behavior and the business model of advertisers. However,
in ranking duel we investigate a competition between players who provide orderings rather
than advertisers.

There is a rich literature in economics that explains product differentiation in competitive
markets. While producing similar products is supported by classical models such as the
Hotelling model [18], Aspremont, Gabszewicz, and Thisse [8] argue that competitive producers
may improve their revenue by producing different products. See, e.g., [29, 25, 24] for details
on this literature. The same phenomenon can be seen in the sponsored search market, e.g.,
Telang, Rajan, and Mukhopadhyay [28] show low-quality search engines may extract revenue
from the sponsored search market.

2 Model

2.1 Dueling games
In dueling game G both players try to beat the other player and offer a better value in
the competition. Assume players A and B play pure strategies sA and sB respectively,
and event ω has occurred. In this situation, player A wins the competition if and only if
vω(sA) > vω(sB), and thus the utility of player A given event ω can be written as follows:

uAω (sA, sB) =


+1 if vω(sA) > vω(sB)
0 if vω(sA) = vω(sB)
−1 if vω(sA) < vω(sB)

Now consider a situation where players A and B play mixed strategies x and y respectively
and event ω has occurred. The utility of player A is the probability that player A wins the
competition minus the probability that player B wins the competition and can be defined as
follows:

uAω (x,y) = PrsA∼x
sB∼y

[vω(sA) > vω(sB)]− PrsA∼x
sB∼y

[vω(sA) < vω(sB)]

Finally the overall utility of player A is uA(x,y) =
∑
ω pωu

A
ω (x,y). Since dueling game

G is a zero-sum game the utility of player B is the negation of the utility of player A for each
ω, i.e., uBω (x,y) = −uAω (x,y) and thus uB(x,y) = −uA(x,y).

I Definition 2 (Minimax strategy). Strategy x of player A is minimax if
x ∈ argmaxx′{miny{uA(x′,y)}}. Similarly, Strategy y of player B is minimax if y ∈
argmaxy′{minx{uB(x,y′)}}.
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21:8 Price of Competition and Dueling Games

Based on the definition of dueling games and the fact that the set of all possible pure
strategies for both players is S, we can conclude the outcome of both players in any Nash
equilibrium is 0 and moreover the set of minimax strategies of both players coincide. We
define the set of minimax strategies byM.

I Definition 3 (Social welfare). Consider dueling game G = (Ω, p, S, v). The social welfare of
pure strategy s is the expected value of this strategy over all possible events and can be written
as SW(s) =

∑
ω pωvω(s). The social welfare of mixed strategy x is SW(x) = Es∼x[SW(s)].

In this paper, we are interested to study the social welfare of the game in equilibria. Note
that the customer locks into one of the players in long term. On the other hand, both players
only try to offer the customer a better option than the other one, and thus play a minimax
strategy in the competition. These cause inefficiency in the game. Here we define a new
criterion to measure this inefficiency in the game.

I Definition 4 (Price of competition). The price of competition is the ratio of the worst
minimax strategy to the optimal solution which is:

minx∈M SW(x)
maxx SW(x) = minx∈M SW(x)

maxs∈S SW(s) .

Similar to the welfare maximization model, we consider the cost minimization model in
which players try to beat the opponent by offering a lower cost to the user. In particular we
have a cost function c, such that cω(s) denotes the cost of strategy s and event ω. Hence,
the utility of player A would be defined as

uAω (x,y) = PrsA∼x
sB∼y

[cω(sA) < cω(sB)]− PrsA∼x
sB∼y

[cω(sA) > cω(sB)].

Similarly we define the social cost SC(s) =
∑
ω pωcω(s) for a pure strategy s and SC(x) =

Es∼x[SC(s)] for a mixed strategy x. Finally the price of competition in cost minimization
version is defined as

maxx∈M SC(x)
minx SC(x) = maxx∈M SC(x)

mins∈S SC(s) .

2.2 Ranking duel
Ranking duel is a dueling game where Ω = {1, · · · , n} is the set of n webpages which can
be requested by a user. In this game, the set of pure strategies S is equal to the set of all
possible permutations over Ω, i.e., each player outputs an ordering of webpages for the user.
We denote each pure strategy of the ranking duel by π (instead of s) where π(ω) is the rank
of webpage ω. The valuation function v of a raking duel can be defined based on function
f : {1, · · · , n} → R+ ∪ {0} as vω(π) = f(π(ω)). Consider mixed strategy x where xπ is the
probability that strategy x outputs permutation π. The social welfare of strategy x can be
defined as:

SW(x) =
∑
ω

∑
π

pωxπf(π(ω)). (1)

3 Price of competition in the linear ranking duel

3.1 Welfare maximization ranking duel
In this section we give bounds for the PoC in the ranking duel when the valuation function
is non-negative and linear, in other words f(i) = c(n− i) + d, where c, d ≥ 0.
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First we formulate the social welfare of strategy x and the optimal social welfare. Without
loss of generality in this section we assume p1 ≥ p2 ≥ . . . ≥ pn. Let Prπ∼x[π(a) = i] denote
the probability that in a randomly drawn permutation π from strategy x, the rank of webpage
a is i. Similarly let Prπ∼x[π(a) < π(b)] denote the probability that in a randomly drawn
permutation π from strategy x, webpage a comes before webpage b.

I Proposition 5. In a ranking duel with valuation function f and n webpages, the social
welfare of a strategy x is SWf (x) =

∑n
a=1

∑n
i=1 paPrπ∼x[π(a) = i]f(i).

Let OPT be the strategy with the maximum social welfare. Hence SW(OPT) is formulated
as follows.

I Proposition 6. In a ranking duel with valuation function f and n webpages, the optimal
social welfare is SWf (OPT) =

∑n
a=1 paf(a).

Lemma 7 shows that for any minimax strategy x and any linear function f(i) = c(n−i)+d
with c, d ≥ 0, the PoC is no less than the case in which f(i) = n− i.

I Lemma 7. For valuation functions f(i) = n− i, f ′(i) = c(n− i) + d with c, d ≥ 0, and
any strategy x, SWf (x)

SWf (OPT) ≤
SWf′ (x)

SWf′ (OPT) .

Thus any lower bound for the PoC with f(i) = n − i, is also a lower bound for the PoC
with any other linear valuation function. Therefore, from now on we assume f(i) = n− i,
and use SW(x) and SW(OPT) instead of SWf (x) and SWf (OPT), respectively. Hence
SW(OPT) =

∑n
a=1 pa(n− a). Now we try to compute SW(x) from a different perspective.

I Proposition 8. In a ranking duel with n webpages, the social welfare of strategy x is

SW(x) =
n∑
a=1

n∑
b=a+1

paPrπ∼x[π(a) < π(b)] + pbPrπ∼x[π(b) < π(a)].

Intuitively by Proposition 8 we can compute the social welfare of a strategy by comparing
the ranks of every pairs of webpages. Therefore we define hab(x) to be the amount that
the pair of webpages a and b adds to the social welfare in strategy x, i.e. hab(x) =
paPrπ∼x[π(a) < π(b)] + pbPrπ∼x[π(b) < π(a)]. Thus we can rewrite Proposition 8 as
SW(x) =

∑n
a=1

∑n
b=a+1 hab(x). Hence for every strategy x,

SW(x)
SW(OPT) =

∑n
a=1

∑n
b=a+1 hab(x)∑n

a=1 pa(n− a)
.

In Lemma 9 we provide our main tool for bounding the price of competition in the linear
ranking duel.

I Lemma 9. Given a strategy x, if there exist an integer k such that 2 ≤ k ≤ n and for all
k different indices i1 < i2 < . . . < ik,∑k

a=1
∑k
b=a+1 hiaib(x)∑k

a=1 pia(k − a)
≥ α,

then SW(x)
SW(OPT) ≥ α.

Now our goal is to provide a lower bound for α when x is a minimax strategy. In order
to do that, first we provide some structural properties of the minimax strategies. Leveraging
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these properties we write a mathematical program with k variables pa and
(
k
2
)
variables hab.

Finally, we provide a factor-revealing linear program to obtain a close lower bound for α in
the corresponding mathematical program.

In Lemmas 10, 11, 13, and Proposition 12 we provide the structural properties of the
minimax strategies.

I Lemma 10. Let x be a minimax strategy and a and b be two webpages such that pa ≥ pb.
Let πba be any permutation in the support of x in which b precedes a. Let i < j be the
respective position of a and b in πba, then strategy x must satisfy,

Prπ∼x[i < π(b) ≤ j]+Prπ∼x[i ≤ π(b) < j] ≥ pa
pb

(Prπ∼x[i < π(a) ≤ j]+Prπ∼x[i ≤ π(a) < j]).

Intuitively Lemma 10 shows that if pa ≥ pb and there is a permutation in which b comes
before a, then the probability that x ranks b in interval [i, j] (counting the non-endpoint
elements twice) is greater than the probability that x ranks a in this interval by a factor of
pa
pb
. Otherwise, by swapping the rank of a and b we can achieve a strategy that beats x.

I Lemma 11. Let x be a minimax strategy and xπ be the probability that strategy x plays
permutation π. For every pair of webpages a and b with pa ≥ pb, we have

Prπ∼x[π(a) < π(b)] ≥ ( pa2pb
− 1)Prπ∼x[π(b) < π(a)]. (2)

Briefly, in the proof of Lemma 11 we propose an algorithm to find a set of permutations
Π in x, such that 1) for each π ∈ Π, b comes before a, 2) for each permutation π′ in x
in which b comes before a, there is a permutation π ∈ Π, such that π(b) ≤ π′(a) ≤ π(a),
and 3) the interval of the ranks of b and a are distinct, i.e. for two permutations π, π′ ∈
Π, [π(b), π(a)] ∩ [π′(b), π′(a)] = ∅. We apply the inequality in Lemma 10 for all permutations
in Π to achieve Lemma 11.

In Proposition 12 and Lemma 13 we provide lower bounds for hab(x) when x is a minimax
strategy. Hence we can use these lower bounds in the proposed mathematical program to
achieve a lower bound for the PoC.

I Proposition 12. For minimax strategy x and webpages a and b such that pa ≥ pb,
hab(x) ≥ pb.

I Lemma 13. For minimax strategy x and webpages a and b such that pa ≥ pb, hab(x) ≥
pa − 2pb + 2p2

b

pa
.

Leveraging the properties of the minimax strategies we write MP 3. In MP 3, Constraints 5
and 6 force pa’s to satisfy the probability constraints. Using Proposition 12, Constraint 7
forces hab to be no less than pb and due to Lemma 13, Constraint 7 forces hab to be no less
than pa − 2pb + 2p2

b

pa
. By Lemma 9, α in Constraint 4 gives a lower bound for the PoC.

minimize α (3)

subject to α =
∑k
a=1

∑k
b=a+1 hab∑k

a=1 pa(k − a)
(4)

pa ≥ 0 ∀1 ≤ a ≤ k (5)∑
1≤a≤k

pa ≤ 1 (6)

hab ≥ pb ∀1 ≤ a < b ≤ k (7)

hab ≥ pa − 2pb + 2p2
b

pa
∀1 ≤ a < b ≤ k (8)
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Figure 1 Lower bound on the solution of MP 3. While we formally prove α10 ≥ 0.612, this figure
shows lower bounds on αk for 2 ≤ k ≤ 100 found by a computer program. Note that, by Lemma 14
the PoC of the ranking duel with linear valuation function is at least αk for all n ≥ k.

For each k, let αk be the optimal value of the objective function in MP 3.

I Lemma 14. αk is a lower bound for the PoC of the linear ranking duel where n ≥ k.

In Theorem 15 we formally prove α10 ≥ 0.612, which results in PoC ≥ 0.612 for any
ranking duel with n ≥ 10 webpages. Moreover, we write a computer program to find αk for
2 ≤ k ≤ 100 (see Figure 1).

I Theorem 15. For a linear ranking duel with n ≥ 10 webpages, PoC ≥ 0.612.

The proof idea is as follows. We design a linear program from MP 3. Constraints 4 and 8
in MP 3 are not linear, thus we first try to replace Constraint 8 by three linear constraints.
Afterwards, intuitively we scale the probabilities such that

∑k
a=1 pa(k − a) equals 1, hence

we can have a linear constraint instead of Constraint 4. Then we show each feasible solution
for MP 3 is also a feasible solution for the achieved linear program. Finally by finding a
feasible solution for the dual of the corresponding LP, we provide a lower bound for α in the
primal LP, which is a lower bound for the optimal solution of MP 3 as well.

4 General framework

In this section we present a general framework for analyzing the price of competition in
dueling games. Proving lower bounds for the price of competition in dueling games highly
depends on the valuation functions and it becomes more challenging when the valuation
functions are complex. However, the behavior of minimax strategies only depends on the
comparison of the valuation functions rather than actual values. We leverage this fact to
provide Theorem 16 which enables us to prove bounds for the price of competition without
concerning the complexities of the valuation functions. We refer to this theorem as the 0-1
principle.

Let (Ω, p, S, v) be a dueling game and α be a non-negative real number. We define the
trigger function vαω(s) for a pure strategy s in the following way:

vαω(s) =
{

1 if vω(s) ≥ α
0 if vω(s) < α
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Moreover, we define the pseudo-welfare function SWα(s) as the summation of the values
of the trigger functions when a player is playing strategy s with respect to α, SWα(s) =∑
ω∈Ω pωv

α
ω(s). Furthermore, the pseudo-welfare function for a mixed strategy x is defined as

SWα(x) = Es∼x[SWα(s)]. Let PoCα be the pseudo-welfare of the minimax strategy with the
least social welfare over SW(OPT) which can be formulated by PoCα = SWα(x∗)

SWα(OPT) , where x∗
is the minimax strategy with the least social welfare and OPT is the strategy with highest
social welfare. Note that optimal and minimax strategies are determined regardless of the
pseudo-welfare function. For simplicity, we consider PoCα = 1 when SWα(OPT) = 0. In the
following we show that the PoC of every dueling game is bounded by minα≥0{PoCα}.

I Theorem 16 (0-1 principle). For every dueling game we have PoC ≥ minα≥0{PoCα}.

In the following subsections we show how we can apply the 0-1 principle to dueling games
in order to present lower bounds for the PoC. In Subsection 4.1 we show that the PoC of the
ranking duel is at least 1

4 regardless of the valuation function. Note that, for every α, one
could design a valuation function in such a way that |vαω(x)− vω(x)| ≤ ε while the optimal
and minimax strategies remain the same. Therefore, we have the lowest PoC when the range
of the valuation function is [0, ε] ∪ [1, 1 + ε].

4.1 Ranking duel with general valuation function
Recall that in the ranking duel each position of the permutation has a valuation f(i), each pure
strategy of the players is a permutation of webpages π = 〈π−1(1), π−1(2), π−1(3), . . . , π−1(n)〉,
and Ω = {1, 2, . . . , n} is the set of elements of uncertainty. For a webpage ω ∈ Ω, vω(π) =
f(π(ω)), where π(ω) is the rank of ω in π. In the following, we use the 0-1 principle to show
that the PoC of the ranking duel with an arbitrary valuation function is at least 1

4 .

I Theorem 17. The PoC of the ranking duel is at least 1
4 .

4.2 Binary search duel with general valuation function
In this subsection we study the binary search duel and show that the PoC of this game can
be Ω( 1

n ). In this game Ω = {1, 2, . . . , n} and each pure strategy of the players is a binary
tree such that its in-order traversal visits the elements of Ω in the sorted order. Moreover,
vω(s) is determined by f(ds(ω)) where ds(ω) denotes the depth of element ω in the binary
search tree corresponding to s and f : N→ R≥0 is a decreasing function.

I Theorem 18. For every β > 0 there is an instance of the binary search duel with |Ω| = θ( 1
β )

and PoC ≤ β.
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