
The Complexity of Hex and the Jordan Curve
Theorem∗

Aviv Adler1, Constantinos Daskalakis2, and Erik D. Demaine3

1 MIT CSAIL, Cambridge, USA
adlera@mit.edu

2 MIT CSAIL, Cambridge, USA
costis@mit.edu

3 MIT CSAIL, Cambridge, USA
edemaine@mit.edu

Abstract
The Jordan curve theorem and Brouwer’s fixed-point theorem are fundamental problems in topo-
logy. We study their computational relationship, showing that a stylized computational version
of Jordan’s theorem is PPAD-complete, and therefore in a sense computationally equivalent to
Brouwer’s theorem. As a corollary, our computational result implies that these two theorems
directly imply each other mathematically, complementing Maehara’s proof that Brouwer implies
Jordan [10]. We then turn to the combinatorial game of Hex which is related to Jordan’s theorem,
and where the existence of a winner can be used to show Brouwer’s theorem [6]. We establish
that determining who won an (implicitly encoded) play of Hex is PSPACE-complete by adapting
a reduction (due to Goldberg [7]) from Quantified Boolean Formula (QBF). As this problem is
analogous to evaluating the output of a canonical path-following algorithm for finding a Brouwer
fixed point – and which is known to be PSPACE-complete [8] – we thereby establish a connection
between Brouwer, Jordan and Hex higher in the complexity hierarchy.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Jordan, Brouwer, Hex, PPAD, PSPACE

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.24

1 Introduction

The Jordan curve theorem states that a simple closed curve C in R2 divides the plane into
two connected components S1, S2 [9]. In particular, any continuous curve from a point x ∈ S1
to a point y ∈ S2 must intersect C. There are several known proofs of this basic topological
fact, including one via Brouwer’s fixed point theorem by Maehara [10]. In an earlier paper,
Gale explores the equivalence between Brouwer’s theorem and a theorem closely related
to Jordan’s, pertaining to the combinatorial game Hex [6]. In Hex, a rhomboidal board is
partitioned into hexagonal tiles as in Figure 1, and two players claim tiles of the board until
one of the players can connect the two opposite sides of the board that belong to him. The
Hex theorem states that, once all tiles on the board are claimed, at least one of the two
players has won.

In this paper we study the relationship of the Jordan, Brouwer and Hex theorems from
both a computational and a mathematical standpoint. In particular, our goal is to show their
‘equivalence’ in both domains. We say that two theorems are mathematically equivalent if

∗ This work was partially supported by the NSF (grant CCF-1551875) and ONR (grant N00014-12-1-0999).

EA
T

C
S

© Aviv Adler, Constantinos Daskalakis, and Erik Demaine;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


24:2 The Complexity of Hex and the Jordan Curve Theorem

Figure 1 A sample Hex position, where Player 1 (red) has won.

(informally) they can be used to prove each other in an ‘elementary’ way, and computationally
equivalent if the search problems with solutions guaranteed by them are complete in the
same complexity class. This study is catalyzed by defining a stylized computational problem
inspired by Jordan curve theorem as follows:

ZeroSurfaceCrossing
Input: Two circuits F1, F2 : {0, 1}n × {0, 1}n → {−2m + 1, . . . , 2m − 1}, defining two
continuous surfaces f1, f2 : [0, 1]2 → R in R3 via interpolation.a

Output: A point (x, y) such that f1(x, y) = f2(x, y) = 0, or a violation of the following
boundary conditions:

(1) f1(0, y) ≥ 0 and (2) f1(1, y) ≤ 0 for all y;
(3) f2(x, 0) ≥ 0 and (4) f2(x, 1) ≤ 0 for all x.

a The input to each circuit is interpreted in the obvious way as specifying a point (x, y) ∈ [0, 1]2,
where both x and y are integer multiples of 1/(2n − 1). Hence these circuits determine the values
of f1, f2 at all such points. The values of f1, f2 at all other points are determined from these values
via interpolation.

It is quite intuitive that, if Conditions 1–4 are satisfied, then the surfaces f1 and f2 should
have an intersection on the zero plane. One way to show this is using the Jordan curve
theorem; see Lemma 10. Moreover, given that f1, f2 are defined by circuits via interpolation,
it is easy to see that the problem belongs to NP and thus in TFNP, the class of total problems
in NP. The question is how it relates to other classes in TFNP [11]. We show the following:

I Theorem 1. ZeroSurfaceCrossing is PPAD-complete.

Given that Brouwer, the stylized computational problem of computing fixed points
of continuous functions (defined formally in Section 3), is also PPAD-complete [11, 3,
5], Theorem 1 implies that ZeroSurfaceCrossing and Brouwer are computationally
equivalent. Additionally, it helps establish the mathematical equivalence of the Brouwer and
Jordan theorems. Maehera showed that Brouwer implies Jordan’s theorem. Exploiting the
proof of Theorem 1, we show the other direction, that Jordan implies Brouwer’s theorem.
Moreover, in view of Gale’s proof that the Hex and Brouwer theorems are mathematically
equivalent [6], our result also establishes that all three theorems are equivalent.

I Proposition 2. The Jordan, Brouwer and Hex theorems are mathematically equivalent.



A. Adler, C. Daskalakis, and E.D. Demaine 24:3

1.1 Jordanian Action Inside PPAD
A close variant of the problem defined above is the curve crossing problem defined as follows.

CrossingCurves
Input: Two circuits F1, F2 : {0, 1}n → {0, 2−m, 2 · 2−m, . . . , 1}2, defining two continuous
curves f1, f2 : [0, 1]→ [0, 1]2 in [0, 1]2 via interpolation.a

Output: A pair t1, t2 ∈ [0, 1] such that f1(t1) = f2(t2), or a violation of the following
boundary conditions:

(1) f1(0) = (0, 0); (2) f1(1) = (1, 1); (3) f2(0) = (0, 1) and (4) f2(1) = (1, 0).
a The input to each circuit is interpreted in the obvious way as specifying an integer multiple of

1/(2n − 1), so that Fi defines the location of curve fi for all inputs in {0, 1/(2n − 1), . . . , 1}. The
location of the curve at any t ∈ [j/(2n−1), (j +1)/(2n−1)], where j ∈ {0, . . . , 2n−1}, is determined
by linearly interpolating between the locations of the curve at j/(2n − 1) and (j + 1)/(2n − 1).

Again it is quite intuitive that, unless Conditions (1)–(4) in the definition of the problem
fail, the curves defined by any input to CrossingCurves should cross. Indeed, this can
be proven via the Jordan curve theorem, and because of Proposition 2 via Brouwer’s fixed
point theorem as well. We provide a direct proof using Brouwer’s fixed point theorem, which
implies as a corollary that the problem lies within PPAD.

I Theorem 3. CrossingCurves is in PPAD.

Under monotonicity conditions on at least one of the two curves, it is easy to see that
CrossingCurves is in P. For example, suppose that at least one of the two curves fi satisfies
that, for all 0 ≤ t < t′ ≤ 1, fi(t)1 < fi(t′)1, where fi(t)1 represents the first coordinate of
fi(t) and similarly for fi(t′)1. Under this condition, CrossingCurves can be easily solved
via binary search. Similar conditions can be defined with respect to the second coordinate.
When neither curve satisfies such a monotonicity condition with respect to neither coordinate,
we do not see how to construct a polynomial time algorithm. At the same time, we do not
see how an instance of CrossingCurves can encode the several paths and cycles that may
co-exist in an instance of EndOfTheLine, the canonical PPAD-complete problem—see
Section 2. (In comparison, the intersections of the surfaces of ZeroSurfaceCrossing with
the zero-plane may comprise several paths and cycles, which allow encoding EndOfTheLine
instances.) We leave pinning down the precise complexity of CrossingCurves for future
work, expecting that the complexity classes defined in [4] may be useful in this classification.

1.2 Jordanian Action Over PPAD
While so far all action has taken place inside TFNP, we also explore how the three theorems,
Jordan, Brouwer and Hex, are related higher in the complexity hierarchy. It was recently
established that several algorithms for computing Brouwer fixed points and Nash equilibria
are in fact capable of solving all of PSPACE [8]. For example, given an instance I of some
problem in PSPACE, one can construct a 2-player game G such that the Nash equilibrium
output by the Lemke-Howson algorithm provides a solution to I as a byproduct. Similar
facts are known for homotopy methods.

We are thus interested in whether computational problems relating to Jordan and Hex
also have the power of solving PSPACE. We propose the problem WhoWonHex, asking
to determine whether player 1 is the winner of a Hex play. An instance of the problem
comprises a circuit that takes as input the binary description of a cell in the Hex board and
outputs the name of the player, 1 or 2, who claimed it during the play. We provide a formal

ICALP 2016



24:4 The Complexity of Hex and the Jordan Curve Theorem

description of Hex in Section 2.3, and define WhoWonHex in Section 5.2, establishing the
following:

I Theorem 4. WhoWonHex is PSPACE-complete.

The proof of Theorem 4 can be obtained fairly easily using recent work of Goldberg [7].
There is a canonical method to determine who is the winner in a play of Hex by performing
a walk on the Hex board. The walk starts at one of the corners of the Hex board and
performs pivoting steps depending on which player has claimed the cells neighboring the
current location of the walk, until another corner of the board is reached, which always
happens due to topological reasons. What corner is reached determines which player won.
This pivoting algorithm is quite reminiscent to the canonical algorithm for solving instances
of 2-dimensional Sperner. An instance of this problem provides a succinct description
of the coloring of the vertices of a square lattice using 3 colors and asks to identify a
trichromatic triangle or a violation of certain boundary conditions by the coloring. The
problem is PPAD-complete [11, 3, 2] and Goldberg recently established that identifying
the tri-chromatic triangle reachable by the standard pivoting algorithm for this problem
is PSPACE-complete. Theorem 4 is proven by making an analogy between the pivoting
algorithms that solve Sperner and WhoWonHex. The precise details are a bit more
intricate than this intuition, as we have to exploit the structure of the Sperner instances
constructed in Goldberg’s proof.

It is worth pointing out that the problem WhoWonHex that we study is very different
than the typical computational problem studied in combinatorial game theory, namely
determining given a configuration of the board whether some player has a winning strategy.
Our problem is instead to determine who is the winner, once the play is completed.

Roadmap. We provide basic definitions in Section 2, recalling the Jordan curve theorem and
Brouwer’s fixed point theorem. We also describe the game of Hex and define the computational
problems Brouwer and EndOfTheLine along with the class PPAD. In Section 3, we show
that Brouwer and Jordan are equivalent, both mathematically and computationally (through
the ZeroSurfaceCrossing problem). In Section 4, we discuss CurveCrossing showing
that it is in PPAD. Finally, in Section 5, we show that WhoWonHex is PSPACE-complete.
In Section 6 we conclude with some open problems suggested by our work.

2 Preliminaries

In this section, we will formally define all the theorems, problems, and constructs which we
will analyze; in particular, we will define:
1. Brouwer’s fixed-point theorem;
2. the Jordan curve theorem;
3. the game of Hex and the Hex theorem;
4. the complexity class PPAD, and the canonical computational problem EndOfTheLine

that is associated with it.
Additionally, in order to formally describe the computational problems given above, we
also need to define the interpolation schemes we use to transform functions over bitstrings
to functions over the (continuous) unit square. We use a standard technique of using the
bitstring to describe a point on a lattice; then, for inputs not on the lattice, the output is
defined by interpolating from the outputs on the lattice. The formal construction is given in
our full paper [1].



A. Adler, C. Daskalakis, and E.D. Demaine 24:5

A"
B"

C"
D"

1"
2"

3"
4"

A" B" C" D"

1"

3"

2"

4"

Figure 2 A Hex board and its corresponding dual-graph representation.

2.1 Brouwer’s Fixed-Point Theorem and the Jordan Curve Theorem
We define here the theorems of Brouwer and Jordan. For Brouwer, we give a special case in
two dimensions, involving functions from the unit square to itself. (This can be extended to
the general two-dimensional case on any compact and convex set and higher dimensions; see
e.g. [11, 3, 5] and their references.)

I Theorem 5 (Brouwer’s fixed-point theorem). Given any continuous function f : [0, 1]2 →
[0, 1]2, there is a fixed point, i.e. some x ∈ [0, 1]2 such that f(x) = x.

I Theorem 6 (The Jordan curve theorem). Any simple closed curve φ in R2 divides the space
into two regions, one finite (the inside) and one infinite (the outside).

2.2 PPAD and its Related Computational Problems
I Definition 7 (The PPAD graph). Let N and P be circuits, both of which take as input
an n-bit string and return an n-bit string as output. We then consider the directed graph
whose vertices are n-bit strings such that there is an edge (u, v) if and only if N(u) = v and
P (v) = u.

By this definition, it is clear that each vertex has in- and out-degree of at most 1 (since any
vertex u can only be preceded by P (u) and succeeded by N(u)), and thus the graph must
consist of a disjoint collection of isolated vertices, directed paths, and directed cycles. We
now consider the following computational problem on this graph:

I Definition 8 (EndOfTheLine). Given circuits N and P defining the PPAD graph G:
1. if the vertex 0n is not a source vertex (with in-degree 0 and out-degree 1), return 0n;
2. if the vertex 0n is a source vertex, return any other unbalanced vertex (with in-degree

and out-degree not equal).
EndOfTheLine is the canonical PPAD-complete problem. Because no directed graph can
have exactly one unbalanced vertex, the existence of a solution is guaranteed. Of particular
interest to us is the fact that a computational variant of Brouwer’s fixed-point theorem
(which we will formally describe in the next section) is also PPAD-complete.

2.3 The Game of Hex
The game of Hex is a combinatorial game, played (in its normal, two-player two-dimensional
version) on a hexagonally-tiled board (such as the one shown on the left in Figure 2). Each
player (player 1 represented in red, and player 2 represented in blue) starts in the possession
of two opposing sides of the board; they take turns placing stones of their color on unoccupied
tiles. Each has the goal of connecting their two sides with a path (or bridge) of stones of

ICALP 2016



24:6 The Complexity of Hex and the Jordan Curve Theorem

their color; the first to do so wins. For ease of representation, we imagine instead that the
players are placing stones on the vertices (rather than facets) of the dual graph, which is
represented on the right in Figure 2. In order to escape the restriction that the number of
red and blue stones is the same (or at most differ by 1), we allow players to ‘pass’ (i.e. not
put a stone down); there is no reason to do so if the player is trying to win, but it makes the
following analysis simpler and more general.

Although seemingly just a simple combinatorial game, Hex is known to have very deep
mathematical properties. First, a very elegant proof shows that some player is guaranteed
to win [6], i.e. if every vertex (in the dual-graph representation) is occupied by a stone,
then there must be a pair of opposing sides which are joined by a path of stones of their
corresponding color. In fact, exactly one player must win (the fact that it’s impossible for
both players to have bridges at the same time is intuitively connected to the Jordan curve
theorem). Intriguingly, the theorem that Hex must have a winner (which seems at first to
be merely an interesting curiosity) can, like Sperner’s Lemma, be used to actually prove
Brouwer’s fixed-point theorem [6].

3 Brouwer vs. Jordan in TFNP

In this section, we consider the relationship between Brouwer’s fixed-point theorem and the
Jordan curve theorem. In particular, we want to show that Brouwer’s fixed-point theorem can
be proven directly from the Jordan curve theorem, thus complementing Maehara’s result that
the Jordan curve theorem can be proved directly from Brouwer’s fixed-point theorem [10].
We then consider a computational version of the Jordan curve theorem, which we call
ZeroSurfaceCrossing; this problem is a search problem where the existence of a solution
is guaranteed by the Jordan curve theorem. We then show that ZeroSurfaceCrossing is
PPAD-complete. This makes it equivalent to the computational problem of finding a fixed
point of a function (where the existence of a solution is guaranteed by Brouwer’s fixed-point
theorem), thus demonstrating a computational link between the two theorems in addition to
the mathematical link.

3.1 The Zero Surface Crossing Problem
We define a problem where the existence of a solution is intended to be guaranteed by Jordan.

I Definition 9 (Zero Surface Crossing). We are given continuous functions f1, f2 : [0, 1]2 →
[−1, 1] (which are therefore 2-dimensional surfaces in R3) satisfying the following conditions:
1. f1(0, y) ≥ 0 and f1(1, y) ≤ 0 for all y;
2. f2(x, 0) ≥ 0 and f2(x, 1) ≤ 0 for all x.
The goal is to find some (x, y) ∈ [0, 1]2 such that f1(x, y) = f2(x, y) = 0.

We wish to show that the Jordan curve theorem implies that such a point (x, y) exists;
in order to give this proof, we consider the computational version defined in the introduction
as ZeroSurfaceCrossing.

We will first show that the Jordan curve theorem implies that the computational version
is guaranteed to have a valid output; we will then use basic topological principles to show
that the mathematical version given in Definition 9 also must have a solution. We need the
following notation:
1. let X0 = {(0, y) : 0 ≤ y ≤ 1} and X1 = {(1, y) : 0 ≤ y ≤ 1};
2. let Y0 = {(x, 0) : 0 ≤ x ≤ 1} and Y1 = {(x, 1) : 0 ≤ x ≤ 1}.



A. Adler, C. Daskalakis, and E.D. Demaine 24:7

f2 negative

f2 positive

f2 never 0

Exactly one intersection of line to infinity 
with closed curve guarantees this is inside

No intersection of line to infinity with 
closed curve guarantees this is outside

contradiction!

Jordan curve theorem 
guarantees crossing!

S1 contained 
in here

S0 contained 
in here

Figure 3 Left: illustration of proof of assertion 1; Right: illustration of proof of assertion 2.

In short, these sets are the four sides of the square [0, 1]2. For these lemmas, we sketch the
proofs; the full formal proofs are given in the full version of the paper [1].

I Lemma 10 (Jordan to Computational ZeroSurfaceCrossing). The Jordan curve theorem
implies that the computational version of ZeroSurfaceCrossing has a valid output.

Proof Sketch. We assume that the boundary conditions hold; we thus want to show the
existence of a point (x, y) ∈ [0, 1]2 such that f1(x, y) = f2(x, y) = 0. We will show the
following:
1. there exists a path from X0 to X1 such that at every point on the path, f2 has value 0;

by symmetry, there then must also be a path from Y0 to Y1 such that at every point, f1
has value 0.

2. the Jordan curve theorem then implies that these two paths must cross, giving a point
(x, y) ∈ [0, 1]2 such that f1(x, y) = f2(x, y) = 0.

The proofs are depicted in Figure 3 (assertion 1 on the left, assertion 2 on the right). We
remark that assertion 1 only holds because of the computational setting, where the function
is defined by a circuit and the interpolation procedure (see full proof for details). J

We can now use this to tackle the problem of showing the existence of a solution to the
mathematical version as given in Definition 9.

I Proposition 11 (Jordan to Non-Computational Zero Surface Crossing). The Jordan curve
theorem implies that the mathematical version of Zero Surface Crossing always has a solution.

Proof Sketch. We use the following general strategy: we note that only the set of points
where f1 is 0 and the set of points where f2 is 0 matters. Thus, we can use instead two
functions f∗1 and f∗2 which are 0 at the same points, but which are Lipschitz. We can then
show that for any ε > 0, if we approximate f∗1 and f∗2 with circuits F1, F2 with sufficiently
many bits, any point which is a zero of the circuits must be within ε of 0 for f∗1 , f∗2 . We then
take a sequence of such approximate zeroes as ε→ 0; by compactness of [0, 1]2, this sequence
must have at least one limit point, which we can then show is a shared zero of f∗1 , f∗2 and
hence of f1 and f2. J

Finally, we can use this result to prove Brouwer as a consequence of Jordan.

I Theorem 12 (Jordan implies Brouwer). Brouwer’s fixed-point theorem can be shown as a
direct consequence of the Jordan curve theorem.

ICALP 2016



24:8 The Complexity of Hex and the Jordan Curve Theorem

Proof. Given any mapping g : [0, 1]2 → [0, 1]2, we wish to show the existence of a fixed point
(x, y) such that g(x, y) = (x, y). Let gx and gy be the x- and y-components of g respectively.

We then define the functions f1, f2 : [0, 1]2 → [−1, 1] as follows: f1(x, y) = gx(x, y)− x
and f2(x, y) = gy(x, y) − y. First, we note that the outputs of f1, f2 indeed must fall in
[−1, 1]; this is because gx and gy have outputs in [0, 1] and −x and −y each range through
[−1, 0]. We also note that f1, f2 satisfy the boundary conditions given in Definition 9,
since f1(0, y) = gx(0, y) ≥ 0 and f1(1, y) = gx(1, y) − 1 ≤ 0 for all y, and similarly
f2(x, 0) = gy(x, 0) ≥ 0 and f2(x, 1) = gy(x, 1) − 1 ≤ 0 for all x. Thus, we can apply
Proposition 11 to show that there is some (x, y) such that f1(x, y) = f2(x, y) = 0.

But this implies that gx(x, y) = f1(x, y) + x = x and gy(x, y) = f2(x, y) + y = y, i.e. that
g(x, y) = (x, y), thus proving Brouwer’s fixed-point theorem as a consequence of Zero Surface
Crossing and hence as a consequence of the Jordan curve theorem. J

This, along with Maehara’s result on showing Jordan from Brouwer [10] and Gale’s
result on the equivalence of Brouwer and the Hex theorem [6], thus concludes the proof of
Proposition 2 (that Brouwer, Jordan, and Hex are all mathematically equivalent theorems).
We also remark that reversing the above reduction yields an alternative proof that Brouwer’s
fixed-point theorem can be used to prove the Jordan curve theorem; however, as this is a
known result, we will not show this in detail.

3.2 Computational Equivalence of Brouwer and Jordan
We now want to show that ZeroSurfaceCrossing is PPAD-complete. To do this, we first
define the computational version of Brouwer, which is well-known to be PPAD-complete [11]:

Brouwer
Input: A circuit G : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n, defining a mapping g :
[0, 1]2 → [0, 1]2 via interpolation (as described in Appendix A).

Output: a point (x, y) such that g(x, y) = (x, y) (i.e. a fixed point of g).

I Lemma 13. ZeroSurfaceCrossing is PPAD-hard.

Proof. We prove this by showing that Brouwer can be reduced to it, using the same
reduction as in the proof of Theorem 12. In particular, we note that this reduction requires
no fudging with outputs, as if (x, y) is a lattice point (where x and y can each be expressed by
an n-bit string) then f1(x, y) = gx(x, y)−x can be expressed by an (n+1)-bit string, since the
output gx(x, y) is an n-bit string as well; the same obviously holds for f2(x, y) = gy(x, y)− y.
We then note that since all lattice points behave well under the transformation, and the
interpolation given in Appendix A is linear in both cases, the reduction requires no further
steps; a solution to the derived ZeroSurfaceCrossing instance is immediately a fixed
point of the original Brouwer instance. J

I Lemma 14. ZeroSurfaceCrossing is in PPAD.

Proof. We show this by reducing ZeroSurfaceCrossing to Brouwer. Without loss of
generality, we assume that f1 and f2 take two n-bit strings as input and output two (n+1)-bit
strings (we add the extra bit to account for the fact that they can have negative output, so
as to keep the interval size constant). We can now define g : [0, 1]2 → [0, 1]2 as follows; this
is essentially the above reduction, reversed and with outputs truncated to be within [0, 1]:

gx(x, y) = max
[

min[x+ f1(x, y), 1], 0
]
, and gy(x, y) = max

[
min[y + f2(x, y), 1], 0

]
.



A. Adler, C. Daskalakis, and E.D. Demaine 24:9

As before, since the reduction holds exactly at lattice points, it holds exactly everywhere
else as well (by how the interpolation works). Furthermore, it trivially has a fixed point at
any (x, y) such that f1(x, y) = f2(x, y) = 0. We now wish to show that any additional fixed
points can only be a result of f1 or f2 violating a boundary condition (which we recally is an
acceptable output to ZeroSurfaceCrossing).

The only way g could have another fixed point is if the capping of gx or gy to be between
0 and 1 held the displacement to 0 when otherwise it would have been nonzero. This happens
only if the input is already on the boundary (otherwise the cap cannot completely remove a
nonzero displacement in any direction); hence, it can only happen if one of the following four
events happens: (a) f1(0, y) < 0; (b) f1(1, y) > 0; (c) f2(x, 0) < 0; or (d) f2(x, 1) > 0, which
all represent violations of the boundary conditions set by ZeroSurfaceCrossing. Hence,
any fixed point of g corresponds to a solution to ZeroSurfaceCrossing, which means that
ZeroSurfaceCrossing can be reduced to Brouwer, and so it is in PPAD. J

Lemmas 13 and 14 thus imply Theorem 1 (ZeroSurfaceCrossing is PPAD-complete).

4 Crossing Curves

We now discuss the CrossingCurves problem; in particular, we show that it is in PPAD.

Proof of Theorem 3. We recall that the CrossingCurves problem involves two curves
f1, f2 : [0, 1]→ [0, 1]2 such that f1(0) = (0, 0), f1(1) = (1, 1), f2(0) = (0, 1) and f2(1) = (1, 0);
these curves are formally defined by circuits which map n-bit strings to points on a discrete
lattice in [0, 1]2 (with the continuous curves defined by interpolation over these circuits). We
denote fx

1 , f
y
1 , fx

2 , and f
y
2 as the functions describing f1 and f2’s outputs in the dimensions x

and y. We note that although fx
1 (0) = fx

2 (0) = 0 and fx
1 (1) = fx

2 (1) = 1, fx
1 and fx

2 are not
necessarily monotonically increasing; the two curves can snake back and forth. Nevertheless,
the Jordan curve theorem does guarantee that there will be a crossing point, i.e. a pair of
times (if we interpret the input of f1 and f2 to be a time between 0 and 1) t1, t2 such that
f1(t1) = f2(t2). The task is to find the crossing point.

We do this by defining the function g : [0, 1]2 → R2 (where its x and y components are
denoted gx and gy respectively) such that

gx(t1, t2) = t1 − fx
1 (t1) + fx

2 (t2) and gy(t1, t2) = t2 − fy
1 (t1) + fy

2 (t2) .

Clearly this function is continuous, and (t1, t2) is a fixed point if and only if fx
1 (t1) = fx

2 (t2)
and fy

1 (t1) = fy
2 (t2), i.e. if and only if f1(t1) = f2(t2). This is already very close to showing

what we need to show; the only trouble is that an application of g might end up at a point
outside of [0, 1]2, breaking our use of Brouwer. We thus define ĝ to be g, but with upper and
caps to its values at 1 and 0 respectively. Formally:

ĝx(t1, t2) = max
[

min[gx(t1, t2), 1], 0
]
and ĝy(t1, t2) = max

[
min[gy(t1, t2), 1], 0

]
.

We now have a function which does not leave [0, 1]2 and has a fixed point at any t1, t2 such
that f1(t1) = f2(t2). The only trouble is we need to make sure we did not create any new
fixed points by this capping method;

A new fixed point can only happen if one of the following four events happens:
1. −fx

1 (t1) + fx
2 (t2) < 0 when t1 = 0;

2. −fx
1 (t1) + fx

2 (t2) > 0 when t1 = 1;
3. −fy

1 (t1) + fy
2 (t2) < 0 when t2 = 0;

4. −fy
1 (t1) + fy

2 (t2) > 0 when t2 = 1.

ICALP 2016



24:10 The Complexity of Hex and the Jordan Curve Theorem

Figure 4 Left: proceeding on a Hex walk through a cell; each step is forced. Right: an empty
board (with player-owned edges) has two entries, A and B, and two exits 1 and 2. If the walk
entering at A exits through 2 (as shown at far right), then player 1 is the winner; if it exits through 1,
then player 2 is the winner.

But we note that since fx
1 (0) = 0 and fx

1 (1) = 1 (and both f1 and f2 are constrained to be
in [0, 1] in both components) that the first two cannot happen; furthermore, since fy

2 (0) = 1
and fy

2 (1) = 0, the second two cannot happen. Thus, a fixed point still occurs at (t1, t2)
if and only if f1(t1) = f2(t2), as we wanted. We can thus apply the Brouwer fixed-point
algorithm to ĝ : [0, 1]2 → [0, 1]2 and read off a solution to the crossing-curves problem. Since
finding a Brouwer fixed-point is in PPAD [11], CrossingCurves is also in PPAD. J

5 Hex, Brouwer, and Jordan in PSPACE

We have already established that the Hex, Brouwer, and Jordan theorems are mathematically
equivalent. We have also identified two problems motivated by Jordan’s curve theorem that
lie in PPAD. One of these is in fact PPAD-complete and thereby computationally equivalent
to Brouwer. It is natural to ask whether a computational version of the Hex theorem is
also related to PPAD. The link between PPAD and the Hex theorem is more immediate and
striking than that between the Jordan curve theorem and PPAD. In particular, Gale’s proof
that Hex always has a winner [6] is strikingly similar to the proof of Sperner’s lemma, another
well-known topological fact giving rise to the PPAD-complete problem called Sperner.
Gale’s proof generates a PPAD type graph, as defined in Section 2.2. In the next sections,
we briefly summarize Gale’s results and discuss natural questions arising from it in relation
to PPAD and, as it turns out, PSPACE.

5.1 Hex and PPAD
As with all PPAD-type problems, in Hex the proof of existence of a ‘bridge’ (a winning
sequence for one of the two players) in a filled board comes with a pivoting algorithm to find
it; this algorithm was described by Gale, who (remarkably) used it to show that Brouwer’s
fixed-point theorem and the Hex theorem are mathematically equivalent. The pivoting
algorithm is briefly sketched in Figure 4 on the dual-graph representation of the Hex board
(in which the stones are placed on vertices, rather than faces, of the graph). In brief, there
are two places on the edge of the board where one can enter with red on their left and blue
on their right, as shown in the figure; suppose one starts at A. Then, one walks over the
faces of the dual graph (or, equivalently, on the vertices of the original board), keeping red
on their left and blue on their right, until they exit the board at either 1 or 2. Exiting at 2
implies a victory for player 1 (red), and exiting at 1 implies a loss. This pivoting algorithm
is especially reminiscent of the Sperner’s Lemma pivoting algorithm [11], and induces a
(directed) PPAD graph with nodes corresponding to the faces of the dual-graph board.



A. Adler, C. Daskalakis, and E.D. Demaine 24:11

Even though Gale’s proof induces a PPAD graph, there is no natural analogue of the
EndOfTheLine problem for Hex. This is because the PPAD graph induced by Gale’s
argument only has four unbalanced vertices, corresponding to the entries A and B and the
exits 1 and 2. The natural question is which pairs of unbalanced vertices are connected,
which is equivalent to asking “who won?” after a game of Hex has filled the board. This
corresponds to finding the specific unbalanced vertex of the PPAD graph which is connected
to the starting one, corresponding to entry A. Of course, this would be polynomial-time
solvable if the board were polynomially-sized, so we will assume an exponentially-large board
where a polynomially-sized circuit tells us who claimed any particular tile.

5.2 WhoWonHex
WhoWonHex

Input: a Hex board, such that it takes n bits to uniquely specify a tile (the canonical way
to do this is via the dual graph, by having n/2 bits dedicated to specifying the position
of the tile in each dimension); a circuit C which takes an n-bit string (i.e. a tile) and
outputs either 0 (‘player 1 does not occupy this tile’) or 1 (‘player 1 does occupy this
tile’).

Output: 0 if there does not exist a bridge of tiles occupied by player 1 from the left
facet to the right facet (‘player 1 has not won’), and 1 if there does exist such a bridge
(‘player 1 has won’). Formally, with the canonical tile-specifying scheme described above,
a ‘bridge’ is defined as a sequence of tiles v1, v2, . . . , vm such that: (a) vi is adjacent to
vi+1 for all i = 1, 2, . . . ,m− 1; (b) C(vi) = 1 for all i; (c) the first n/2 bits of v1 are all 0
(it’s adjacent to the left facet), and the first n/2 bits of vm are all 1 (it’s adjacent to the
right facet).

We want to show that WhoWonHex is PSPACE-complete (Theorem 4). It is tempting
to try to prove this hardness via a reduction from the so-called OtherEndOfThisLine
problem,1 which is PSPACE-hard [8], by simulating paths in a given PPAD graph via “Gale
paths.” However, Gale paths do not cross, and the usual embedding of a PPAD graph into
a 2-dimensional plane without crossings results in a drastic change of the graph topology
(unbalanced vertices remain unbalanced vertices, but which unbalanced vertices are connected
to each other changes) [2, 7]. Instead, we will obtain our result as a direct consequence of
Goldberg’s proof that it is PSPACE-hard to identify the solution output by a path-following
algorithm for Sperner [7].

Goldberg’s proof proceeds directly from the well-known PSPACE-complete problem
of evaluating a quantified Boolean formula (QBF). Since our proof is an application of
Goldberg’s proof, we only explain how to make the gadgets required to modify his proof for
our purposes.

Proof of Theorem 4. As described above, we will be adapting Goldberg’s proof that identi-
fying the solution chosen by the standard pivoting algorithm for Sperner is PSPACE-hard.
(The inclusion into PSPACE is easy to establish; the details are given in the full version of
our paper [1])). Given a QBF instance Goldberg defines horizontal and vertical wires in an
exponentially large square lattice in such a way that the existence of a connected path of

1 This problem is: given a PPAD graph via circuits P, N , identify the unbalanced vertex connected to 0n,
if 0n is itself unbalanced.

ICALP 2016



24:12 The Complexity of Hex and the Jordan Curve Theorem

Figure 5 Left: A wire occupying part of the space. Middle: The wire, superimposed on the Hex
board, with the appropriate tiles turned to red to carry the wire. Right: The wire, represented only
as a sequence of red Hex tiles.

Goldberg’s QBF reductions

t+

Figure 6 Embedding Goldberg’s rectangular reduction into a Hex board, so that player 1 wins if
and only if s is connected to t+.

wires from a special point s to a special point t+ (which themselves always lie on wires but
may not be connected through wires) is equivalent to the QBF instance evaluating to 1. He
also provides an efficient algorithm to determine if a wire passes through a specific point,
and then simulates wires with paths in the PPAD graph of a Sperner instance.

Our result will be based on a ‘wire’ gadget that is based on Hex rather than Sperner –
which is simply a connected path of red tiles ‘insulated’ from other red tiles by blue tiles (in
fact, all tiles not on a ‘wire’ gadget are defined to be occupied by blue stones, i.e. player 2).
For simplicity, we use only wires whose segments are perfectly vertical or horizontal; how a
wire translates into tiles is shown in Figure 5.

Usefully the special points s and t+ in Goldberg’s construction lie on the left and right
boundary of the square lattice respectively. This allows us to embed Goldberg’s construction
into a Hex board as shown in Figure 6. In particular:

we allocate a part of the board where we replicate Goldberg’s construction using our wire
gadget, as described above given a QBF instance;
we add wires connecting s to the bottom-left edge of the board;
we add wires connecting t+ to the up-right edge of the board.

Since s and t+ lie on wires they are red tiles.
Since we do not have any wires not defined by Goldberg’s construction (other than those

from s and t+ to the boundary of the Hex board shown in Figure 6), there is a bridge
connecting the red edges of the Hex board if and only if s is connected to t+ by wires inside
Goldberg’s construction. This is PSPACE-hard to determine, hence it is PSPACE-hard to
determine if Player 1 wins. J

We remark that this proof had to be derived from Goldberg’s construction itself, and
not his result in a black-box manner. This is because the construction guarantees that the
end-points s and t+ in the proof above lie on the boundaries of the construction (and thus
can be wired to the bottom-left and upper-right edges of the Hex board).



A. Adler, C. Daskalakis, and E.D. Demaine 24:13

In contrast, general Sperner instances may very well have the solution reachable through
the standard path-following algorithm residing in the interior of the construction (thereby
making it hard to translate into Hex, since the question in Hex is whether there is a bridge
of red stones joining the left and right edges of the board).

6 Conclusion

In this paper, we explored the links between Brouwer’s fixed-point theorem, the Jordan curve
theorem, and the game of Hex. We showed that Brouwer and Jordan are mathematically and
computationally equivalent, complementing Maehara’s result that Jordan is a consequence of
Brouwer. Combined with Gale’s result that Brouwer’s fixed-point theorem is mathematically
equivalent to the seemingly innocuous Hex theorem (that a completed game of Hex must
have a winner), our result implies that all three theorems, Brouwer, Jordan and Hex,
are mathematically equivalent. Within PPAD, we defined two computational problems,
CurveCrossing and ZeroSurfaceCrossing, which always have solutions by dint of the
Jordan curve theorem. We show that both lie in PPAD, and the second is also PPAD-
complete. Finally, we relate the Hex theorem to results in the literature pertaining to the
complexity of standard pivoting algorithms for EndOfTheLine, Brouwer and Sperner.
It has been shown that identifying the solution computed by standard pivoting algorithms
for these problems is PSPACE-complete, and we show that the problem WhoWonHex,
of determining who is the winner in a play of Hex, is also PSPACE-complete. We thereby
establish computational relations among Brouwer, Hex and Jordan both within PPAD and
at the level of PSPACE. The main problem left open by our work is the complexity of
CurveCrossing. Is it PPAD-complete? We discuss structural properties of instances of
CurveCrossing that make us believe that the problem could lie lower in TFNP. It would be
interesting to identify a potential function argument guaranteeing a solution to this problem,
thereby placing it in the intersection of PLS and PPAD, and potentially one of the classes
defined in [4].

References
1 Aviv Adler, Constantinos Daskalakis, and Erik Demaine. The Complexity of Hex and the

Jordan Curve Theorem. Arxiv, 2016.
2 Xi Chen and Xiaotie Deng. On the Complexity of 2D Discrete Fixed Point Problem. In the

33rd International Colloquium on Automata, Languages and Programming (ICALP), 2006.
3 Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The Com-

plexity of Computing a Nash Equilibrium. In the 38th Annual ACM Symposium on Theory
of Computing (STOC), 2006.

4 Constantinos Daskalakis and Christos H. Papadimitriou. Continuous local search. In the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011.

5 Kousha Etessami and Mihalis Yannakakis. On the Complexity of Nash Equilibria and Other
Fixed Points (Extended Abstract). In the 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 2007.

6 David Gale. The game of Hex and the Brouwer fixed-point theorem. American Mathemat-
ical Monthly, pages 818–827, 1979.

7 Paul Goldberg. The Complexity of the Path-following Solutions of Two-dimensional Sper-
ner/Brouwer Functions. arXiv, 2015.

8 Paul W Goldberg, Christos H Papadimitriou, and Rahul Savani. The Complexity of the Ho-
motopy Method, Equilibrium Selection, and Lemke-Howson Solutions. ACM Transactions
on Economics and Computation, 1(2):9, 2013.

ICALP 2016



24:14 The Complexity of Hex and the Jordan Curve Theorem

9 Camille Jordan. Cours d’analyse de l’École polytechnique, volume 1. Gauthier-Villars et
fils, 1893.

10 Ryuji Maehara. The Jordan curve theorem via the Brouwer fixed point theorem. American
Mathematical Monthly, pages 641–643, 1984.

11 Christos H. Papadimitriou. On the Complexity of the Parity Argument and Other Inefficient
Proofs of Existence. Journal of Computer and System Sciences, 48(3):498–532, 1994.

A Interpolations of Functions on the Unit Square

In order to develop computational problems relating to our theorems of interest, we need
to give a formal definition of how circuits can represent functions on the unit square.
We will consider two types of functions we wish to represent: f : [0, 1]2 → [−1, 1], and
g : [0, 1]2 → [0, 1]2. They are represented by the following circuits:
1. f is represented by a circuit F which takes two n-bit strings as input (representing a

point in [0, 1]2) and returns an m-bit string (representing the value of the function);
2. g is represented by a circuit G which takes two n-bit strings as input and returns two

new n-bit strings.
These circuits directly define the values of their respective functions at lattice points in [0, 1]2,
namely points whose coordinates are integer multiples of 1/(2n− 1); for the values of f and g
at points which are not on this lattice, we use the triangulations depicted in Figure 7. For f ,
we take the output at lattice points (which is directly given by F ) and use them to generate
a ‘mesh’ which defines f at points not on the lattice; for g, we make a similar construction
as shown at center and right in the figure.

Figure 7 Left: the value of f at the three marked lattice points uniquely determines a plane; for
input points in the triangle shared by the three, the output of f is consistent with this plane. Center
and Right: the marked lattice points at right are the outputs of g at the marked lattice points at
center; inputs in the triangle shared by them are mapped to the corresponding point in the triangle
shared by their outputs (for example, the purple ‘x’ at center is mapped to the purple ‘x’ at right).


	Introduction
	Jordanian Action Inside PPAD
	Jordanian Action Over PPAD

	Preliminaries
	Brouwer's Fixed-Point Theorem and the Jordan Curve Theorem
	PPAD and its Related Computational Problems
	The Game of Hex

	Brouwer vs. Jordan in TFNP
	The Zero Surface Crossing Problem
	Computational Equivalence of Brouwer and Jordan

	Crossing Curves
	Hex, Brouwer, and Jordan in PSPACE
	Hex and PPAD
	WhoWonHex

	Conclusion
	Interpolations of Functions on the Unit Square

