
Provably Secure Virus Detection:
Using The Observer Effect Against Malware∗

Richard J. Lipton1, Rafail Ostrovsky†‡2, and Vassilis Zikas§‡3

1 Department of Computer Science, Georgia Institute of Technology, Atlanta,
USA
rjl@cc.gatech.edu

2 Department of Computer Science & Department of Mathematics, University
of California, Los Angeles, USA
rafail@cs.ucla.edu

3 Department of Computer Science, Rensselaer Polytechnic Institute, Troy, USA
vzikas@cs.rpi.edu

Abstract
Protecting software from malware injection is one of the biggest challenges of modern computer
science. Despite intensive efforts by the scientific and engineering community, the number of
successful attacks continues to increase.

This work sets first footsteps towards a provably secure investigation of malware detection.
We provide a formal model and cryptographic security definitions of attestation for systems
with dynamic memory, and suggest novel provably secure attestation schemes. The key idea
underlying our schemes is to use the very insertion of the malware itself to allow for the systems
to detect it. This is, in our opinion, close in spirit to the quantum Observer Effect. The attackers,
no matter how clever, no matter when they insert their malware, change the state of the system
they are attacking. This fundamental idea can be a game changer. And our system does not rely
on heuristics; instead, our scheme enjoys the unique property that it is proved secure in a formal
and precise mathematical sense and with minimal and realistic CPU modification achieves strong
provable security guarantees. We envision such systems with a formal mathematical security
treatment as a venue for new directions in software protection.

1998 ACM Subject Classification D.4.6 Security and Protection (K.6.5)

Keywords and phrases Cryptography, Software Attestation, Provable Security

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.32

1 Introduction

Protecting software from malware injection is a major goal of computer security. Nonetheless,
the problem of basing solutions on strong theoretical foundations does not seem to have
received sufficient attention in the malware protection literature. In this work we suggest
a novel provably secure and practically efficient paradigm for software protection against

∗ A preliminary version of this work was presented at the Securing Computation Workshop, Simons
Institute, UC Berkeley. US Patent Pending [22].

† This author was supported in part by the NSF award CNS-1136174.
‡ Work done in part while the author was visiting the Simons Institute for the Theory of Computing,

supported by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography
through NSF grant #CNS-1523467.

§ This author was supported in part by the Swiss NSF Ambizione grant PZ00P2_142549.

EA
T

C
S

© Richard J. Lipton, Rafail Ostrovsky, and Vassilis Zikas;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 32; pp. 32:1–32:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Provably Secure Virus Detection

arbitrary malicious code injection. We provide the first formal cryptographic model tailored
to detect malware injection in modern computers, which we envision as the basis for fruitful
research on provable secure detection and prevention of malware leading into the next
generation of secure systems. Importantly, we provide first matching solutions that are
accompanied by mathematical proofs that any memory oblivious injection will be caught
with arbitrary high probability. Our solutions are practically efficient, demonstrating that
provable security does not come at a too high price.

Our proposed system has the following desirable properties: 1) it requires minor to no
changes to the CPU specification to provably defend against injection attacks that can not
read the code before they inject their malware; 2) it only affects the performance of the
program by a modest amount. The first property implies that it can be used on today’s
computers. The second property means that it can be practical, since performance is critical
in most applications; this is obvious even in its simplified form presented here, where various
optimizations have been avoided for the sake of clarity in the presentation. Finally, we allow
attacks both spatial and temporal freedom: the attack can occur at any time during the
execution and on any part of the memory. It can attack code as well as data.

1.1 Overview of our Contributions
We put forward and formally define the notion of a virus detection scheme (in short, VDS)
which compiles any given program W (and its data) into a new secured program W̃ that
performs the same computation as W but allows us to detect any virus injected in the
memory at any point of the execution path. The detection is done via a provably secure
challenge-response mechanism between the machine executing the (compiled) software and
a verifying external device. Importantly, we insist that the verification algorithm be very
simple, and in particular that it be executed by a very lightweight device (Our constructions
require that the verifier only does an encryption and compares strings for equality.) Thus,
the role of the verifier can be, for example, played by the user with a smartphone, or by a
compact and simple, intrusion-free hardware module that could even be part of the CPU.1
Moreover, the verification uses public key techniques, where the verifier needs only the
public key. This restricts the attack surface to the machine executing the secured code, as
compromising the verifier’s privacy gives an attacker no advantage in breaking our scheme.

We provide our formal cryptographic definitions of VDS security based on the well-
studied Random Access Machine (RAM) model, slightly adapted to be closer to an abstract
version of a modern computer following the von Neumann architecture. The suggested model
corresponds to a simplistic closed-system abstraction of software execution: The code to be
executed along with its associated data is loaded initially on the random access memory
(RMEM,) which, through the execution, only communicates with the CPU.2

In more detail, a secure VDS is described as follows. The software to be executed is
compiled, prior to being loaded onto the memory, to a secure version. Importantly, this
compilation does not necessarily need the source code but for a wide class of software (non-
self-modifying code) can be applied on the binary (machine-language) code of the program;
thus, the compilation can be performed by the program vendor (this might allow for further

1 Unlike software-based attestation techniques (cf. Section 1.2), the verification in our scheme can be
done even over an insecure network, e.g. the Internet.

2 In particular, the current theoretical model does not address how the data is exchanged with secondary
storage devices, e.g., flash memory. It is part of ongoing research to extend this model to more
complicated architectures.

R. J. Lipton, R. Ostrovsky, and V. Zikas 32:3

efficiency optimizations) or by the user without requiring any reverse engineering. The
compiler, in addition to the (binary code) of the program and its data, uses a randomly
chosen compilation key K.

To check/verify that the software running on a system has not been attacked by a virus (or
to detect such an attack in case it has occurred), the following detection process is executed.
The user issues a challenge c that depends on the compilation key K and the system is
required to produce a reply which passes a specified verification test. As already discussed,
we arrange things in such a way that the verifier does not need to know the compilation key,
and he can just know some public information on it. Formally, this is done by the use of
public key cryptography, where the compilation key is the secret key, and the information
held by the verifier, which we refer to as the verification key, is the corresponding public key.
The security of the VDS requires that if the RAM has not been attacked then it can always
reply to the challenge in an accepting manner (verification correctness); otherwise, any reply
will be rejected with high probability (security).

We provide concrete instantiations of practical VDSs which, depending on the assumptions
about the CPU they are executed on, achieve from a reasonably strong security (namely
protection against continuous injection of moderate-sized virus) to security against arbitrary
small viruses injected on locations that might depend on key-share locations. Informally, we
prove the following result for our VDSs.

I Theorem (informal). Under standard complexity assumptions our VDSs compile any non-
self-modifying software into a secure version that detects any malware injection with very
high probability.

Our schemes are independent of the virus code, are platform-independent, and might
require only small modifications to the common CPU architecture (in particular, they do
not assume tamper-resilient hardware); and, with appropriate optimizations we can make it
that they only affect the performance of the executed software by a practically acceptable
amount. As a useful side effect, our scheme is even able to detect hardware errors, e.g.,
random bit-flips in the memory; as demonstrated in [5], such errors might have important
consequences on the security of the executed software.

To construct our VDS we start by constructing a scheme satisfying a weak(er) notion of
security, which (1) catches only injections of continuous and sufficiently long viruses, and (2)
assumes that the response is computed by an external (trusted) device that is given access
to the state of the attacked system. We give a formal definition of this weaker notion which
depending on the application and the desired security level might already be satisfactory. We
then proceed and gradually modify (strengthen) our scheme. The first modification ensures
that the compiled program can compute the response by itself, i.e., without the help of an
external trusted device. We note that the security of our weakest scheme is information
theoretic (it is based on the perfect privacy of one-time pad encryption), whereas the proof
of the more secure scheme requires a leakage-resilient encryption algorithm [9].

The second modification uses a simple message authentication code (in short, MAC) to
remove the limitation to sufficiently long and continuous virus injection. A MAC authenticates
a value using a random key, so that an attacker without access to the key cannot change the
value without being detected. More concretely, to authenticate a word w our scheme relies
on the standard MAC [16] that uses two keys K1 and K2, and compute a MAC tag as t =
w·K1+K2, where w,K1, andK2 are interpreted as elements of an appropriate large arithmetic
field. Observe that such arithmetic operations are implemented in hardware in existing CPUs.
We assume, however, that the executing CPU has a slightly extended instruction-set which,
informally, has each “load” instruction, i.e., read-from-memory instruction, check that the

ICALP 2016

32:4 Provably Secure Virus Detection

MAC is correct before it loads the word on the CPU registers. We stress that this only needs
the architecture to provide us with a very simple extra piece of microcode. By engineering
the CPU’s hardware in a smart way so that these operations are done on the circuit level,
we expect to be able to reduce the effect of our compiler to a barely noticeable slowdown.
Fortunately, the new architecture that Intel recently announced promises to embed such
microcode in its next-generation microchips [24].

Overview of our VDS Construction. So how can we detect an intrusion that we have never
seen before? How can we arrange that any injection of malware into our program by an
attacker who does not know the compilation-key will be detected? The answer is that we
will hide the compilation-key/secret in our program in a way that ensures that with very
high probability, any injection by an adversary must destroy the secret. Once this secret is
destroyed, the adversary may indeed be able to take over the program, but will be quickly
detected. We note that current systems may fail to detect such an attack forever – for the
type of injection we protect against, we are able to detect it in seconds.

A point: We can imagine situations where even such a swift detection of an attack is
not sufficient to stop potential harm. An attacker could, in some situations, do immense
damage even if he is in control of a program for only a fraction of a second. Furthermore,
our approach is not targeted towards fixing buggy software or detecting malware-including
software which might be (unknowingly) installed by the user. Rather, our method offers
protection against "unauthorized" injection of malicious code, e.g., direct injection to the
memory or radiation attacks. But we view the ability to provably detect any such attack,
new, old, clever, or not, as a big improvement over the current state of the art.

So how can we do this? Let W be a program that we wish to protect from malware. We
recompile W to W̃ . The idea is that W and W̃ must compute the same thing, run in about
the same time, and yet W̃ must be able to detect itself against the insertion of malware. An
obvious idea is to have W̃ periodically check to see if its code or data have been maliciously
changed. The trouble with this approach is that the attacker could easily inject his own code,
take over the checker, and thereby disable the checking. In short: who checks the checker?

Here is how we proceed. The protected program W̃ operates normally most of the time.
Periodically it is challenged by another machine to prove that it has a secret key K. This
key is known only to W̃ and not to the attacker. If W̃ has not been attacked, then it simply
uses the key K to answer the challenge and thus proves that it is still operating properly.

The issue is what happens if W̃ has been attacked and some code has been injected into
it. We can arrange W̃ so that no matter how the injection of code has happened the key K
is lost. The attacker’s very injection will have changed the state of W̃ so that it is now in a
state that no longer knows the key K. This is the analog of the quantum observer effect,
often referred to as the Heisenberg Uncertainty Principle: the attacker has damaged the
state of W̃ so that the key has been destroyed.

Making the attack destroy the key is the central idea here. If W̃ simply stores K
somewhere in memory, the attacker will take over the program, look around for the key, and
likely find the key;3 this defeats the protection, since now it can answer the periodic challenges
just like W̃ could. To resolve the above issue we distribute the key K all through memory
by using what is called secret sharing [30]. This is a standard method in cryptography that
breaks a small key, like K, into many small pieces, called shares. These pieces are cleverly
placed throughout all of W̃ ’s memory. Our secret sharing allows K to be reconstructed only

3 Note that we do not assume private memory, i.e., memory which the CPU cannot read.

R. J. Lipton, R. Ostrovsky, and V. Zikas 32:5

if all the pieces are left untouched – if any are changed in any way, then it is impossible to
reconstruct the key. Obviously, if there has been no attack, then in normal operation W̃ can
reconstruct the key from the pieces and answer the challenges. However, if the pieces are not
all intact, then W̃ will be unable to answer the next challenge.

This is the high-level idea of our method: hide the key via secret sharing, and rely on the
attacker to destroy at least one share of the key. This destruction is irreversible and makes
the attack fail the next challenge.

There is one additional point that we must mention. We must arrange that W̃ can be
attacked at anytime, including when the system has collected all the shares and reconstructed
the keyK on its CPU. This is a very dangerous time, since if W̃ is attacked at this moment the
fact that shares are destroyed does not matter. The attacker can simply use the reconstructed
key K. We avoid such time-of-check-time-of-use (TOCTOU) attacks [25] by actually using
two keys K1 and K2 in tandem. Both are stored via secret sharing as before, but now one
must have both in order to answer the challenges. We arrange that W̃ only reconstructs one
key at a time and this means that an attacker must destroy either or both of the keys. This
handles the above dangerous situation and makes our method provably secure.

Tying up the last loose end, we treat the case of very small viruses – i.e., ones that
consist of a single bit or just a few bits – and viruses that know (or guess) the exact memory
locations of key-shares in advance and therefore might not need to overwrite them. We armor
our system to defend even against such tiny/informed viruses by employing an additional
lightweight cryptographic primitive, namely a MAC. We use the MACs in a straightforward
and efficient manner: we authenticate each word in W using the key-shares (also) as MAC
keys, and require that for any word that is loaded from the random access memory, the CPU
verifies the corresponding MAC before further processing the word. Thus, if the MAC does
not check out we detect it (and immediately destroy the share), and if the adversary changes
the MAC key, he loses one of the shares of one of the two secrets, and we detect that as well.

We enforce the above checks by assuming a modified CPU architecture (with only very
small amount of additional computation, so the CPU power consumption is not affected).
More specifically, to get the most out of the MAC functionality we need that when the CPU
executes the program, it verifies authenticity of the words it loads from the memory. That
is, the load operation of the CPU loads a block of several (in our case, five) words – this is
already the case in most modern CPUs – including the program word, the MAC-tag and
the corresponding keys, and check with every load instruction that the MAC verifies before
further processing the word. Importantly, our MAC uses just one field addition and one
field multiplication per authentication/verification; the circuits required to perform these
operation are actually trivial compared to the modern CPU complexity and are part of many
existing CPU specifications.

But to obtain security against any injection, we need one more trick: instead of using the
actual key-shares in the generation/verification of the MAC tag, we use their hash-values.
This ensures that the virus cannot manipulate the keys and forge a consistent MAC unless
he overwrites a large part of them. We anticipate that given our goal’s potential impact on
security, such functionality might be included in the next generations of CPUs [24].

1.2 Related Literature
The literature on defense mechanisms against malware-injection attacks is vast. Due to its
urgency and importance, the problem has been intensively researched. In what follows we
provide a brief overview of the directions most related to our approach.

Closest related to our goals is the literature on verifying the authenticity/integrity of the
internal state of computing devices to confirm that they have not been attacked by malware,

ICALP 2016

32:6 Provably Secure Virus Detection

a mechanism usually referred to as attestation. A rough taxonomy divides this literature
in three general categories, namely hardware-based attestation [2, 6, 11, 21], software-based
attestation [20, 29, 28, 1, 17, 18], and remote attestation [6, 11, 21, 14, 4]. Due to the
similarity in the goals of attestation with our system, we present a detailed overview of the
corresponding literature in the full version of this work [23]. As a general note, we stress
that similarly to other practical defense mechanisms, attestation schemes do not come with
a formal proof of security or even a theoretical security model.4 In contrast, our scheme
is not only backed by a formal mathematical proof, but has several additional advantages
with respect to existing attestation schemes, which are highlighted in the full version of this
work [23]. We note, however, that much of the attestation literature allows the system to
leak its entire state; although our schemes do not account for such leakage (in particular, the
key shares should not leak), one can use sharing-refreshing techniques, e.g., [26, 3], to add
protection against periodic leakage. The details of such a scheme are subject of future work.

On the most theoretical side of cybersecurity, cryptography provides solutions whose
security is backed by rigorous mathematical proofs that typically reduce hardness of breaking
the scheme to hardness of solving a mathematical problem, e.g., factoring. But with only a
few exceptions, e.g., [7, 13, 10, 19, 15, 27], the cryptographic literature has not, to the best
of our knowledge, targeted the problem of malicious code injection. And in contrast to the
security-engineering research, cryptographic solutions that do target this problem are often
inefficient and/or adopt a too-abstract model of computation which makes them inapplicable
or impractical for today’s systems.

1.3 Organization of the Paper
In Section 2 we describe the model of computation and the virus injection model, and in
Section 3 we provide our security definitions for VDSs. Our VDS constructions are then
described in Sections 4 and 5. Due to limited space, some of the formal definitions and proofs
have been moved to [23].

2 The Model

In this section we provide an abstract specification of our model of computation. We use as
our basis the well known Random Access Machine (RAM) model but slightly adapt it to be
closer to an abstract version of a modern computer following the von Neumann architecture.
In a nutshell, this modification consist of assuming that both the program and its data are
written on the RAM’s random access memory5 which is polynomially bounded. A RAM
R consist of two components: A Random Access Memory (in short RMEM) and a Central
Processing Unit (in short CPU). The RMEM and the CPU communicate in fetch-and-execute
cycles, aka CPU cycles, where the number of CPU cycles is the default complexity measure
of a RAM. We will refer to a CPU cycle as a round in the RAM execution.

The memory RMEM is modeled as a vector MEM of m = |MEM| = poly(k) words, where k is
the, often implicit, security parameter. Each word is an L-bit string, where we assume that
L is linear in k. (Wlog, in the following we will assume that L = k.) For i ∈ {0, 1, . . . ,m− 1}
we denote by MEM[i] the ith word, i.e., the contents of the i-th RMEM register. The CPU

4 An exception here is [4] which uses an idea similar in spirit to ours – i.e., sharing a secret through the
memory – for provably protecting against a class of heap overflow attacks (cf. [23] for a comparison).

5 In the literature, a RAM with this modification is usually called a Random Access Stored-Program
machine [12] (in short, RASP).

R. J. Lipton, R. Ostrovsky, and V. Zikas 32:7

consists of a much smaller number of L-bit registers – in this work we assume that the total
amount of storage of the CPU is linear in the security parameter k – and an instruction
set I that defines which operations can be performed on the registers, and how data are
loaded-to/output-from the CPU. The CPU registers include a read-only input-register and
an output register which correspond to its interface with its environment (the user). The
CPU registers are modeled as an array REG of words, where we denote by REG[i] the content
of the ith CPU register. We denote a CPU by the pair C = (REG, I) of the vector REG of
registers and the instruction set I. We denote a RAM with CPU Ck and RMEM MEMk as
Rk = (Ck, MEMk).6 The state of Rk at any point in the protocol execution is the vector
(REGk, MEMk) including the current contents of all its CPU and RMEM registers. Details of
the model and formal definitions can be found in [23].

To allow for asymptotic security definitions – where the word size, the size of the CPU
(i.e., number of its registers), and the size of the memory depend on the security parameter
– we often consider a family of RAMs, R = {Rk}k∈N with Rk = (Ck = (REGk, Ik), {MEMk}).
(The size of each word processed by Rk is L = k.) The RAM families considered in this
work have the following property: The instruction set Ik is the same for all values of the
security parameter k. In particular, we assume that all elements of a RAM family, have the
same constant number c = O(1) of CPU registers, where each register of Rk is of size k, and
there is some set of instructions I that includes operations defined over strings of arbitrary
size such that Ik = I for every k ∈ N. (Of course for each value of k, Ik corresponds to the
restriction of I on k-bit strings.)

Software Execution and Virus Injection. A program to be executed on a RAMR = (C, MEM)
is described as a vectorW = (w0, . . . , wn−1) ∈ ({0, 1}L)n of words that might be instructions,
addresses, or program data. To avoid confusion, we refer to such a vector including the
(binary of a) software and its corresponding data as code for R. By convention, whenever,
for a RAM family R we say that W is code for R, we mean that W is code for the element
Rk ∈ R with register size as long as the word size of W and instruction set that includes
all the instructions used by W . The execution of a program proceeds as follows: The code
W is loaded onto the memory MEM. Unless stated otherwise, we assume that W is loaded
sequentially on the first n = |W | locations of MEM, where all remainder locations are filled
with (no_op) instructions. The user might give input(s) to R by writing them on its input
register. The RAM starts its execution by fetching the word of the RMEM which the program
counter points to, i.e., MEM[pc] (wlog, initially pc = 0). We assume that the RAM is reactive,
i.e., any new input written on its input register, makes the RAM resume its computation
even if it had halted with output (cf. [23]).

A CPU is complete (also referred to as universal) if given sufficient (but polynomial)
random access memory it can perform any efficient deterministic computation (for a formal
definition see [23]). We at times refer to a RAM (family) with a complete CPU as a complete
RAM (family).

Modeling Virus Attacks. In our model, a virus attacks a RAM by injecting its code on
selected locations of the memory RMEM. More formally, an `-bit virus is modeled as a tuple
v = (~α, V) = ((α0, . . . , α`−1), (b0, . . . , b`−1)), where each αi ∈ ~α is a location in the memory
and each bi is a bit. The effect of injecting a virus v into a RAM R = (C, MEM), is to have, for
each αi ∈ ~α, the αi-th bit on the memory – i.e., the (αi mod L)-th bit of the word written

6 In slight abuse of notation we at times drop the security parameter whenever it is clear from the context.

ICALP 2016

32:8 Provably Secure Virus Detection

on register MEM[bαi

L c] – (over)written with bi. We say that v is valid for R if the following
properties hold: (1) αi 6= αj for every αi, αj ∈ ~α, and (2) αi ∈ {0, . . . , L(|MEM| − 1)} for every
αi ∈ ~α. Furthermore, we say that v is non-empty if |~α| > 0. Note that in this work we do
not consider viruses which inject themselves on the CPU registers.

3 Virus Detection Schemes

We next formalize our notion of provably secure virus detection. More concretely, we
introduce the notion of a virus detection scheme (in short VDS) which demonstrates how to
compile a given program (and its data) into a new program which allows us to detect any
virus injection. The detection is done via a challenge-response mechanism.

I Definition 1. A virus detection scheme (VDS) V consists of five (potentially) randomized
algorithms, i.e., V = (Gen, Comp, Chal, Resp, Ver), defined as follows:7

Gen is a key-generation algorithm; it computes a pair (compilation-key, verification-key),
i.e., (Kc,Kv)

$← Gen.8

Comp on input the description R = {(Ck, MEMk)}k∈N of a RAM family,9 some code W for
Rk, and a compilation key Kc, Comp outputs a new code W̃ for Rk (which we will refer
to as secure code) ; i.e., W̃ $← Comp(Rk,W,Kc).
Chal on input a verification key Kv, and a string z ∈ InpChal ⊆ {0, 1}poly(k), Chal outputs
poly(k)-bit string c called the challenge; i.e., c $← Chal(z,Kv).
Resp on input a string c ∈ OutChal and some code W̃ , Resp outputs a poly(k)-bit string
y called the response; i.e., y $← Resp(c, W̃).
Ver on input a verification key Kv, a message z ∈ InpChal, a challenge c and a response
y, Ver outputs a bit b; i.e., b $← Ver(Kv, z, c, y). We say that Ver accepts iff b = 1.

A VDS should satisfy the following four security properties (see [23] for formal defini-
tions).10 The first property is verification correctness which, intuitively, guarantees that if
the RAM has not been attacked, then the reply to the challenge is accepting. The second
property is compilation correctness, which intuitively ensures that the compiled code W̃
performs the same computation (on R) as the original code W . In an application of a VDS,
the verifier inputs the challenge at a point of his choice and checks that the reply verifies
according to the predicate Ver. Thus, the third property of a VDS is self-responsiveness:
the secured code W̃ includes code that on some special input emulates algorithm Resp on
the RAM it executes. Finally, the fourth property requires detection accuracy which states
that if some non-empty malware gets injected onto the RAM, then it is detected with high
probability. This is one of the most challenging properties to ensure and is the heart of any
VDS. We next specify this property by means of a security game between an adversary Adv
who aims to inject a virus on a RAM, and a challenger Ch who aims to detect it.

7 All five algorithms below take as an additional input the security parameter k, which is omitted for
compactness.

8 Note that if we instantiate the VDS with symmetric-key cryptography then Kc = Kv.
9 This description of the family includes the word-size, the size and addresses of the CPU and RMEM
registers and (an encoding) of the instruction set I.

10Without loss of generality, whenever we refer to the secure (i.e., compiled by Comp) version W̃ of some
code W for a RAM family R we will implicitly assume that R has enough memory for writing W̃ on it,
i.e., if the word size of W̃ is k then |MEMk| > |W̃ |.

R. J. Lipton, R. Ostrovsky, and V. Zikas 32:9

3.1 Detection Accuracy as a Security Game
At a high-level, the security game, denoted by GR,V,WVDS , proceeds as follows: The challenger
Ch runs the key-generation algorithm to obtain a key-pair (Kc,Kv), and compiles some code
W for RAM R = (C, MEM) onto a new code W̃ for R by invocation of algorithm Comp; Ch then
emulates an execution of W̃ on R, i.e., emulates its CPU cycles and stores its entire state at
any given point. The adversary is allowed to inject a virus of his choice on any location in the
memory MEM. Eventually, the challenger executes the (virus) detection procedure: It computes
a challenge c by invocation of algorithm Chal(z,Kv), and then feeds input (check, c) to the
emulated RAM and lets it compute the response y. The adversary wins if the output b of the
verification algorithm with this response y equals 1. To capture worst case attack scenarios,
we allow the adversary to inject his virus at any point during the RAM emulation and make
no assumption as to how many rounds the RAM executes after the virus has been injected
and before it receives the challenge. Furthermore, we make no assumptions on how much
information the adversary holds on the original code W or on the inputs/outputs of R. The
formal description of the security game GR,V,WVDS can be found in [23].

I Definition 2. We say that a virus detection scheme V =(Gen,Comp,Chal,Resp,Ver) is secure
for RAM family R if it satisfies the following properties:
1. V is verification correct, compilation correct, and self-responsive.
2. For sufficiently large k for any code W for Rk and any polynomial adversary Adv in

the game GRk,V,W
VDS who injects a valid non-empty virus the following holds: Pr[b = 1] is

negligible, where the probability is taken over the random coins of Adv and Ch.

In our constructions we restrict our statements to a certain class of code that satisfies some
desirable properties making the compilation easier. We will then say that the corresponding
VDS is secure with respect to the given class of code.

The Repeated Detection Game τGR,V1,W
VDS . Definition 2 requires that the adversary is

caught even when he injects its virus while the RAM is executing the Resp algorithm. We next
describe a relaxed security game, which provides a useful guarantee for practical purposes.
In this game the virus detection (challenge/response) procedure is executed multiple times
periodically (on the same compiled code); the requirement is that if the adversary injects
its virus to the RAM at round ρ, then he will be caught by the first invocation of the
virus detection procedure which starts after round ρ. Note that all executions use the same
compiled RAM program and therefore the same key K. The corresponding security game
τGR,V,WVDS which involves τ executions of the detections procedure is detailed in [23]. The
security definition is similar to Definition 2 but requires that any virus that is injected in the
RAM will be caught in the first virus detection attempt performed after the injection . Our
VDSs will be proven secure in this repeated detection game. In [23] we describe a simple
trick which transforms our VDSs to ones that are secure in the standard game using a secure
hash function.

4 A Software-based VDS for Continuous Moderate-size Virus

In this section we provide a VDS which is secure assuming the virus is linear in the
security parameter and that it is injected in continuous memory locations, i.e., if v =
((α0, . . . , α|V |−1), V), then αi = αi−1 + 1 for all i ∈ [|V |− 1]. This captures the entire class of
tampering accounted for in [4]. In Section 5 we will show how to get rid of these restrictions.
Our construction proceeds in two steps. First, we show how to construct a VDS V1 which

ICALP 2016

32:10 Provably Secure Virus Detection

achieves a weaker notion of security that, roughly, does not have self-responsiveness. In a
second step, we show how to transform V1 into a VDS V2 which is secure in the repeated
detection game.

A VDS without self-responsiveness. We start by describing a VDS V1 = (Gen1, Comp1,

Chal1, Resp1, Ver1) which achieves security without self-responsiveness: The corresponding
attack-game GR,V,WVDS− is derived from the standard attack-game GR,V,WVDS by modifying the
detection procedure so that instead of emulating R on the compiled code W̃ and input
(check, c) to compute y = Resp(c, W̃), the challenger evaluates y $← Resp(c, W̃) himself on
the current contents W̃ of the memory of the emulated RAM.

At a high level, the idea of our construction is as follows: The key generation algorithm
Gen1 samples a k-bit key K for a symmetric-key cryptosystem, i.e., Kc = Kv = K

$← {0, 1}k.
Given key K, the algorithm Comp1 computes an additive sharing 〈K〉 of K and fills the
entire memory MEM by interleaving a different share of 〈K〉 between every two words in the
original code. Concretely, Comp compiles some code W for a RAM R into some new code
W̃ for R constructed as follows: Between any two consecutive words wi and wi+1 of W the
compiler interleaves a uniformly chosen k-bit string Ki,i+1 = Ki,i+1

1 || . . . ||Ki,i+1
k
L

, where each
Ki,i+1
j ∈ {0, 1}L. In the last k bits of the compiled code (i.e., after the last word w|W |−1)

the string Klast = K ⊕
⊕|W |−2

i=0 Ki,i+1 is written.11

To ensure that the compiled code W̃ executes the same computation as W we need that
while being executed it “jumps over” the key-share locations. For this purpose, we do the
following modification: After each word wj of W we insert a (jumpby, n) instruction where
n is the number of key-shares between this and the next W -word in the compiled code.
Similarly, we modify any “jump" instructions of the original code W to point to the correct
locations in W̃ . Note that this modification is not necessarily applicable to arbitrary code,
e.g., for certain self-modifying code it might even be infeasible. However, it is possible for a
complete class of code, which we refer to as non-self-modifying structured code, – roughly,
this includes code that does not modify its instructions and might only jump by a fixed
amount in each operation.

In the following we provide the description of our compiler. The first step to this direction
is a process, called Spread, which spreads such a code to allow for enough space between
the words to fit the key-shares and adds the extra "jump" instructions to preserve the right
program flow. The compiler Comp1 uses the process Spread to translate, as sketched above,
some non-self-modifying structured code W for a RAM R = (C, MEM) into (secured) code W̃
for R. The algorithm Chal1 chooses random string x ∈ {0, 1}k, and computes the challenge
as an encryption of x with key K; i.e., c← Chal(x,K) = EncK(x). For achieving security
without self-responsiveness, we can take Enc to be the one-time pad, i.e., EncK(x) = x⊕K.
The corresponding algorithm Resp1 works as follows: On input the challenge c = EncK(r)
and the compiled code W̃ , it reconstructs K by summing up all its shares as retrieved from
W̃ , and outputs a decryption of the challenge under the reconstructed key, i.e., outputs
y = c⊕K. The corresponding verification algorithm Ver1 simply verifies that y = x.

The security of the above scheme follows from the fact that an injection of a sufficiently
long continuous virus will have to overwrite a substantial number of bits of a key-share,
which will make it infeasible to correctly decrypt the challenge and thus pass the VDS check.
The formal security proof of the statement can be found in [23].

11Wlog, here we implicitly assume that (|MEM| − |W |) = 0 mod k so that the keys fit exactly in the
memory. The general case can also be easily treated.

R. J. Lipton, R. Ostrovsky, and V. Zikas 32:11

I Theorem 3. Assuming R is a complete RAM family the VDS V1 is secure for R without
self-responsiveness with respect to the class of all non-self-modifying structured codes and the
class of adversaries who injects a virus v with |v| ≥ 2L+ ` where ` = ω(log k) on consecutive
memory locations.

Adding Self-Responsiveness. We next modify V1 so that it is secure (with self-responsiveness)
in the repeated detection game. Due to space limitation, the detailed transformation has
been moved to [23]; here we restrict to an overview of the basic technical ideas. The first
step is to devise a code WResp for computing a given VDS response algorithm Resp and
then combine it with W via a threading mechanism: When executing, the combined code
Emb(W,WResp) (periodically) checks if a verification request-input with challenge c is handed
to R; if so, it stores the CPU state on free memory locations – namely, locations at the end
of the memory that are occupied by (no_op) – and changes the program counter to point to
the location where WResp is stored; once Resp has produced output, it restores the CPU to
its prior state and continues the execution of W .

But the above modification applied on V1 does not yield a secure VDS, as it only detects
attacks (virus injections) that occur outside the virus verification procedure, i.e., has the
TOCTOU vulnerability discussed in the introduction. To solve this, instead of using a single
compilation-key K of length k we use a 2k-bit key K which is parsed as two k-bit keys Kod

and Kev via the following transformation: Let K = x1|| . . . ||x 2k
L
, where each xi is a word.12

Then Kod is a concatenation of the odd-indexed words, i.e., xi’s with i = 1 mod 2, and Kev

is a concatenation of the even indexed words. Now the challenge algorithm outputs a double
encryption of z with keys Kod and Kev, i.e., c = EncKod(EncKev(z)). In order to decrypt, the
response algorithm does the following: First it reconstructs Kod by XOR-ing the appropriate
shares, and uses it to decrypt c, thus computing EncKev(z). Subsequently, it erases Kod from
the CPU register (e.g., by filling the register where Kod is stored with 0’s) and after the
erasure completes it starts reconstructing Kev and uses it (as above) to decrypt EncKev(z)
and output y = z.

The above modification ensures that in order to correctly answer the challenge, the virus
needs both Kod and Kev. However, the keys are never simultaneously written in the CPU.
Thus if the adversary injects the virus before Kod is erased he will overwrite bits from a
share of Kev (which at that point exists only in the memory RMEM); thus he will not be
able to decrypt the challenge. Otherwise, if the adversary injects the virus after Kod has
been erased from the CPU, he will overwrite bits from a share of Kod; in this case he might
successfully pass this detection attempt, but will fail the next detection attempt.

But we are still not done, because the above argument cannot work with any encryption
scheme, e.g., it fails if we instantiate Enc(·) with one-time-pad encryption as in VDS V1. The
reason is that once inside the system, the adversary might be able to use the key material
it has not destroyed to answer the challenge with non-negligible probability. To avoid this,
we make use of a public-key leakage-resilient encryption scheme, e.g., [8], which is secure as
long as the adversary’s probability of guessing the key is negligible even when one leaks a
big part of the key.

The above tricks are the heart of our modified VDS, but a few more low level hacks are
employed to ensure that the modified protocols compose well with the ones from the previous
section. For example, we need to make sure that the part of the code Emb(W,WResp) that

12We provide the general solution for k = Lq for some q; with the simplification that L = k, we get that
K = x1||x2 = Kod||Kev.

ICALP 2016

32:12 Provably Secure Virus Detection

performs the verification accesses the correct key-share locations. We refer to [23] for the
details and the security proof of the resulting VDS V2 = (Gen2, Comp2, Chal2, Resp2, Ver2).

On the performance of our VDS. It is easy to verify that the above VDS induces a
moderate slowdown, i.e., a factor two, due to processing the newly inserted jump instructions
plus whatever slowdown the periodically checking for inputs might impose, on the execution
of the code on the RAM (while the code is not being verified). Both slowdowns can be
reduced. E.g., the factor two is an overestimate as several instructions are already “jumps”
plus reading data does not execute “jumps”; similarly, the check for the input can be executed
periodically (or explicitly assumed as being part of any CPU-cycle). On the other hand,
verification is quite heavy as it needs to traverse almost the entire memory but this is not our
main consideration as (1) we believe that our scheme’s provable security guarantee makes
the waiting acceptable, and (2) unlike existing attestation methods the verification does not
need to stop the normal execution of the program – e.g., in a RAM with parallel processors
it could be done by a single designated processor.

In terms of memory usage, the secured code requires a linear (concretely, a factor four)
amount of memory with respect to the original code. Although we are less concerned about
memory needs – memory is an inexpensive expandable resource the capacities of which
increase faster than computation speed – improving the memory usage is an interesting
research direction.

5 Detecting Arbitrary Injection

The above VDSs are secure only against (sufficiently) long and consecutive viruses. In this
section we describe a construction which is secure independently of the virus length even if
the virus bits are not injected continuously, and in particular even when the virus targets non-
key-share locations. To achieve this ultimate security guarantees we use a compiler similar to
Comp2, but we include, for each code word and pair of key-shares, message-authentication-code
tags (MACs) which we verify every time we load a code word to the CPU. Concretely, the
difference with Comp2 is that Comp3 appends a MAC tag ti to each word, keyed with the
(concatenation of the) key-shares Ki,i+1

od ||Ki,i+1
ev that follow this word. We use a MAC with

a special leakage-resilient property that ensures that the adversary cannot forge a tag even
when he knows a large portion of the key. Thus, if the malware overwrites only a few bits of
some of the key-shares it will be unable to guess an appropriate manipulation of the MAC
key. And if it overwrites a large portion it will be unable to answer decryption challenges.

To use the power of the MACs we need to make sure that during the program execution,
before loading any word to the CPU we first verify its MAC. To this direction, we assume
that, by default, the CPU loads values from the memory RMEM to its registers via a special
load instruction (read_auth, i, j), which fetches five consecutive words (corresponding to w̃i
and its MAC key and tag), verifies the MAC with the corresponding keys, and only if the
MAC verifies, it keeps the word on the CPU to process. If the MAC verification fails, then
(read_auth, i, j) deletes at least one of the key-shares from the memory, thus introducing
an inconsistency that will be caught by the detection procedure. Furthermore, to ensure
that the compiled program will not introduce inconsistencies, our compiler replaces every
(write, j, i) instruction (which writes the contents of register j in RMEM location i) with
microcode, denoted as write_auth, which, when writing a word in the memory it also
updates the corresponding MAC tag. We stress that, unlike read_auth which we need the
CPU to support as an atomic instruction, the instruction write_auth does not require any

R. J. Lipton, R. Ostrovsky, and V. Zikas 32:13

change in the architecture or additional assumptions as it can be implemented in code itself.
The details of the corresponding VDS V3 along with its security proof can be found in [23].

I Theorem 4. Let R be a complete RAM. If the encryption scheme used in V3 is CPA
secure even against an adversary who learns all but ω(log k) bits of the secret key, then V3 is
secure for R in the repeated-detection mode with respect to the class of all non-self-modifying
structured codes and adversaries in the bit-by-bit (non-continuous) injection model.

References
1 T. AbuHmed, N. Nyamaa, and D. Nyang. Software-based remote code attestation in

wireless sensor network. In GLOBECOM’09, pages 4680–4687. IEEE Press, 2009.
2 W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable bootstrap architecture.

In SP’97, pages 65–, Washington, DC, USA, 1997. IEEE Computer Society. URL: http:
//dl.acm.org/citation.cfm?id=882493.884371.

3 J. Baron, K. El Defrawy, J. Lampkins, and R. Ostrovsky. How to withstand mobile virus
attacks, revisited. In M. M. Halldorsson and S. Dolev, editors, PODC 2014, pages 293–302.
ACM Press, 2014.

4 A. Boldyreva, T. Kim, R. J. Lipton, and B. Warinschi. Provably-secure remote memory
attestation for heap overflow protection. Cryptology ePrint Archive, Report 2015/729,
2015.

5 D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking cryptographic
protocols for faults. In EUROCRYPT’ 97, volume 1233 of LNCS, pages 37–51. Spriger,
1997.

6 B. Chen and R. Morris. Certifying program execution with secure processors. In HOTOS’03,
pages 23–23. USENIX Association, 2003.

7 D. Dachman-Soled, F.-H. Liu, E. Shi, and H.-S. Zhou. Locally decodable and updatable
non-malleable codes and their applications. In TCC 2015, volume 9014 of LNCS, pages
427–450. Springer, 2015.

8 Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Public-key
encryption schemes with auxiliary inputs. In TCC 2010, volume 5978 of LNCS, pages
361–381. Springer, 2010.

9 Y. Dodis, Y. T. Kalai, and S. Lovett. On cryptography with auxiliary input. In STOC ’09,
pages 621–630. ACM, 2009.

10 S. Dziembowski, K. Pietrzak, and Daniel Wichs. Non-malleable codes. In ICS 2010, pages
434–452, 2010.

11 K. El Defrawy, G. Tsudik, A. Francillon, and D. Perito. SMART: secure and minimal
architecture for (establishing dynamic) root of trust. In NDSS 2012. The Internet Society,
2012.

12 C. C. Elgot and A. Robinson. Random-access stored-program machines, an approach to
programming languages. J. ACM, 11(4):365–399, October 1964.

13 S. Faust, P. Mukherjee, J. B. Nielsen, and D. Venturi. A tamper and leakage resilient von
neumann architecture. In J. Katz, editor, PKC 2015, volume 9020 of LNCS, pages 579–603.
Springer, 2015.

14 A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik. A minimalist approach to
remote attestation. In DATE’14, pages 244:1–244:6. European Design and Automation
Association, 2014.

15 S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistin-
guishability obfuscation and functional encryption for all circuits. In FOCS 2013, pages
40–49. IEEE Computer Society, 2013.

ICALP 2016

http://dl.acm.org/citation.cfm?id=882493.884371
http://dl.acm.org/citation.cfm?id=882493.884371

32:14 Provably Secure Virus Detection

16 P. Gemmell and M. Naor. Codes for interactive authentication. In CRYPTO’94, volume
773 of LNCS, pages 355–367. Springer, 1994.

17 M. Jakobsson and K.-A. Johansson. Practical and secure Software-Based attestation. In
LightSec 2011, 2011.

18 M. Jakobsson and G. Stewart. Mobile malware: Why the traditional AV paradigm is
doomed, and how to use physics to detect undesirable routines. In BlackHat 2013, 2013.

19 A. Juels and B. S. Kaliski Jr. Pors: Proofs of retrievability for large files. In CCS 2007,
pages 584–597. ACM, 2007.

20 R. Kennell and L. H. Jamieson. Establishing the genuinity of remote computer systems. In
SSYM’03, pages 21–21. USENIX Association, 2003.

21 X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and J. Butterworth. New
results for timing-based attestation. In SP 2012, pages 239–253. IEEE Computer Society,
2012.

22 R. J. Lipton, R. Ostrovsky, and V. Zikas. Provably secure virus detection. U.S. Patent
(pending), Application No. 62/054,160, 2014.

23 R. J. Lipton, R. Ostrovsky, and V. Zikas. Provably secure virus detection: Using the
observer effect against malware. Cryptology ePrint Archive, Report 2015/728, 2015.

24 F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue, and
U. R. Savagaonkar. Innovative instructions and software model for isolated execution. In
HASP’13, pages 10:1–10:1. ACM, 2013.

25 W. S. McPhee. Operating systems integrity in os/vs2. IBM Systems Journal, 13 Issue 3,
pages 230–252, 1974.

26 R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended abstract).
In L. Logrippo, editor, PODC ’91, pages 51–59. ACM, 1991.

27 A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In STOC 2014, pages 475–484. ACM, 2014.

28 A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. Scuba: Secure code update
by attestation in sensor networks. In WiSe’06, pages 85–94. ACM, 2006.

29 A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying
code integrity and enforcing untampered code execution on legacy systems. In SOSP’05,
pages 1–16. ACM, 2005.

30 A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

	Introduction
	Overview of our Contributions
	Related Literature
	Organization of the Paper

	The Model
	Virus Detection Schemes
	Detection Accuracy as a Security Game

	A Software-based VDS for Continuous Moderate-size Virus
	Detecting Arbitrary Injection

