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Abstract
We provide simple but surprisingly useful direct product theorems for proving lower bounds
on online algorithms with a limited amount of advice about the future. Intuitively, our direct
product theorems say that if b bits of advice are needed to ensure a cost of at most t for some
problem, then r · b bits of advice are needed to ensure a total cost of at most r · t when solving
r independent instances of the problem. Using our direct product theorems, we are able to
translate decades of research on randomized online algorithms to the advice complexity model.
Doing so improves significantly on the previous best advice complexity lower bounds for many
online problems, or provides the first known lower bounds. For example, we show that

A paging algorithm needs Ω(n) bits of advice to achieve a competitive ratio better than
Hk = Ω(log k), where k is the cache size. Previously, it was only known that Ω(n) bits of
advice were necessary to achieve a constant competitive ratio smaller than 5/4.
Every O(n1−ε)-competitive vertex coloring algorithm must use Ω(n logn) bits of advice. Pre-
viously, it was only known that Ω(n logn) bits of advice were necessary to be optimal.

For certain online problems, including the MTS, k-server, metric matching, paging, list update,
and dynamic binary search tree problem, we prove that randomization and sublinear advice are
equally powerful (if the underlying metric space or node set is finite). This means that several
long-standing open questions regarding randomized online algorithms can be equivalently stated
as questions regarding online algorithms with sublinear advice. For example, we show that there
exists a deterministic O(log k)-competitive k-server algorithm with sublinear advice if and only
if there exists a randomized O(log k)-competitive k-server algorithm without advice.

Technically, our main direct product theorem is obtained by extending an information theo-
retical lower bound technique due to Emek, Fraigniaud, Korman, and Rosén [ICALP’09].
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1 Introduction

The model of online computation deals with optimization problems where the input arrives
sequentially over time. Usually, it is assumed that an online algorithm has no knowledge of
future parts of the input. While this is a natural assumption, it leaves open the possibility
that a tiny amount of information about the future (which might be available in practical
applications) could dramatically improve the performance guarantee of an online algorithm.

∗ Most proofs have been omitted due to space restrictions. A full version of the paper containing all
proofs and technical details is available at http://arxiv.org/abs/1511.05886.
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Recently, the notion of advice complexity [17, 29, 34, 28] was introduced in an attempt
to provide a quantitative and problem-independent framework for studying semi-online
algorithms with limited (instead of non-existing) knowledge of the future. In this framework,
the limited knowledge is modeled as a number of advice bits provided to the algorithm by
an oracle (see Definition 7). The goal is to determine how much advice (measured in the
length, n, of the input) is needed to achieve a certain competitive ratio. In particular, one of
the most important questions is how much advice is needed to break the lower bounds for
(randomized) online algorithms without advice. It has been shown that for e.g. bin packing
and makespan minimization on identical machines, O(1) bits of advice suffice to achieve a
better competitive ratio than what is possible using only randomization [5, 3]. On the other
hand, for a problem such as edge coloring, it is known that Ω(n) bits of advice are needed
to achieve a competitive ratio better than that of the best deterministic online algorithm
without advice [41]. However, for many online problems, determining the power of a small
amount of advice has remained an open problem.

With a few notable exceptions (e.g. [15, 29, 16, 20]), most of the previous research on
advice complexity has been problem specific. In this paper, we take a more complexity-
theoretic approach and focus on developing techniques that are applicable to many different
problems. Our main conceptual contribution is a better understanding of the connection
between advice and randomization. Before explaining our results in details, we briefly review
the most relevant previous work.

Standard derandomization techniques imply that a randomized algorithm can be converted
(maintaining its competitiveness) into a deterministic algorithm with advice complexity
O(log log I(n) + logn), where I(n) is the number of inputs of length n [16]. Clearly, there are
problems where even a single bit of advice is much more powerful than randomization, and so
we cannot in general hope to convert an algorithm with advice into a randomized algorithm.
However, using machine learning techniques, Blum and Burch have shown that a metrical
task system algorithm with advice complexity O(1) can be converted into a randomized
algorithm without advice [12]. Problems such as paging, k-server, and list update can be
modeled as metrical task systems (see e.g. [18]).

2 Overview of results and techniques

We will give a high-level description of the results and techniques introduced in this paper.
For simplicity, we restrict ourselves to the case of minimization problems1.

Direct product theorems. Central to our work is the concept of an r-round input distri-
bution. Informally, this is a distribution over inputs that are made up of r rounds such
that the requests revealed in each round are selected independently of all previous rounds.
Furthermore, there must be a fixed upper bound on the length of each round (see Definition 8).

As the main technical contribution of the paper, we prove direct product theorems for
r-round input distributions. Intuitively, a direct product theorem says that if b bits of advice
are needed to ensure a cost of at most t for each individual round, then rb bits of advice
are needed to ensure a cost of at most rt for the entire input. This gives rise to a useful
technique for proving advice complexity lower bounds. In particular, it follows that a linear
number of advice bits are needed to get a (non-trivial) improvement over algorithms without
any advice at all.

1 All of our results (and their proofs) are easily adapted to maximization problems. See [42] for details.
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We provide two different theorems formalizing the above intuitive statement in different
ways: Our main direct product theorem (Theorem 10) is based on an information theoretical
argument similar to that of [29]. In the full paper [42], we also provide an alternative direct
product theorem based on martingale theory. In this extended abstract, we will only consider
the information theoretical version.

Repeatable online problems. We combine our direct product theorems with the following
very simple idea: Suppose that we have a lower bound on the competitive ratio of randomized
online algorithms without advice. Often, such a lower bound is proved by constructing a
hard input distribution and then appealing to Yao’s principle. For some online problems, it
is always possible to combine (in a meaningful way) a set of input sequences {σ1, . . . , σr}
into one long input sequence σ = g(σ1, . . . , σr) such that serving σ essentially amounts to
serving the r smaller inputs individually and adding the costs incurred for serving each of
them. We say that such problems are Σ-repeatable (see Definition 12). For a Σ-repeatable
online problem, an adversary can draw r input sequences independently at random according
to some hard input distribution. This gives rise to an r-round input distribution. By our
direct product theorem, an online algorithm needs linear advice (in the length of the input)
to do better against this r-round input distribution than an online algorithm without advice.
Thus, for Σ-repeatable online problems, we get that it is possible to translate lower bounds
for randomized algorithms without advice into lower bounds for algorithms with sublinear
advice. More precisely, we obtain the following theorem.

I Theorem 1. Let P be a Σ-repeatable online minimization problem and let c be a constant.
Suppose that for every ε > 0 and every α, there exists an input distribution pα,ε : I → [0, 1]
with finite support such that Epα,ε [D(σ)] ≥ (c− ε)Epα,ε [OPT(σ)] + α for every deterministic
algorithm D without advice. Then, every randomized algorithm reading at most o(n) bits of
advice on inputs of length n has a competitive ratio of at least c.

Much research has been devoted to obtaining lower bounds for randomized algorithms without
advice. Theorem 1 makes it possible to translate many of these lower bounds into advice
complexity lower bounds, often resulting in a significant improvement over the previous best
lower bounds (see Table 1).

For a Σ-repeatable problem, the total cost has to be the sum of costs incurred in each
individual round. It is also possible to consider another kind of repeatable problems, where
the total cost is the maximum cost incurred in a single round. We call such problems
∨-repeatable. Many online coloring problems are ∨-repeatable. For ∨-repeatable problems,
we show in the full version of the paper [42] that under certain conditions, a constant lower
bound on the competitive ratio of deterministic algorithms without advice carries over to
randomized algorithms, even if the randomized algorithms have advice complexity o(n). The
proof of this result is straightforward and does not rely on our direct product theorems for
Σ-repeatable problems. However, the result improves or simplifies a number of previously
known advice complexity lower bounds for ∨-repeatable problems.

In Table 1, we have listed most of the repeatable online problems for which lower bounds
on algorithms with sublinear advice existed prior to our work, and compared those previous
lower bounds with the lower bounds that we obtain in this paper. We have also included
two examples of repeatable online problems for which Theorem 1 provides the first known
advice complexity lower bounds.

It is evident from Table 1 that there are many repeatable online problems. On the other
hand, let us mention that e.g. bin packing and makespan minimization are examples of
problems which are provably not repeatable.

ICALP 2016
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Table 1 New and previously best lower bounds on the competitive ratio for algorithms reading
o(n) bits of advice on inputs of length n. For the Σ-repeatable problems, the lower bounds in
this table are obtained by combining Theorem 1 with known lower bounds for randomized online
algorithms without advice. For the ∨-repeatable problems, the lower bounds are obtained by
combining our general result on ∨-repeatable problems with known lower bounds for deterministic
algorithms without advice. In both cases, references to these previously known lower bounds for
online algorithms without advice are provided in the second column of the table. We refer to the
full paper [42] for a more detailed explanation of the entries in Table 1, and for a comparison with
the current upper bounds.
Bipartite matching and Max-SAT are maximization problems, and hence the lower bound is obtained
via the maximization version of Theorem 1. For paging and reordering buffer management, k denotes
the cache/buffer size. For metrical task systems, N is the number of states. For the metrical task
system problem and the k-server problem, the bounds are for a worst-case metric. It is also possible
to use Theorem 1 together with known lower bounds for specific metric spaces. The lower bound for
unit clustering is for the one-dimensional case.

Lower bound for algorithms
with advice complexity o(n)

Σ-repeatable problem This work Previous best

Paging Ω (log k) [19] 5/4 [17]

k-Server Ω (log k) [19] 3/2 [46]

2-Server 1 + e−1/2 [25] 3/2 [46]

List Update 3/2 [47] 15/14 [22]

Metrical Task Systems Ω (log N) [19] Ω (log N) [29]

Bipartite Matching e/(e− 1) [37] 1 + ε [43]

Reordering Buffer Management Ω (log log k) [1] 1 + ε [2]

2-Sleep States Management e/(e− 1) [36] 7/6 [13]

Unit clustering 3/2 [30] −

Max-SAT 3/2 [7] −

∨-repeatable problem This work Previous best

Edge Coloring 2 [8] 2 [41]

L(2, 1)-Coloring on Paths 3/2 [11] 3/2 [11]

2-Vertex-Coloring ω(1) [9] 2 [10]

Compact online problems. Note that when translating a lower bound on randomized
algorithms without advice to a lower bound on algorithms with o(n) bits of advice via
Theorem 1, we had to make some assumptions on the lower bound. This begs the following
question: Are there online problems where every lower bound (after suitable modifications)
satisfies these assumptions? In order to formally answer this question, we make the following
definition.

I Definition 2. Let P be a minimization problem and let c > 1 be a constant such that
the expected competitive ratio of every randomized P-algorithm is at least c. We say that
P is compact if for every ε > 0 and every α ≥ 0, there exists an input distribution pα,ε
with finite support such that if D is a deterministic online algorithm (without advice), then
Epα,ε [D(σ)] ≥ (c− ε) · Epα,ε [OPT(σ)] + α.
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If an online problem is both Σ-repeatable and compact, we get the following result: Let c
be a constant and let ε > 0. If c is a lower bound on the competitive ratio of randomized
online algorithms without advice, then c− ε is also a lower bound on the competitive ratio of
online algorithms with sublinear advice. Equivalently, by contraposition, the existence of a
c-competitive algorithm with sublinear advice implies the existence of a (c+ ε)-competitive
randomized algorithm without advice. Combining this with existing derandomization results
[16] (see also [42]) yields the following complexity theoretic equivalence between randomization
and sublinear advice (previously, only the forward implication was known [16]):

I Theorem 3. Let P be a compact and Σ-repeatable minimization problem with at most
2nO(1) inputs of length n, and let c be a constant independent of n. The following are
equivalent:
1. For every ε > 0, there exists a randomized (c+ ε)-competitive P-algorithm without advice.
2. For every ε > 0, there exists a deterministic (c + ε)-competitive P-algorithm with ad-

vice complexity o(n).

In this paper, we use a technique due to Ambühl [4] and Mömke [44] to show that the
class of compact and Σ-repeatable problems contains all problems which can be modeled as
a metrical task system (MTS) with a finite number of states and tasks. This means that e.g.
the k-server, list update, paging, and dynamic binary search tree problem are all compact
and Σ-repeatable, assuming that the underlying metric space or node set is finite. For all
these problems, it is known that it is possible to achieve a constant competitive ratio with
respect to the length of the input [42]. Also, the number of inputs of length n for each of
these problems is at most 2nO(1) (this bound holds since when we apply Theorem 3 to e.g. the
k-server problem, the metric space will be fixed and not a part of the input). Thus, for each of
these problems, Theorem 3 applies. Furthermore, for all the problems just mentioned (except
paging), determining the best possible competitive ratio of a randomized algorithm without
advice is regarded as important open problems [18, 27]. For example, the randomized k-server
conjecture says that there exists a randomized O(log k)-competitive k-server algorithm [39].
Theorem 3 shows that this conjecture is equivalent to the conjecture that there exists a
deterministic O(log k)-competitive k-server algorithm with advice complexity o(n). Currently,
it is only known how to achieve a competitive ratio of O(log k) using 2n bits of advice [16, 45].

We also show that there are compact and Σ-repeatable problems which cannot be modeled
as a MTS. One such example is the metric matching problem (on finite metric spaces) [35].

Pessimistically, Theorem 3 may be seen as a barrier result which says that (for compact
and Σ-repeatable online problems) designing an algorithm with sublinear advice complexity
and a better competitive ratio than the currently best randomized algorithm without advice
might be very difficult. Optimistically, one could hope that this equivalence might be
useful in trying to narrow the gap between upper and lower bounds on the best possible
competitive ratio of randomized algorithms without advice. In all cases, Theorem 3 shows
that understanding better the exact power of (sublinear) advice in online computation would
be very useful.

2.1 Other applications of our direct product theorem
The previously mentioned applications of our direct product theorem treat the hard input
distribution as a black-box. However, it is also possible to apply our direct product theorem
to explicit input distributions. Doing so yields some interesting lower bounds which cannot
be obtained via Theorem 1. In what follows, we will state and briefly discuss three such lower
bounds. We refer to the full paper [42] for details and for the proofs of Theorems 4 to 6.

ICALP 2016
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Repeated matrix games. Let q ∈ N and let A ∈ Rq×q+ be a matrix defining a two-player
zero-sum game. Let V denote the value of the game defined by A. The repeated matrix
game (RMG) with cost matrix A is an online problem where the algorithm and adversary
repeatedly plays the game defined by A. The adversary is the row-player, the algorithm is
the column-player, and the matrix A specifies the cost incurred by the online algorithm in
each round. This generalizes the string guessing problem [15] and the generalized matching
pennies problem [29] (both of these essentially corresponds to the RMG with a q × q matrix
A where A(i, j) = 1 if i 6= j and A(i, i) = 0). Using our direct product theorem, we easily
get that for every ε > 0, an online algorithm which on inputs of length n is guaranteed to
incur a cost of at most (V − ε)n must read Ω(n) bits of advice.

I Theorem 4. Let ALG be an algorithm for the RMG with cost matrix A. Furthermore, let V
be the value of the (one-shot) two-person zero-sum game defined by A and let 0 < ε ≤ V be a
constant. If E[ALG(σ)] ≤ (V − ε)n for every input σ of length n, then ALG must read at least

b ≥ ε2

2 ln(2) · ‖A‖2∞
n = Ω(n) (1)

bits of advice.

Furthermore, we also show how a more careful application of our direct product theorem to
some particular repeated matrix games yields good trade-off results for the exact amount of
advice needed to ensure a cost of at most αn for 0 < α < V .

A better bin packing lower bound via repeated matrix games. We use our results on
repeated matrix games to prove the following advice complexity lower bound for bin packing:

I Theorem 5. Let c < 4 − 2
√

2 be a constant. A randomized c-competitive bin packing
algorithm must read at least Ω(n) bits of advice.

Previously, Angelopoulos et al. showed that a bin packing algorithm with a competitive
ratio of c < 7/6 had to use Ω(n) bits of advice by a reduction from the binary string
guessing problem [5, 23]. From our results on repeated matrix games, we obtain a lower
bound for weighted binary string guessing. Using the same reduction as in [5], but reducing
from weighted binary string guessing instead, we improve the lower bound for bin packing
algorithms with sublinear advice to 4 − 2

√
2. Thus, even though bin packing itself is not

repeatable, we can obtain a better lower bound via a reduction from a repeated matrix game.

Superlinear lower bounds for graph coloring. We obtain the following superlinear lower
bound for online graph coloring by applying our direct product theorem to an ingenious hard
input distribution due to Halldórsson and Szegedy [33] (they show that a randomized graph
coloring algorithm without advice must have a competitive ratio of at least Ω(n/ log2 n)):

I Theorem 6. Let ε > 0 be a constant. A randomized O(n1−ε)-competitive online graph
coloring algorithm must read at least Ω(n logn) bits of advice.

Previously, it was only known that Ω(n logn) bits of advice were necessary to be 1-
competitive [32]. Note that O(n logn) bits of advice trivially suffice to achieve optimality for
graph coloring. Furthermore, it is not hard to prove that for every c = n1−o(1), there exists
a c-competitive graph coloring algorithm reading o(n logn) bits of advice. Thus, our lower
bound saying that Ω(n logn) bits are needed to be O(n1−ε)-competitive for every constant
ε > 0 is essentially tight.
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3 Relation to machine learning

Theorem 3 is very closely related to previous work on combining online algorithms [12, 31, 6].
Let A1, . . . , Am be m algorithms for a MTS of finite diameter ∆. Based on a variant of the
celebrated machine learning algorithm Randomized Weighted Majority (RWM) [40], Blum
and Burch obtained the following result [12, 24]: For every ε > 0, it is possible to combine
the m algorithms into a single randomized MTS-algorithm, R, such that

E[R(σ)] = (1 + 2ε) · min
1≤i≤m

Ai(σ) +
(

7
6 + 1

ε

)
∆ lnm, (2)

for every input σ. An algorithm with b bits of advice corresponds to an algorithm which
runs m = 2b algorithms in parallel (and selects the best one at the end). Thus, equation
(2) immediately implies that given a c-competitive MTS-algorithm with advice complexity
b = O(1), we can convert it to a randomized (c+ ε)-competitive algorithm without advice.

Theorem 3 improves on the result of Blum and Burch in two ways. First of all, it allows us
to convert algorithms with sublinear instead of only constant advice complexity. Furthermore,
Theorem 3 applies to all compact and Σ-repeatable online problems, not just those which
can be modeled as a MTS.

It is natural to ask if it is possible to use the technique of Blum and Burch in order
to obtain a constructive proof of Theorem 3. To this end, we remark that the result of
Blum and Burch relies fundamentally on the fact that the cost incurred by RWM when
switching from the state of algorithm Ai to the state of algorithm Aj for i 6= j is bounded
by a constant. Thus, it does not seem possible to extend the result to those compact and
Σ-repeatable problems which does not satisfy this requirement (such as the metric matching
problem). On the other hand, in the full paper [42], we show that by combining the result of
Blum and Burch with the ideas that we use to prove that the MTS problem is compact, it is
possible to use a variant of RWM to algorithmically convert a c-competitive MTS-algorithm
with advice complexity o(n) (instead of just O(1)) into a randomized (c + ε)-competitive
algorithm without advice. This yields a constructive version of Theorem 3 for problems that
can be modeled as a MTS.

Finally, we note that very shortly after and independently of our work, Böckenhauer et al.
considered applications of machine learning algorithms to the advice complexity model [14].
In [14], the authors present and analyze an algorithm called Shrinking Dartboard which is
similar to the algorithm of Blum and Burch (both algorithms are based on RWM).

4 The computational model

We start by formally defining competitive analysis and advice complexity. Since we are very
much interested in sublinear advice, we will use the advice-on-tape model [17, 34]. In this
model, the algorithm is allowed to read an arbitrary number of advice bits from an advice
tape. There is an alternative model, the advice-with-request model [29], where a fixed number
of advice bits is provided along with each request.

I Definition 7 (Advice complexity [17, 34] and competitive ratio [18]). The input to an online
problem, P, is a sequence σ = (s, x1, . . . , xn). We say that s is the initial state and x1, . . . , xn
are the requests. A deterministic online algorithm with advice, ALG, computes the output
γ = (y1, . . . , yn), under the constraint that yi is computed from ϕ, s, x1, . . . , xi, where ϕ is
the content of the advice tape. The advice complexity, b(n), of ALG is the largest number of
bits of ϕ read by ALG over all possible inputs of length at most n.

ICALP 2016
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For an input σ, ALG(σ) (OPT(σ)) denotes the non-negative real cost of the output computed
by ALG (OPT) when serving σ. We say that ALG is c-competitive if there exists a constant α
such that ALG(σ) ≤ c · OPT(σ) + α for all inputs σ.

A randomized online algorithm R with advice complexity b(n) is a probability distribution
over deterministic online algorithms with advice complexity at most b(n). We say that
R is c-competitive if there exists a constant α such that E[R(σ)] ≤ c · OPT(σ) + α for all
inputs σ. 4

5 An information theoretical direct product theorem

In this section, we formally state (and sketch how to prove) our direct product theorem
upon which all of our results rely. Given P-inputs σ1, . . . , σr, we define σ = σ1 . . . σr to
be the P-input obtained by concatenating the requests of the r inputs and using the same
initial state as σ1. For example, if σ1 = (s, x1, . . . , xn) and σ2 = (s′, x′1, . . . , x′n′), then
σ1σ2 = (s, x1, . . . , xn, x

′
1, . . . , x

′
n′).

I Definition 8 (r-round input distribution). Let P be a minimization problem and let r ∈ N.
For each 1 ≤ i ≤ r, let Ii be a finite set of P-inputs such that the following holds: If σ1, . . . , σr
are such that σi ∈ Ii for 1 ≤ i ≤ r, then σ = σ1σ2 . . . σr is a valid P-input. Furthermore, let
Ir = I1 × · · · × Ir = {σ1 . . . σi . . . σr | σi ∈ Ii for 1 ≤ i ≤ r}.

For each 1 ≤ i ≤ r, let costi be a function which maps an output γ computed for an
input σ ∈ Ir to a non-negative real number costi(γ, σ). We say that costi is the ith round
cost function.

Let pi : Ii → [0, 1] be a probability distribution over Ii and let pr : Ir → [0, 1] be the (pro-
duct) probability distribution which maps σ1σ2 . . . σr ∈ Ir into p1(σ1)p2(σ2) · · · pr(σr). We
say that pr (together with the associated cost functions costi) is an r-round input distribution.
For 1 ≤ i ≤ r, we say that pi is the ith round input distribution of pr. 4

I Definition 9. Let P be a minimization problem and let r ∈ N. Let pr : Ir → [0, 1] be an
r-round input distribution with associated cost functions costi and with ith round input
distributions pi. Let ALG be a deterministic P-algorithm with advice. We define the following
random variables: Let X be the entire input and Y the output computed by ALG. For 1 ≤ i ≤
r, let Xi be the requests revealed in round i, and let costi(ALG) = costi(Y,X) be the ith round
cost function applied to the output computed by ALG. Also, let cost(ALG) =

∑r
i=1 costi(ALG),

let B be the advice bits read by ALG, and let Wi = (X1, . . . , Xi−1, B). Random variables are
always denoted by capital letters and their support by the calligraphic version of that letter2.

Finally, for every 1 ≤ i ≤ r and every w ∈ Wi, we define the conditional ith round input
distribution pi|w : Ii → [0, 1] as follows:

pi|w(x) = pi(x|Wi = w) = Pr(Xi = x,Wi = w)
Pr(Wi = w) .

4

We prove our information theoretical direct product theorem by extending an entropy
based lower bound technique due to Emek et al. [29]. The statement and proof of the theorem
relies on basic notions and results from information theory (see [42] or [26]). In particular,
given two distributions µ, ν : Ω→ [0, 1] such that supp(µ) ⊆ supp(ν), the Kullback-Leibler

2 For example, the support of Wi is denoted Wi, where Wi = {w : Pr[Wi = w] > 0}.
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divergence DKL(µ‖ν) between µ and ν is defined as DKL(µ‖ν) =
∑
ω∈Ω µ(ω) log(µ(ω)/ν(ω)).

Also, we heavily use the notation of Definitions 8 and 9.

I Theorem 10. Let P be a minimization problem and let pr be an r-round input distribution
with associated cost-functions costi. Furthermore, let ALG be a deterministic algorithm reading
at most b bits of advice on every input in the support of pr. Assume that there exists a
convex and decreasing function f : [0,∞]→ R such that for every 1 ≤ i ≤ r and w ∈ Wi, the
following holds:

E[costi(ALG)|Wi = w] ≥ f
(
DKL(pi|w‖pi)

)
. (3)

Then, E[cost(ALG)] ≥ rf(b/r).

Before sketching the proof of Theorem 10, we informally discuss the theorem. Recall
that Wi is the information available to the algorithm when round i begins (the advice read
and the history of previous requests). Without any advice or knowledge of the history, the
probability of x ∈ Xi being selected as the round i request sequence is pi(x). However, this
probability may change given that the algorithm knows Wi (in the most extreme case, the
advice could specify exactly the request sequence in round i). For any fixed w ∈ Wi, the
probability of x being selected in round i given that Wi = w is denoted pi|w(x). Assumption
(3) informally means that the closer pi|w and pi are to each other, the better a lower bound
we must have on the expected cost incurred by ALG in round i given that ALG knows w. We
remark that the convexity assumption on f is automatically satisfied in most applications.
The conclusion of Theorem 10 essentially says that under these assumptions, an algorithm
with b bits of advice for the entire input can do no better than an algorithm with b/r bits
of advice for each individual round. In particular, this will allow us to conclude that Ω(r)
bits of advice are needed to get a non-trivial improvement over having no advice at all. The
complete proof of Theorem 10 can be found in the full version of the paper [42].

Proof Sketch (of Theorem 10). Fix i such that 1 ≤ i ≤ r. Using first the law of total
expectation and then combining assumption (3) with Jensen’s inequality, we get that

E[costi(ALG)] = Ew[E[costi(ALG)|Wi = w]] ≥ f
(
Ew[DKL(pi|w‖pi)]

)
. (4)

A simple calculation shows that the expected Kullback-Leibler divergence Ew[DKL(pi|w‖pi)]
equals the mutual information I(Xi;Wi) between Xi and Wi. Thus,

E[cost(ALG)] =
r∑
i=1

E[costi(ALG)] ≥
r∑
i=1

f(I(Xi;Wi))

The mutual information I(X;B) between the input X and the advice B is at most b
simply because the entropy H(B) of B is at most b (since ALG reads at most b bits of
advice). On the other hand, using that the r rounds are independent and the chain
rule of conditional entropy, we get that I(X;B) =

∑r
i=1 I(Xi;Wi). Combining these two

observations, we see that I(X1;W1), . . . , I(Xr,Wr) are non-negative real numbers which
sums to at most b. Since f is convex and decreasing, Jensen’s inequality then implies that∑r
i=1 f(I(Xi;Wi)) ≥ rf(b/r). J

6 Application: Repeatable online problems

In this section we will present the main ingredients of the proof of Theorem 1. Before we
begin, we need to formally define the repeated version, P∗Σ, of an online problem P, and
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we need to define precisely what it means to be Σ-repeatable. To this end, given P-inputs
σ1, . . . , σr with the same initial state s, we define (σ1; . . . ;σr) to be a sequence with the
requests of the r inputs concatenated and such that the initial state s arrives together with
the first request of each σi. For example, if σ1 = (s, x1, . . . , xn) and σ2 = (s, x′1, . . . , x′n′),
then (σ1;σ2) = (s, {s, x1}, x2, . . . , xn, {s, x′1}, x′2, . . . , x′n′).

I Definition 11. Let P be an online problem, let S be the set of initial states for P, and
let I (Is) be the set of all possible request sequences for P (with initial state s). Define P∗Σ
to be the online problem with inputs I∗ = {σ∗ = (σ1;σ2; . . . ;σr) | r ≥ 1, s ∈ S, σi ∈ Is}. An
algorithm for P∗Σ must produce an output γ∗ = (γ1, . . . , γr) where γi = (y1, . . . , yni

) is a
valid sequence of answers for the P-input σi = (s, x1, . . . , xni) ∈ Is. The score of the output
γ∗ is score(γ∗, σ∗) =

∑r
i=1 scoreP (γi, σi), where scoreP (γi, σi) is the score of the P-output

γi with respect to the P-input σi. The optimal offline algorithm for P∗Σ is denoted OPT∗Σ. 4

P∗∨ is defined similarly, except that score(σ∗, γ∗) = max{scoreP (σ1, γ1), . . . , scoreP (σr, γr)}.
In order to better understand the definition of P∗Σ, it is useful to imagine that after

serving the last request of round i − 1 but before serving the first request of round i, the
current state is changed to the initial state s (note that the algorithm knows when this
happens since in (σ1; . . . ;σr), the first request of each σi is special). For instance, if P is
the k-server problem, then an initial state s is a placement of the k servers in the metric
space. Thus, in P∗Σ, after serving the last request of round i− 1 and before serving the first
request of round i, the k servers automatically return to their initial position specified by
s. Note that when P is the k-server problem, we can concatenate P-inputs σ1, σ2, . . . , σr
into one long P-input σ = σ1σ2 . . . σr. The only difference between serving the P-input σ
and serving the P∗Σ-input σ∗ = (σ1; . . . ;σr) is that for the P-input σ, the k servers are not
returned to the initial state s when a round ends. However, if the underlying metric space
has finite diameter, this difference in the placement of servers when a new round begins
cannot invalidate a lower bound. In fact, it turns out that for many online problems, there
is a natural reduction from P∗Σ to P that essentially preserves all lower bounds. This is
formalized in Definition 12.

I Definition 12. Let P be an online minimization problem such that for every fixed P-input,
there is only a finite number of valid outputs. Furthermore, let k1, k2, k3 ≥ 0. We say that
P is Σ-repeatable with parameters (k1, k2, k3) if there exists a mapping g : I∗ → I with the
following properties:
Σ1. |g(σ∗)| ≤ |σ∗|+ k1r for every σ∗ ∈ I∗ consisting of r rounds.
Σ2. For every deterministic P-algorithm ALG, there exists a deterministic P∗Σ-algorithm ALG∗

such that ALG∗(σ∗) ≤ ALG(g(σ∗)) + k2r for every σ∗ ∈ I∗ consisting of r rounds.
Σ3. OPT∗Σ(σ∗) ≥ OPT(g(σ∗))− k3r for every σ∗ ∈ I∗ consisting of r rounds. 4

The definition of ∨-repeatable is identical to that of Σ-repeatable, except that P∗Σ and
OPT∗Σ are replaced by P∗∨ and OPT∗∨. The k-server problem on a metric space of diameter ∆
is Σ-repeatable with parameters (0, k∆, k∆).

We will now sketch the proof of Theorem 1. The complete proof is in the full paper [42].

Proof Sketch (of Theorem 1). We prove the desired lower bound for P∗Σ. Let ε and α be
arbitrary. Without loss of generality, we may assume that all inputs in the support of pα,ε
have the same initial state. Draw r inputs independently from pα,ε. This gives rise to an
r-round input distribution prα,ε for P∗Σ. Note that the ith round input distribution, pi, of
prα,ε is simply pi = pα,ε, and that a round of prα,ε corresponds to a round of P ∗Σ.
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Let ALG∗ be a deterministic P∗Σ-algorithm reading at most b bits of advice on inputs in
supp(prα,ε). Fix a round 1 ≤ i ≤ r and let w ∈ Wi. We need to give a lower bound on the
expected cost E[costi(ALG∗)|Wi = w] in terms of the Kullback-Leibler divergence between
pi|w and pi. To this end, we use Pinsker’s inequality. Pinsker’s inequality ([26, Lemma
11.6.1]) says this if the Kullback-Leibler divergence between pi|w and pi is small, then pi|w
and pi must be close in L1-norm: ‖pi|w − pi‖1 ≤

√
ln 4 ·DKL(pi|w‖pi). Thus, it suffices to

bound E[costi(ALG∗)|Wi = w] in terms of the L1-distance between pi|w and pi.
To this end, we construct a P -algorithm, ALGw, without advice by hard-wiring w (i.e.,

the advice and the requests in rounds 1 to i− 1) into the P∗Σ-algorithm ALG∗. That is, for
an input sequence σ ∈ supp(pi|w), the new algorithm ALGw simulates the computation of
ALG∗ on σ when Wi = w and ALG∗ is given the requests σ in round i. Note that this is
possible since w is fixed, and hence the output of ALG∗ in round i given σ as input in this
round is completely determined. For all other input sequences, ALGw behaves arbitrarily
(but does compute some valid output). It follows that ALGw is well-defined for all input
sequences in supp(pi). Thus, ALGw defines a mapping σ 7→ ALGw(σ) on supp(pi) such that
‖ALGw‖∞ = maxσ∈supp(pi) |ALGw(σ)| ≤M and such that if σ ∈ supp(pi|w) ⊆ supp(pi), then
ALGw(σ) is equal to the cost incurred by ALG∗ if Wi = w and σ is given as input in round i.
It follows that

E[costi(ALG)|Wi = w] = Eσ∼pi|w
[ALGw(σ)] ≥ Eσ∼pi

[ALGw(σ)]− ‖ALGw‖∞ · ‖pi|w − pi‖1

≥ (c− ε)Eσ∼pi [OPT(σ)] + α−M ·
√

ln 4 ·DKL(pi|w‖pi).

Let f(d) = (c − ε)Eσ∼pi
[OPT(σ)] + α −M ·

√
ln 4 · d. Note that f is convex. Our direct

product theorem (Theorem 10) therefore yields (remember that pi = pα,ε).

E[cost(ALG∗)] ≥ rf(b/r) ≥ r
(

(c− ε)Eσ∼pα,ε [OPT(σ)] + α− 2M
√
b

r

)
. (5)

Assume that ALG∗ uses sublinear advice, i.e., b = o(n). Note that n = Θ(r) since supp(pα,ε) is
finite. Thus, we can make 2M

√
b/r arbitrarily small by choosing the number of rounds r suf-

ficiently large. Furthermore, by linearity of expectation, rEσ∼pα,ε [OPT(σ)] = E[cost(OPT*Σ)].
Thus, since ε and α was arbitrary, it follows from (5) and Yao’s principle that a randomized
P∗Σ-algorithm with sublinear advice must have a competitive ratio of at least c. Using that
P is Σ-repeatable, it is possible to convert this lower bound into a lower bound for P. J

7 Application: Compact online problems

Recall (Definition 2) that we defined compact online problems to be those for which Theorem 1
could be used to obtain tight lower bounds. Theorem 3 follows trivially by combining
Definition 2 with Theorem 1 (and using previously known derandomization results). In this
section, we will sketch how to prove that several important Σ-repeatable online problems are
compact. Interestingly, our proof will rely on the “upper bound part” of Yao’s principle [48]
which is (much) less frequently used than the lower bound part.

Fix a Σ-repeatable problem P such that for every n (and every fixed initial state), the
number of inputs of length at most n is finite3. Let c > 1 be a constant such that the expected

3 Since P is Σ-repeatable, this assumption automatically implies that there is only finitely many P-
algorithms for inputs of length at most n.
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competitive ratio of every randomized P-algorithm is at least c. What does it mean for P to
not be compact? It means that there exists an ε > 0 and α ≥ 0 such that the following holds:
For every n′ ∈ N and for every probability distribution p over P-inputs of length at most
n′, there exists a deterministic algorithm D such that Eσ∼p[D(σ)] < (c− ε)Eσ∼p[OPT(σ)] + α.
Recall that, by assumption, there is only a finite number of inputs and outputs for P of
length at most n′. This makes it possible to view the problem as a finite two-player zero-
sum game between an algorithm and adversary. Thus (see the full paper [42] for a formal
proof), by Yao’s principle, we get that there exists a randomized P-algorithm Rn′ such that
E[Rn′(σ)] < (c−ε)OPT(σ)+α for every P-input of length at most n′. Now, if we can somehow
show that it is possible to use the algorithms R1, R2, . . . to obtain a single algorithm R which
is better than c-competitive (on all possible inputs), then the problem at hand must, by
contradiction, be compact.

From the above discussion, it is easy to see that the metric matching problem is compact
(on finite metric spaces). Indeed, in this problem, there are k servers placed in a metric
space. Each server can be matched to at most one request (and vice versa). But this means
that for every fixed metric space and fixed set of k servers, the length of the input never
exceeds k. This allow us to construct a single algorithm R which on inputs with k servers run
the appropriate algorithm Rk. The algorithm R will be (c− ε)-competitive. This argument
extends to all Σ-repeatable problems for which an online algorithm knows a priori some
upper bound on the number of requests.

Another important example is the k-server problem on a finite metric space. In this
problem, we also have a metric space and a set of k servers. However, for the k-server
problem, there is no bound on the number of times we may use a single server. Thus, the
length of the input is unbounded, even if we fix the metric space and the set of servers.
This means that we cannot just trivially run the appropriate algorithm Rn′ , since we do
not know an upper bound n′ on the length of the input. However, what we can do is the
following (see the full paper and [4, 44]): Choose n′ to be some sufficiently large number. If
the number of requests exceeds n′, we restart Rn′ . That is, we use a new instantiation of
Rn′ which pretends that the (n′ + 1)’th request is in fact the very first request of the input
sequence. By appropriately handling some technical issues, we can make sure that the price
of performing these restarts is sufficiently small compared to the cost of an optimal solution.
This gives a single algorithm R which is better than c-competitive on inputs of arbitrary
length. Thus, the k-server problem is compact. This technique works for all problems that
can be modeled as a MTS. We refer to the full version of the paper for more details.

8 Further work and open problems

We have attempted to make the results and techniques introduced in this paper as easy as
possible to apply and build on. Komm et al. have used our results on repeated matrix games
to prove lower bounds for certain online hereditary graph problems with preemption [38].
Also, in Boyar et al. [21], we have applied Theorem 1 to online weighted matching.

Currently, the equivalence between advice and randomization stated in Theorem 3 is
mainly being used to obtain knowledge about algorithms with advice using techniques and
results for randomized algorithms. It is an interesting open problem to what extent the
equivalence is also useful in the other direction.

Acknowledgment. The author thanks Joan Boyar, Magnus Find, Lene Favrholdt, and the
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