
Beating the Harmonic Lower Bound for Online
Bin Packing∗

Sandy Heydrich1 and Rob van Stee2

1 Max Planck Institute for Informatics, Saarbrücken, Germany; and
Graduate School of Computer Science, Saarbrücken, Germany
heydrich@mpi-inf.mpg.de

2 Department of Computer Science, University of Leicester, Leicester, UK
rvs4@le.ac.uk

Abstract
In the online bin packing problem, items of sizes in (0, 1] arrive online to be packed into bins of
size 1. The goal is to minimize the number of used bins. Harmonic++ achieves a competitive
ratio of 1.58889 and belongs to the Super Harmonic framework [Seiden, J. ACM, 2002]; a lower
bound of Ramanan et al. shows that within this framework, no competitive ratio below 1.58333
can be achieved [Ramanan et al., J. Algorithms, 1989]. In this paper, we present an online
bin packing algorithm with asymptotic performance ratio of 1.5815, which constitutes the first
improvement in fifteen years and reduces the gap to the lower bound by roughly 15%.

We make two crucial changes to the Super Harmonic framework. First, some of the decisions
of the algorithm will depend on exact sizes of items, instead of only their types. In particular,
for item pairs where the size of one item is in (1/3, 1/2] and the other is larger than 1/2 (a large
item), when deciding whether to pack such a pair together in one bin, our algorithm does not
consider their types, but only checks whether their total size is at most 1.

Second, for items with sizes in (1/3, 1/2] (medium items), we try to pack the larger items of
every type in pairs, while combining the smallest items with large items whenever possible. To
do this, we postpone the coloring of medium items (i.e., the decision which items to pack in pairs
and which to pack alone) where possible, and later select the smallest ones to be reserved for
combining with large items. Additionally, in case such large items arrive early, we pack medium
items with them whenever possible. This is a highly unusual idea in the context of Harmonic-like
algorithms, which initially seems to preclude analysis (the ratio of items combined with large
items is no longer a fixed constant).

For the analysis, we carefully mark medium items depending on how they end up packed,
enabling us to add crucial constraints to the linear program used by Seiden. We consider the
dual, eliminate all but one variable and then solve it with the ellipsoid method using a separation
oracle. Our implementation uses additional algorithmic ideas to determine previously hand set
parameters automatically and gives certificates for easy verification of the results.

We give a lower bound of 1.5766 for algorithms like ours. This shows that fundamentally
different ideas will be required to make further improvements.

1998 ACM Subject Classification G.2.1 Combinatorial Algorithms

Keywords and phrases Bin packing, online algorithms, harmonic algorithm

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.41

∗ A full version of this paper can be found at http://arxiv.org/abs/1511.00876.

EA
T

C
S

© Sandy Heydrich and Rob van Stee;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 41; pp. 41:1–41:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.41
http://arxiv.org/abs/1511.00876
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 Beating the Harmonic Lower Bound for Online Bin Packing

1 Introduction

In the online bin packing problem, a sequence of items with sizes in the interval (0, 1] arrive
one by one and need to be packed into bins, so that each bin contains items of total size
at most 1. Each item must be irrevocably assigned to a bin before the next item becomes
available. The algorithm has no knowledge about future items. There is an unlimited supply
of bins available, and the goal is to minimize the total number of used bins (bins that receive
at least one item). Bin packing is a classical and well-studied problem in combinatorial
optimization. Extensive research has gone into developing approximation algorithms for this
problem, e.g. [5, 7, 6, 12, 17, 9]. Such algorithms have provably good performance for any
possible input and work in polynomial time. In fact, the bin packing problem was one of the
first for which approximation algorithms were designed [10].

For bin packing, we are typically interested in the long-term behavior of algorithms:
how good is the algorithm for large inputs? If we simply compare to the optimal solution,
the worst ratio is often determined by some very small inputs. To avoid such pathological
instances, the asymptotic performance ratio was introduced: For a given input sequence σ,
let A(σ) be the number of bins used by algorithm A on σ. The asymptotic performance ratio
for an algorithm A is defined to be

R∞A = lim sup
n→∞

sup
σ

{
A(σ)

opt(σ)

∣∣∣∣opt(σ) = n

}
. (1)

From now on, we only consider the asymptotic competitive ratio unless otherwise stated.
Lee and Lee [13] presented an algorithm called Harmonic, which partitions the interval

(0, 1] into m > 1 intervals (1/2, 1], (1/3, 1/2], . . . , (0, 1/m]. The type of an item is defined as
the index of the interval which contains its size. Each type of items is packed into separate
bins (i items per bin for type i). For any ε > 0, there is a number m such that the Harmonic
algorithm that uses m types has a performance ratio of at most (1 + ε)Π∞ [13], where
Π∞ ≈ 1.69103.

If we consider the bins packed by Harmonic, then it is apparent that in bins with
type 1 items, nearly half the space can remain unused. It is better to use this space for
items of other types. After a sequence of papers which used this idea to develop ever better
algorithms [13, 15, 16], Seiden [18] presented a general framework called Super Harmonic
which captures all of these algorithms. Super Harmonic algorithms classify items based
on an interval partition of (0, 1] and give each item a color as it arrives, red or blue. For
each type of items j, the fraction of red items is some constant denoted by αj . Blue items
are packed as in Harmonic, i.e., for each item type j, every bin with blue items contains
a maximal number of blue items. (This may leave some space for smaller red items of
different types.) Red items are packed in bins which are only partially filled. The idea is that
hopefully, later blue items of other types will arrive that can be placed into the bins with
red items. Seiden [18] showed that the Super Harmonic algorithm Harmonic++, which
uses 70 intervals for its classification and has about 40 manually set parameters, achieves a
performance ratio of at most 1.58889.

Ramanan et al. [15] gave a lower bound of 19/12 ≈ 1.58333 for this type of algorithm. It
is based on inputs like the one shown in Figure 1, which contains a medium item (size in
(1/3, 1/2]) and a large item (size in (1/2, 1]). Both of these items arrive N times for some
large number N , and although they fit pairwise into bins, the algorithm never combines
them like this. No matter how fine the item classification of an algorithm, pairs of items
such as these, that the algorithm does not pack together into one bin, can always be found.
(To complete the lower bound construction, we also need to consider inputs containing the

S. Heydrich and R. van Stee 41:3

1/3

0.34 0.65

Figure 1 Part of the lower bound construction from Ramanan et al. [15]. The figure shows how
one bin is packed in the optimal solution. Both of these items arrive many times.

(a) Pack items one per bin with provi-
sional coloring.

(b) A provisional red item arrives.

(c) We fix the colors. The smallest item
becomes red.

(d) Additional blue items of the same
type are added.

Figure 2 Illustration of the coloring in Extreme Harmonic. In this example, α = 1/9. Note
that the ratio of 1/9 does not hold (for the bins shown) at the time that the colors are fixed: 1/5 of
the items are red at this point. The ratio 1/9 is achieved when all bins with blue items contain two
blue items.

sizes 1/3 + ε, 1/2 + ε, which can be combined into a single bin, and the input consisting only
of items of size 1/3 + ε.)

We avoid this lower bound construction by defining the algorithm so that it simply
combines medium and large items whenever they fit together in a single bin. Essentially,
we use Any Fit to combine such items into bins (under certain conditions specified below).
This is a generalization of the well-known algorithms First Fit and Best Fit [19, 7],
which have been used in similar contexts before [2, 1]. Proving formally that this helps
to improve the asymptotic performance ratio requires a surprising amount of additional
technical modifications to the algorithm and the proof, in particular setting up a complete
marking scheme (see below).

As in the Super Harmonic framework, medium items that are packed in pairs are
colored blue, and the ones that are packed alone into bins (possibly together with items of
other types) are colored red. At this point it is important to note that medium items of any
given type are not all exactly the same size, since the type only specifies an interval. This
means that the items of any given type could arrive in such an order that all of the red items
are slightly larger than the blue ones. Then, when large items arrive later, it could be that
they are too large to fit in bins with red medium items, so the online algorithm is forced to
pack them into new bins.

In order to benefit from using Any Fit, it is crucial to ensure that for each medium
type, as much as possible, it is the smallest items that are colored red. We will do this by
initially packing each medium item alone into a bin and giving it a provisional color. After
several items of the same type have arrived, we will color the smallest one red and start
packing additional medium items of the same type together with the other items, that are
now colored blue. (See Figure 2.) In this way, we can ensure that at least half of the blue

ICALP 2016

41:4 Beating the Harmonic Lower Bound for Online Bin Packing

items (namely, the ones that had already arrived at the time when we select the smallest
to be red) are at least as large as the smallest red items. The point of this is that if those
red items are still alone in bins at the end of the input, opt cannot pack too many bins as
shown in Figure 1, because this can only happen with large items that do not fit with the
red items that remain alone in bins (Lemma 6).

We do not postpone the coloring decisions in the following two cases.
1. If a bin with suitable small red items is available, we will pack p into that bin and color

it blue, regardless of the precise size of p.1 In this case, in our analysis we will exploit
the fact that these small items exist in the input, meaning that not all optimal bins are
packed as shown in Figure 1: the small items must be packed somewhere (Lemma 7).

2. If bins with a large item are available, and p fits into such a bin, we will pack p in one
such bin. This is the best case overall, since finding combinations like this was exactly
our goal! However, there is a technical problem with this, which we discuss below.

Overall, we have three different cases: medium items are packed alone initially (in which case
we have a guarantee about the sizes of some of the blue items), medium items are combined
with smaller red items (so these red items exist and must be packed: Lemma 7), or medium
items are combined with larger blue items (which is exactly our goal). The main technical
challenge is to quantify these different advantages into one overall analysis. In order to do
this (i.e., to prove Lemmas 6 and 7), we introduce - in addition to and separate from the
coloring – a marking of the medium items, which we now describe.

R For any medium type j, a fraction αj of the items marked R are red, and all of these
red items are packed into mixed bins (i.e., together with a large item).

B For any medium type j, a fraction αj of the items marked B are red, and the blue items
are packed into mixed bins (i.e., together with red items of other (smaller) types)

N For any medium type j, a fraction αj of the items marked N are red, and none of the
red and blue items marked N are packed into mixed bins.

Our marking is illustrated in Figure 3. Maintaining the fraction αj of red items for all
marks separately is crucial for the analysis. However, we note here immediately that the
fraction αj of red items is not actually maintained continuously throughout the execution
for all marks. This can be seen clearly for the items marked R, where the ratio only becomes
equal to αj (ignoring rounding) after all the bins with single blue items in them receive
additional blue items (see Figure 2).

Seemingly more problematically, it could happen that many large items arrive first,
leading to more than an αj fraction of the items of type j and mark B being packed with the
large items and colored red. (Potentially, this could even happen to all of them.) While this
is in principle exactly what we want to achieve, there is no guarantee that later in the input,
sufficiently many additional items of type j will arrive to restore the correct ratio αj . This is
a problem for our analysis, which assumes the ratio αj is maintained exactly. However, if we
insist on maintaining this ratio throughout, i.e., if we color some of these items blue and pack
them in pairs even though they could fit with existing large items, we end up with the same
worst case instances as for Super Harmonic. We deal with this case by modifying the input
(for the analysis) after it has been packed. By this and some additional postprocessing, we
ensure that for each mark R,B,N , an αj fraction of the medium items of type j are indeed
colored red in the end (ignoring rounding) as required. The postprocessing also ensures that

1 Unless we already have sufficiently many blue items of the type of p, in which case we pack p into a
separate bin and color it red to maintain the correct fraction of red items.

S. Heydrich and R. van Stee 41:5

bR
(a)

R R R R R

bB or bB + 1 blue items

(b)

B

B
B

B

B
B

B

B

B

bN
(c)

N N N N N

Figure 3 Illustrating the marking of the items. Again we take αi = 1/9. (a) Items get mark
R: provisionally blue items and a red item in a mixed bin. Bins with blue R-items will receive a
second blue item of the same type before a new bin is opened for this type. (b) Items get mark B: a
provisionally red item and blue items (in pairs) in mixed bins. (c) Items get mark N : provisionally
blue and provisionally red items. Note that in this step, the colors of items might be fixed to a
different color than their provisional color. Bins with blue items will receive a second blue item of
the same type before a new bin is opened for this type. See Fig. 2.

the marks are all correct. For instance, if a red item is packed with a blue item marked N ,
the mark of that blue item gets adjusted in the end.

Like Seiden [18] and many other authors [19, 13, 15], we use weighting functions to analyze
our algorithm. A weighting function defines a weight for each item type. By analyzing these,
Seiden ended up with a set of mathematical programs that upper bounded the asymptotic
performance ratio of Super Harmonic algorithms. These represented a kind of knapsack
problems where each item has two different weights. Seiden used heuristics to get exact
upper bounds for the solutions of these mathematical programs.

We use a different approach for the Extreme Harmonic framework. First of all we
split each mathematical program into two standard linear programs, where both linear
programs have a constraint that states its objective value should be smaller than that of the
other one (representing for each one that the minimum is achieved for the set of weights it
considers). To each linear program, we add two constraints that are based on the marking
of the medium items. These constraints essentially state that in the optimal solution for a
given input, there cannot be too many bins that are packed as shown in Figure 1 (unless
the online algorithm also packs the items like this). This is the key to our improvement of
the asymptotic performance ratio. However, after adding these constraints, the heuristic
approach by Seiden can no longer be applied. Since each linear program has a very large
number of variables but only four constraints, we take the dual and apply the ellipsoid
method to solve it. To do this, we construct a separation oracle. This separation oracle
solves a standard knapsack problem, making the results much easier to verify.

In order to apply the ellipsoid method, we write the dual in terms of just one variable, by
eliminating two variables and assuming a third one to be given. This means that we can
now do a straightforward binary search for the final remaining variable. We implemented a
computer program which solves the knapsack problems and also does the other necessary work,
including the automated setting of many parameters like item sizes and α values. As a result,
our algorithm Son Of Harmonic requires far less manual settings than Harmonic++.

Our program uses an exact representation of fractions with arbitrary precision in order
to avoid rounding errors. For our final calculations we have set the bound such that every
dual LP is feasible; this means that our results do not rely on the correctness of any
infeasibility claims (which are generally harder to prove). We provide a certificate and a

ICALP 2016

41:6 Beating the Harmonic Lower Bound for Online Bin Packing

verifier program, and we also output the final set of knapsack problems directly to allow
independent verification.

Our second main contribution is a new lower bound for all algorithms of this kind. The
fundamental property of all these algorithms is that they color a fixed fraction of all items
red (for each type). We show that no such algorithm can be better than 1.5766-competitive.
Due to space constraints, this result is deferred to the full version.

1.1 Previous Results
The online bin packing problem was first investigated by Ullman [19]. He showed that
the First Fit algorithm has performance ratio 17

10 . This result was then published in [7].
Johnson [11] showed that the Next Fit algorithm has performance ratio 2. Yao showed that
Revised First Fit has performance ratio 5

3 , and further showed that no online algorithm
has performance ratio less than 3

2 [21]. Brown and Liang independently improved this lower
bound to 1.53635 [4, 14]. The lower bound stood for a long time at 1.54014, due to van
Vliet [20], until it was improved to 248

161 = 1.54037 by Balogh et al. [3].
The offline version, where all the items are given in advance, is well-known to be NP-

hard [8]. This version has also received a great deal of attention, for a survey see [5].

2 The Super Harmonic framework [18]

The fundamental idea is to first classify items by size, and then pack an item according to
its type. We use numbers t1 ≥ t2 ≥ · · · ≥ tN to partition the interval (0, 1] into subintervals
(N is a parameter). We define Ij = (tj+1, tj] for i = 1, . . . , N and IN+1 = (0, tN+1]. An item
of size s has type j if s ∈ Ij . A type j item has size at most tj .

For each type j, a fraction αj ∈ [0, 1] of items are colored red when they arrive, the rest
are colored blue. Blue items are packed using Next Fit: we use each bin until exactly
bluefitj := b1/tjc items are packed into it. Red items are also packed using Next Fit, but
using only some fixed amount of the available space in a bin. This space is not necessarily
exactly some value 1 − bluefitjtj ; for any given type j, there may be several other types
that the algorithm will potentially pack into a bin together with items of type j. For each
type of items that have size at most 1/3, the algorithm chooses in advance an upper bound
for the space that red items may occupy from a fixed set D = {∆i}Ki=1 of spaces, where
∆1 ≤ · · · ≤ ∆K . For medium items (i.e., items whose size is in (1/3, 1/2]), red items are
packed one per bin. The number of red items of type i that are packed in one bin is denoted
by redfiti. In the space not used by blue (resp. red) items, the algorithm may pack red
(resp. blue) items. Each bin will contain items of at most two different types.

A Super Harmonic algorithm uses a function b : {1, . . . , N} → {0, . . . ,K} to map each
item type to an index of a space in D, indicating how much space for red items it leaves
unused in bins with blue items of this type. Here b(j) = 0 means that no space is left for red
items. The algorithm also uses a function r : {1, . . . , N} → {1, . . . ,K} to map how much
space (given by an index of D) red items of each type require.

We say that the class of an item of type j is b(j), if it is blue, and r(j) if it is red.2 Thus,
the class of a blue item reflects how much space is left (at least) in a bin with blue items of
this type, and the class of a red item indicates how much space red items of this type require
(at most) in a bin. There are four kinds of bins.

2 Seiden used the notation φ(j) and ϕ(j) for these functions.

S. Heydrich and R. van Stee 41:7

Pure blue: {i|b(i) = 0, 1 ≤ i ≤ N}. No red items are ever packed into such bins.
Unmixed blue: {(i, ?)|b(i) 6= 0, 1 ≤ i ≤ N}. There is at least one blue item in the bin,
and red items might still be packed into it (in the free space of size ∆b(i)).
Unmixed red: {(?, j)|αi 6= 0, 1 ≤ i ≤ N}. There is at least one red item in the bin and no
blue items, but blue items might still be packed in it (in the free space of size 1−∆r(i)).
Mixed bins: {(i, j)|bi 6= 0, αj 6= 0, tj ≤ ∆b(i), 1 ≤ i ≤ N, 1 ≤ j ≤ N}. There are items of
both colors.

An unmixed blue bin is compatible with a red item of type i if the bin is in a group (j, ?)
and b(j) ≥ r(i). An unmixed red bin is compatible with a blue item of type i if the bin is in
a group (?, j) and b(i) ≥ r(j). In both cases, the condition means that the blue items and
the red items together would use at most 1 space in the bin (the blue items leave enough
space for the red items).

3 Marking the items and the Extreme Harmonic framework

The heart of our improvement over the Super Harmonic framework is marking the medium
items. It enables us to keep track of how they are packed, allowing us to prove the crucial
Lemmas 6 and 7 later, which bound how often “bad” patterns of the form shown in Figure 1
(which have weight > 1.5815) can be used in the optimal solution. Mark Items divides the
medium items into three sets N ,B and R (see Figure 3). Every time an item arrives, after it
is packed using the new framework below, Mark Items performs one of the three steps in
Figure 3 if possible. This is done to keep the number of provisionally colored items small (a
constant). We define Mark Items formally in the full version.

I Theorem 1. At all times, there are at most 5/αi provisionally colored items of type i.

Once assigned, an item remains in a set until the end of the input. This holds even if e.g. a
blue item is packed with a red N -item, meaning that a more appropriate mark for the red
item is B. We change marks where needed only after all items have been packed.

Let ni count the total number of items of type i, and nir count the number of red items
of type i. For a given type i and set X, denote the number of red items in set X by nir(X),
the number of blue items by nib(X), and the total number of items by ni(X). After all items
have arrived and after some postprocessing, we will have

nir(X) = bαini(X)c for X ∈ {N ,B,R} and each medium type i. (2)

I Definition 2. An unmixed bin is red-compatible with a newly arriving item if (1) the bin
contains (provisionally) blue items of type i, the new item is of type j and will be colored
red, and b(i) ≥ r(j), or (2) the bin contains a large item of size s, the new item is medium
and has size at most 1− s. The definition for unmixed bins being blue-compatible to new
items is completely analogous.

We say that a (mixed or unmixed) bin is red-open if it contains some non-provisionally red
items but can still receive additional red items. We define blue-open analogously.

Like Super Harmonic algorithms, an Extreme Harmonic algorithm first tries to
pack a red (blue) item into a red-open (blue-open) bin with items of the same type and color;
then it tries to find a unmixed compatible bin; if all else fails, it opens a new bin. Of course,
the definition of compatible has been extended compared to Super Harmonic (where this
concept was not defined explicitly). Note that the choice of bin depends on the actions of
Mark Items, since that algorithm fixes the colors of some items and bins.

ICALP 2016

41:8 Beating the Harmonic Lower Bound for Online Bin Packing

1 ni ← ni + 1
2 if p is medium, αi > 0, and there exists a red-compatible bin B with a large item then
3 Place p in B and label it as bonus item. // special case: existing bin
4 ni ← ni − 1 // we do not count this item for type i

5 else
6 if nir < bαinic then // pack a (provisionally) red item
7 if there is a bin B with a bonus item of type i or there is a bin B with a bonus

item of type j and r(i) ≤ b(j) then
8 Label the medium item in B as type i and color it red. It is no longer a

bonus item.
9 ni ← ni + redfiti // count medium item as type i item(s)

10 nir ← nir + redfiti
11 Pack(p, blue) // since we now have nir ≥ bαinic again
12 else Pack(p, red)
13 else // pack a (provisionally) blue item
14 if b(i) = 0 then pack p using Next Fit into pure bins of type i and color p blue.
15 else Pack(p, blue)
16 Update the marks and colors using Mark Items.
Algorithm 1: How the Extreme Harmonic framework packs a single item p of type
i < n. At the beginning, we set nir ← 0 and ni ← 0 for 1 ≤ i ≤ n.

1 Try the following types of bins to place p with (provisional) color c in this order:
2 a mixed or unmixed c-open bin with items of type i and definite color c
3 a c-compatible unmixed bin (the bin becomes mixed, its items’ colors are fixed)
4 a new unmixed bin
5 If p was packed into a new bin, p is medium and αi > 0, give p provisionally the color

c, else give it the definite color c. If p got the definite color red, nir ← nir + 1.
Algorithm 2: The algorithm Pack(p, c) for packing an item p of type i with color
c ∈ {blue, red}.

The new framework is formally described in Algorithm 1 and 2. We require αi < 1/3
for all types i. We discuss the changes from Super Harmonic one by one. All the changes
stem from our much more careful packing of medium items.

As can be seen in Algorithm 2 (lines 2, 4 and 5), medium items that are packed into
new bins are initially packed one per bin and given a provisional color. The goal of having
provisionally colored items is to try and make sure that the smallest items of each type
become red in the end. Thus, we wait until some number of these items have arrived, and
then color the smallest one red (Figure 2).

When an item arrives, in many cases, we cannot postpone assigning it a color, since a
c-open or c-compatible bin is already available (see lines 2–3 of Pack(p, c)). Additionally,
we need to check right at the start whether a suitable large item has already arrived. We
deal with this case in lines 2–4 of Algorithm 1. In this special case, we ignore the value αi.
We pack the medium item with the large item as if it was a red item, but we do not count it
towards the total number of existing items of its type; instead we label it a bonus item.
Bonus items do not have a color or mark, at least initially.

S. Heydrich and R. van Stee 41:9

N U

B R

F

Figure 4 Reassigning marks after the input is complete. Items are sorted into their correct sets
whenever possible, updating the marks that they received while the algorithm was running. Some
item sizes are reduced. The bins next to the arrows indicate what sets of bins are being reassigned.
The step marked with F takes place at the end of the postprocessing, after all other steps.

This means that we have (possibly temporarily) too many items of this type that are
packed as red items (we do not count them towards the quantities ni and nir, but we do
record that they exist). There are several ways that this can be fixed later on. Either,
additional blue items of type i arrive and we can restore the correct ratio of red items. Or,
some item of type j and size at most 1/3 arrives that should be colored red and is compatible
with blue items of type i. In this case, for our accounting, we replace the bonus item with
redfitj red items of type j, adjust the counts accordingly in lines 9–10, and color the new
type j item blue.3 Finally, it could also happen that some bonus items remain until the end;
in this case we use careful post-processing so that each item does have a type and color at
the end, and the ratio αi is maintained. Note that we only modify item sizes for the analysis,
and we only make items smaller, so the value of the optimal solution can only decrease and
the implied competitive ratio can only increase as a result. Also note that allowing bonus
items (i.e., occasionally packing too many items as red items) is essential to achieve a better
competitive ratio; without this, we would get the same lower bound instances as before.

It can be seen that blue items of size at most 1/3 are packed as in Super Harmonic.
For red items of size at most 1/3, we need to deal with existing bonus items in lines 9–10,
and in line 3 of Pack(p, c), the provisional color of an existing item may be made permanent.
Otherwise, the packing proceeds as in Super Harmonic. By the order in which existing
bins are tried for packing new items, c-open bins always take precedence over other bins.

4 Postprocessing

After the algorithm has packed all items, we perform some postprocessing. For an overview
of our changes of marks and sizes, see Figure 4. A formal version is given in the full paper.

3 Note that the meanings of i and j are switched in the description of the algorithm for reasons of
presentation.

ICALP 2016

41:10 Beating the Harmonic Lower Bound for Online Bin Packing

I Theorem 3. After postprocessing, (2) holds. Each blue item in N ,R and B is packed in a
bin that contains two blue items. No bins with items in N or red items in B are mixed.

In line 3 of Extreme Harmonic, bonus items are created. These are medium items which
are packed together with a large blue item. Some of them may still be bonus when the
algorithm has finished. Also, some of them may be labeled with a different type than the type
they belong to according to their size. We call such items reduced items. In an additional
postprocessing step, we split up reduced items into (possibly several) red items of the type
with which we labeled the item. If any bonus items remain, we modify the packing that the
algorithm outputs (for the analysis) by replacing some number of bins with a large blue item
and a red medium item by the same number of bins with two blue medium items. Note that
we only make items smaller, so all items still fit in their bins in both the optimal packing
and the online packing. We finally achieve the following result.

I Theorem 4. For each type i, we have nir ∈ [bαinic − 3, bαinic].

5 Analysis using weights

Let A be an Extreme Harmonic algorithm. For analyzing the asymptotic performance
ratio of A, we will use the well-known technique of weighting functions: We assign weights
to each item such that the number of bins that our algorithm uses in order to pack a specific
input is equal to the sum of the weights of all items in this input. Then, we determine the
maximum weight that can be packed in a single bin. Clearly, the offline algorithm cannot
pack more weight than this in any of its bins, thus this maximum weight for a single bin
gives us an upper bound on the competitive ratio.

Recall that the class of a red item of type i is r(i) and the class of a blue item of type i
is b(i). Let r be the smallest red item in a bin that has no blue items. Let the type of r be `,
and k = r(`). The weights of a non-large item p will depend on its class relative to k, and on
its mark in case its class is k. The value of k (and the marks) become clear by running the
algorithm. Note that the algorithm including the postprocessing does not depend on the
weight functions in any way. There are 2K weighting functions in total, where K = |D| is
the number of different spaces used for red items. For each k, wk counts all the blue items,
and vk counts all the red items. The two weight functions of an item p of type i and mark
m are given by the following table. The marks are only relevant for items of class k.

wk(p) = wk(i,m) vk(p) = vk(i,m)
1−αi

bluefiti
+ αi

redfiti
if r(i) > k 1−αi

bluefiti
+ αi

redfiti
if b(i) < k

1−αi

bluefiti
+ αi

redfiti
if r(i) = k,m ∈ {N ,B, ∅} αi

redfiti
if b(i) ≥ k

1−αi

bluefiti
if r(i) = k,m = R

1−αi

bluefiti
if r(i) < k

I Theorem 5. We have A(σ) ≤ max1≤k≤K+1 min {
∑n
i=1 wk(pi),

∑n
i=1 vk(pi)} + O(1) for

any Extreme Harmonic algorithm A and any input σ.

A pattern is a tuple q = {q1, . . . , qm} such that
∑m
i=1 qiti+1 < 1. Intuitively, a pattern

describes the contents of a bin in the optimal offline solution. For a given weight function w,
the weight of pattern q is w(q) = w (1−

∑m
i=1 qiti+1) +

∑
qiw(ti).

Denote the (finite) set of patterns by Q. We can define an offline algorithm for a given
input by a distribution χ over the patterns, where χ(q) indicates which fraction of the bins

S. Heydrich and R. van Stee 41:11

are packed using pattern q. To show that a given Extreme Harmonic algorithm has
performance ratio at most 1.5815 for input sequences with r having class k, we must show

min {
∑n
i=1 wk(pi),

∑n
i=1 vk(pi)}

OPT (σ) = min
{∑n

i=1 wk(pi)
OPT (σ) ,

∑n
i=1 vk(pi)
OPT (σ)

}
≤min

{∑
q∈Q χ(q)wk(q),

∑
q∈Q χ(q)vk(q)

}
≤ 1.5815 (3)

for all such inputs σ. As can be seen from this bound, the question now becomes: what is
the distribution χ (the mix of patterns) that maximizes the minimum in (3)?

For this χ, the following constraints hold. Consider an input where r > 1/3. Let m(q)
be the number of N -items of type ` in pattern q. Let q1 be the pattern with an N -item
of type ` and an item of type i where b(i) = k − 1. (Such an item is larger than 1 − r.)
The parameters of the algorithm, in particular the type boundaries, must be such that this
pattern is unique (i.e., no non-sand item can be added); it is easy to ensure this holds by
setting an appropriate upper bound for the sand.

I Lemma 6. If r > 1/3 and the type of r is `, then m(q) ∈ {0, 1, 2} for all q, and
χ(q1) ≤ 1−α`

1+α`

∑
q 6=q1

χ(q)m(q).

For any j and q, let nj(q) be the number of items of type j in pattern q. Let q2 be the
pattern with a B-item of the type of r and an item larger than 1− r. Like q1, q2 should be
unique (this is easy to guarantee and check). Note that the patterns q1 and q2 are versions
of the pattern shown in Figure 1.

I Lemma 7. If r > 1/3, and ` is the type of r, 1−α`

2 χ(q2) ≤
∑
r(j)≤b(`)

∑
q

αj

redfitj
χ(q)nj(q).

Maximizing the minimum in (3) is the same as maximizing the first term under the
condition that it is not larger than the second term—except that this condition might not
be satisfiable, in which case we need to maximize the second term. We are led to consider
two linear programs, which we will call LP kw and LP kv . Let Q = {q1, . . . , q|Q|} and let
χi = χ(qi), wik = wk(qi), nij = nj(qi),mi = m(qi). LP kw is the following linear program.

max
∑|Q|
i=1 χiwik // First term in (3) (4)

s.t. χ1 − 1−α`

2
∑|Q|
i=2 χimi ≤ 0 // Lemma 6 (5)

1−α`

2 χ2 −
∑
j:r(j)≤b(`)

∑|Q|
i=3

αj

redfitj
χinij ≤ 0 // Lemma 7 (6)∑|Q|

i=3 χi (wik − vik) ≤ 0 // Bound on first term (7)∑|Q|
i=1 χi ≤ 1 // χ is a distribution (8)

χi ≥ 0, 1 ≤ i ≤ |Q| // χ is a distribution (9)

LP kw has a very large number of variables but only four constraints (apart from the
non-negativity constraints). In (7) we use the following proposition.

I Proposition 8. w1k = v1k, w2k = v2k.

The dual DP kw is the following.

min y4 (10)
s.t. y1 + y4 ≥ w1k (11)

1− α`
2 y2 + y4 ≥ w2k (12)

− 1−α`

2 miy1 − y2
∑
j:r(j)≤b(`)

αj

redfitj
nij + (wik − vik)y3 + y4 ≥ wik i = 3, . . . , |Q| (13)

yi ≥ 0 i = 1, . . . , 4 (14)

ICALP 2016

41:12 Beating the Harmonic Lower Bound for Online Bin Packing

If the objective value of DP kw as well as that of DP kv is at most some value y∗4 (or if one is
infeasible), then y∗4 upper bounds the asymptotic performance ratio of our algorithm for this
value of k by duality and by (3). It is easy to see that if for some feasible y∗, constraint
(11) or (12) is not tight, then we can decrease y∗1 or y∗2 and still have a feasible solution. We
therefore restrict our search to solutions for which (11) and (12) are tight. Given y∗4 , we then
know the values of y∗1 and y∗2 . If the constraint (13) does not hold for pattern qi and a given
dual solution y∗, we have the following:

(1− y∗3)wik + y∗3vik + 1− α`
2 miy

∗
1 + y∗2

∑
j:r(j)≤b(`)

αjnj > y∗4 (15)

Note that we get exactly the same condition by considering DP kv due to symmetry.
Recall that wik and vik are just the sums of the respective weights of all the non-sand

items in pattern qi. Based on (15), we define a new weighting function ω(p) as follows.

ω(p) =


(1− y∗3)wk(p) + y∗3vk(p) + 1−α`

2 y∗1 type of p is ` (= type of e)
(1− y∗3)wk(p) + y∗3vk(p) + y∗2αj type of p is j, r(j) ≤ b(`)
(1− y∗3)wk(p) + y∗3vk(p) else

The inequality (15) then turns into ω(qi) > y∗4 . For given y∗4 , we can therefore determine
feasibility of (11)–(13) by using the ellipsoid method, fortunately for only one dimension:
that is, we do a binary search for y∗3 ∈ [0, 1]. For every value y∗3 that we consider, we solve a
simple knapsack problem to determine W = maxq∈Q ω(q) using a dynamic program.

Summarizing the above discussion, proving that an algorithm is c-competitive can be done
by running the described binary search for k = 1, . . . ,K using y∗4 = c. Note that for r ≤ 1/3,
we do not have conditions (5) and (6), and we can define ω(p) = (1− y∗3)wk(p) + y∗3vk(p) for
all items.

For our algorithm Son Of Harmonic we have set initial values as follows. The last three
columns contain item sizes and corresponding αi values that were set manually, separated
by semicolons. Numbers of the form 1/i until the value tN are added automatically by
our program if they are not listed below, but only up to 1/50; for very small items, we
(automatically) merge some consecutive classes without loss of performance to speed up the
binary search.

c = 15815
10000

tN = 1
2100

γ = 2
7

(starting from 1
14)

Last type before small
type generation: 1

50

Item bounds and α values:
33345/100000;0
33340/100000;0
5/18;2/100
7/27;105/1000

1/4;106/1000
8/39;8/100
1/5;93/1000
3/17;3/100
1/6;8/100

3/20;0
29/200;0
1/7;16/100
1/13;1/8
1/14;1/13

The remaining values αi are set automatically using heuristics designed to speed up the
search and minimize the resulting upper bound. In the range (1/3, 1/2], we automatically
generate item sizes (with corresponding α values and ∆i values) that are less than tN
apart to ensure uniqueness of q1 and q2. The value γ specifies how much room is used by
red items of size at most 1/14; larger items (≤ 1/3) use at most 1/3 room. Our computer
program and more information is available at http://people.mpi-inf.mpg.de/~heydrich/
extremeHarmonic/index.html.

Acknowledgements. We thank the anonymous referees for their useful comments.

http://people.mpi-inf.mpg.de/~heydrich/extremeHarmonic/index.html
http://people.mpi-inf.mpg.de/~heydrich/extremeHarmonic/index.html

S. Heydrich and R. van Stee 41:13

References
1 Luitpold Babel, Bo Chen, Hans Kellerer, and Vladimir Kotov. Algorithms for on-line

bin-packing problems with cardinality constraints. Discrete Applied Mathematics, 143(1-
3):238–251, 2004. doi:10.1016/j.dam.2003.05.006.

2 János Balogh, József Békési, György Dósa, Jirí Sgall, and Rob van Stee. The optimal
absolute ratio for online bin packing. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 1425–1438. SIAM, 2015. doi:10.1137/1.9781611973730.94.

3 János Balogh, József Békési, and Gábor Galambos. New lower bounds for certain classes
of bin packing algorithms. In Klaus Jansen and Roberto Solis-Oba, editors, Approxima-
tion and Online Algorithms – 8th International Workshop, WAOA 2010, Liverpool, UK,
September 9-10, 2010. Revised Papers, volume 6534 of Lecture Notes in Computer Science,
pages 25–36. Springer, 2010. doi:10.1007/978-3-642-18318-8_3.

4 Donna J. Brown. A lower bound for on-line one-dimensional bin packing algorithms. Tech-
nical Report R-864, Coordinated Sci. Lab., Urbana, Illinois, 1979.

5 Edward G. Coffman, Michael R. Garey, and David S. Johnson. Approximation algorithms
for bin packing: A survey. In D. Hochbaum, editor, Approximation algorithms. PWS
Publishing Company, 1997.

6 Wenceslas Fernandez de la Vega and George S. Lueker. Bin packing can be solved within
1 + ε in linear time. Combinatorica, 1:349–355, 1981.

7 Michael R. Garey, Ronald L. Graham, and Jeffrey D. Ullman. Worst-case analysis of
memory allocation algorithms. In Proceedings of the Fourth Annual ACM Symposium on
Theory of Computing, pages 143–150. ACM, 1972.

8 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
theory of of NP-Completeness. Freeman and Company, San Francisco, 1979.

9 Michel X. Goemans and Thomas Rothvoß. Polynomiality for bin packing with a constant
number of item types. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA,
January 5-7, 2014, pages 830–839. SIAM, 2014. doi:10.1137/1.9781611973402.61.

10 David S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge, MA,
1973.

11 David S. Johnson. Fast algorithms for bin packing. Journal of Computer and System
Sciences, 8:272–314, 1974.

12 Narendra Karmarkar and Richard M. Karp. An efficient approximation scheme for the
one-dimensional bin-packing problem. In Proceedings of the 23rd Annual Symposium on
Foundations of Computer Science, pages 312–320, 1982.

13 Chung-Chieh Lee and D. T. Lee. A simple online bin packing algorithm. Journal of the
ACM, 32:562–572, 1985.

14 Frank M. Liang. A lower bound for online bin packing. Information Processing Letters,
10:76–79, 1980.

15 Prakash V. Ramanan, Donna J. Brown, Chung-Chieh Lee, and D. T. Lee. Online bin
packing in linear time. Journal of Algorithms, 10:305–326, 1989.

16 Michael B. Richey. Improved bounds for harmonic-based bin packing algorithms. Discrete
Applied Mathematics, 34:203–227, 1991.

17 Thomas Rothvoß. Approximating bin packing within o(log OPT * log log OPT) bins.
In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-
29 October, 2013, Berkeley, CA, USA, pages 20–29. IEEE Computer Society, 2013. doi:
10.1109/FOCS.2013.11.

18 Steve S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–671,
2002.

ICALP 2016

http://dx.doi.org/10.1016/j.dam.2003.05.006
http://dx.doi.org/10.1137/1.9781611973730.94
http://dx.doi.org/10.1007/978-3-642-18318-8_3
http://dx.doi.org/10.1137/1.9781611973402.61
http://dx.doi.org/10.1109/FOCS.2013.11
http://dx.doi.org/10.1109/FOCS.2013.11

41:14 Beating the Harmonic Lower Bound for Online Bin Packing

19 Jeffrey D. Ullman. The performance of a memory allocation algorithm. Technical Report
100, Princeton University, Princeton, NJ, 1971.

20 André van Vliet. An improved lower bound for online bin packing algorithms. Information
Processing Letters, 43:277–284, 1992.

21 Andrew C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207–227,
1980.

	Introduction
	Previous Results

	The Super Harmonic framework Seiden02
	Marking the items and the Extreme Harmonic framework
	Postprocessing
	Analysis using weights

