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Abstract
We design the first online algorithm with poly-logarithmic competitive ratio for the edge-weighted
degree-bounded Steiner forest (EW-DB-SF) problem and its generalized variant. We obtain
our result by demonstrating a new generic approach for solving mixed packing/covering integer
programs in the online paradigm. In EW-DB-SF, we are given an edge-weighted graph with a
degree bound for every vertex. Given a root vertex in advance, we receive a sequence of terminal
vertices in an online manner. Upon the arrival of a terminal, we need to augment our solution
subgraph to connect the new terminal to the root. The goal is to minimize the total weight
of the solution while respecting the degree bounds on the vertices. In the offline setting, edge-
weighted degree-bounded Steiner tree (EW-DB-ST) and its many variations have been extensively
studied since early eighties. Unfortunately, the recent advancements in the online network design
problems are inherently difficult to adapt for degree-bounded problems. In particular, it is not
known whether the fractional solution obtained by standard primal-dual techniques for mixed
packing/covering LPs can be rounded online. In contrast, in this paper we obtain our result
by using structural properties of the optimal solution, and reducing the EW-DB-SF problem
to an exponential-size mixed packing/covering integer program in which every variable appears
only once in covering constraints. We then design a generic integral algorithm for solving this
restricted family of IPs.

As mentioned above, we demonstrate a new technique for solving mixed packing/covering
integer programs. Define the covering frequency k of a program as the maximum number of
covering constraints in which a variable can participate. Let m denote the number of pack-
ing constraints. We design an online deterministic integral algorithm with competitive ratio of
O(k logm) for the mixed packing/covering integer programs. We prove the tightness of our result
by providing a matching lower bound for any randomized algorithm. We note that our solution
solely depends on m and k. Indeed, there can be exponentially many variables. Furthermore,
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42:2 Online Weighted Degree-Bounded Steiner Networks

our algorithm directly provides an integral solution, even if the integrality gap of the program is
unbounded. We believe this technique can be used as an interesting alternative for the standard
primal-dual techniques in solving online problems.
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1 Introduction

Degree-bounded network design problems comprise an important family of network design
problems since the eighties. Aside from various real-world applications such as vehicle routing
and communication networks [6, 32, 38], the family of degree-bounded problems has been a
testbed for developing new ideas and techniques. The problem of degree-bounded spanning
tree, introduced in Garey and Johnson’s Black Book of NP-Completeness [29], was first
investigated in the pioneering work of Fürer and Raghavachari [15]. In this problem, we are
required to find a spanning tree of a given graph with the goal of minimizing the maximum
degree of the vertices in the tree. Let b∗ denote the maximum degree in the optimal spanning
tree. Fürer and Raghavachari give a parallel approximation algorithm which produces a
spanning tree of degree at most O(log(n)b∗). This result was later generalized by Agrawal,
Klein, and Ravi [1] to the case of degree-bounded Steiner tree (DB-ST) and degree bounded
Steiner forest (DB-SF) problem. In DB-ST, given a set of terminal vertices, we need to
find a subgraph of minimum maximum degree that connects the terminals. In the more
generalized DB-SF problem, we are given pairs of terminals and the output subgraph should
contain a path connecting each pair. Fürer and Raghavachari [16] significantly improved the
result for DB-SF by presenting an algorithm which produces a Steiner forest with maximum
degree at most b∗ + 1.

The study of DB-ST and DB-SF was the starting point of a very popular line of work
on various degree-bounded network design problems; e.g. [28, 31, 27, 22, 13] and more
recently [14, 13]. One particular variant that has been extensively studied was initiated
by Marathe et al. [28]: In the edge-weighted degree-bounded spanning tree problem, given a
weight function over the edges and a degree bound b, the goal is to find a minimum-weight
spanning tree with maximum degree at most b. The initial results for the problem generated
much interest in obtaining approximation algorithms for the edge-weighted degree-bounded
spanning tree problem [11, 10, 17, 23, 24, 25, 26, 34, 35, 36]. The groundbreaking results
obtained by Goemans [18] and Singh and Lau [37] settle the problem by giving an algorithm
that computes a minimum-weight spanning tree with degree at most b+1. Singh and Lau [27]
generalize their result for the edge-weighted Steiner tree (EW-DB-ST) and edge-weighted
Steiner forest (EW-DB-SF) variants. They design an algorithm that finds a Steiner forest
with cost at most twice the cost of the optimal solution while violating the degree constraints
by at most three.

Despite these achievements in the offline setting, it was not known whether degree-bounded
problems are tractable in the online setting. The online counterparts of the aforementioned
Steiner problems can be defined as follows. The underlying graph and degree bounds are
known in advance. The demands arrive one by one in an online manner. At the arrival of a
demand, we need to augment the solution subgraph such that the new demand is satisfied.
The goal is to be competitive against an offline optimum that knows the demands in advance.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.42
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Recently, Dehghani et al. [12] explore the tractability of the Online DB-SF problem by
showing that a natural greedy algorithm produces a solution in which the degree bounds are
violated by at most a factor of O(logn), which is asymptotically tight. They analyze their
algorithm using a dual fitting approach based on the combinatorial structures of the graph
such as the toughness1 factor. Unfortunately, they can also show that greedy methods are
not competitive for the edge-weighted variant of the problem. Hence, it seems unlikely that
the approach of [12] can be generalized to EW-DB-SF.

The online edge-weighted Steiner connectivity problems (with no bound on the degrees)
have been extensively studied in the last decades. Imase and Waxman [21] use a dual-fitting
argument to show that the greedy algorithm has a competitive ratio of O(logn), which is also
asymptotically tight. Later the result was generalized to the EW SF variant by Awerbuch et
al. [4] and Berman and Coulston [7]. In the past few years, various primal-dual techniques
have been developed to solve the more general node-weighted variants [2, 30, 19], prize-
collecting variants [33, 20], and multicommodity buy-at-bulk [9]. These results are obtained
by developing various primal-dual techniques [2, 19] while generalizing the application of
combinatorial properties to the online setting [30, 20, 9]. In this paper however, we develop
a primal approach for solving bounded-frequency mixed packing/covering integer programs.
We believe this framework would be proven useful in attacking other online packing and
covering problems.

1.1 Our Results and Techniques
In this paper, we consider the online Steiner tree and Steiner forest problems at the presence
of both edge weights and degree bounds. In the Online EW-DB-SF problem, we are given a
graph G = (V,E) with n vertices, edge-weight function w, degree bound bv for every v ∈ V ,
and an online sequence of connectivity demands (si, ti). Let wopt denote the minimum weight
subgraph which satisfies the degree bounds and connects all demands. Let ρ = maxe w(e)

mine:w(e)>0 w(e) .

I Theorem 1. There exists an online deterministic algorithm which finds a subgraph with
total weight at most O(log3 n)wopt while the degree bound of a vertex is violated by at most a
factor of O(log3(n) log(nρ)).

If one favors the degree bounds over total weight, one can find a subgraph with degree-bound
violation O(log3(n) log(nρ))

log log(nρ) ) and total cost O(log3(n) log(nρ))
log log(nρ) )wopt.

We note that the logarithmic dependency on ρ is indeed necessary. It follows from the
result of [12] that the competitive ratio of any algorithm is either Ω(n) or Ω(log ρ).

Our technical contribution for solving the EW-DB-SF problem is twofold. First by
exploiting a structural result and massaging the optimal solution, we show a formulation
of the problem that falls in the restricted family of bounded-frequency mixed packing/cover
IPs, while losing only logarithmic factors in the competitive ratio. We then design a generic
online algorithm with a logarithmic competitive ratio that can solve any instance of the
bounded-frequency packing/covering IPs. In what follows, we describe our results in detail.

1.1.1 Massaging the optimal solution
Initiated by work of Alon et al. [2] on online set cover, Buchbinder and Naor developed a
strong framework for solving packing/covering LPs fractionally online. For the applications

1 The toughness of a graph is defined as minX⊆V
|X|

|CC(G\X)| ; where for a graph H, CC(H) denotes the
collection of connected components of H.
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42:4 Online Weighted Degree-Bounded Steiner Networks

of their general framework in solving numerous online problems, we refer the reader to the
survey in [8]. Azar et al. [5] generalize this method for the fractional mixed packing and
covering LPs. The natural linear program relaxation for EW-DB-SF, commonly used in the
literature, is a special case of mixed packing/covering LPs: one needs to select an edge from
every cut that separates the endpoints of a demand (covering constraints), while for a vertex
we cannot choose more than a specific number of its adjacent edges (packing constraints).
Indeed, one can use the result of Azar et al. [5] to find an online fractional solution with
polylogarithmic competitive ratio. However, doing the rounding in an online manner seems
very hard.

Offline techniques for solving degree-bounded problems often fall in the category of
iterative and dependent rounding methods. Unfortunately, these methods are inherently
difficult to adapt for an online settings since the underlying fractional solution may change
dramatically in between the rounding steps. Indeed, this might be the very reason that
despite many advances in the online network design paradigm in the past two decades, the
natural family of degree-bounded problems has remained widely open. In this paper, we
circumvent this by reducing EW-DB-ST to a novel formulation beyond the scope of standard
online packing/covering techniques and solving it using a new online integral approach.

The crux of our IP formulation is the following structural property: Let (si, ti) denote the
ith demand. We need to augment the solution Qi−1 of previous steps by buying a subgraph
that makes si and ti connected. Let Gi denote the graph obtained by contracting the pairs
of vertices sj and tj for every j < i. Note that any (si − ti)-path in Gi corresponds to a
feasible augmentation for Qi−1. Some edges in Gi might be already in Qi−1 and therefore
by using them again we can save both on the total weight and the vertex degrees. However,
in Section 2 we prove that there always exists a path in Gi such that even without sharing
on any of the edges in Gi and therefore paying completely for the increase in the weight
and degrees, we can approximate the optimal solution up to a logarithmic factor. This
in fact, enables us to have a formulation in which the covering constraints for different
demands are disentangled. Indeed, we only have one covering constraint for each demand.
Unfortunately, this implies that we have exponentially many variables, one for each possible
path in Gi. This may look hopeless since the competitive factors obtained by standard
fractional packing/covering methods introduced by Buchbinder and Naor [8] and Azar et
al. [5], depend on the logarithm of the number of variables. Therefore we come up with a
new approach for solving this class of mixed packing/covering integer programs (IP).

1.1.2 Bounded-frequency mixed packing/covering IPs
We derive our result for EW-DB-ST by demonstrating a new technique for solving mixed
packing/covering integer programs. We believe this approach could be applicable to a
broader range of online problems. The integer program IP1 describes a general mixed
packing/covering IP with the set of integer variables x ∈ Zn≥0 and α. The packing constraints
are described by a m× n non-negative matrix P . Similarly, the q × n matrix C describes
the covering constraints. The covering frequency of a variable xi is defined as the number of
covering constraints in which xi has a positive coefficient. The covering frequency of a mixed
packing/covering program is defined as the maximum covering frequency of its variables.

minimize α , (IP1)
s.t. Px ≤ α .

Cx ≥ 1 .

x ∈ Z≥0, α ∈ R>0 .
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In the online variant of mixed packing and covering IP, we are given the packing constraints
in advance. However the covering constraints arrive in an online manner. At the arrival
of each covering constraint, we should increase the solution x such that it satisfies the
new covering constraint. We provide a deterministic algorithm for solving online mixed
packing/covering IPs.

I Theorem 2. Given an instance of the online mixed packing/covering IP, there exists a
deterministic integral algorithm with competitive ratio O(k logm), where m is the number of
packing constraints and k is the covering frequency of the IP.

We note that the competitive ratio of our algorithm is independent of the number of variables
or the number of covering constraints. Indeed, there can be exponentially many variables.

Our result can be thought of as a generalization of the work of Aspnes et al. [3] on
virtual circuit routing. Although not explicit, their result can be massaged to solve mixed
packing/covering IPs in which all the coefficients are zero or one, and the covering frequency
is one. They show that such IPs admit a O(log(m))-competitive algorithms. Theorem 2
generalizes their result to the case with arbitrary non-negative coefficients and any bounded
covering frequency.

We complement our result by proving a matching lower bound for the competitive ratio
of any randomized algorithm. This lower bound holds even if the algorithm is allowed to
return fractional solutions.

I Theorem 3. Any randomized online algorithm A for integral mixed packing and covering is
Ω(k logm)-competitive, where m denotes the number of packing constraints, and k denotes the
covering frequency of the IP. This even holds if A is allowed to return a fractional solution.

As mentioned before, Azar et al. [5] provide a fractional algorithm for mixed packing/-
covering LPs with competitive ratio of O(logm log d) where d is the maximum number of
variables in a single constraint. They show an almost matching lower bound for deterministic
algorithms. We distinguish two advantages of our approach compared to that of Azar et al.:

The algorithm in [5] outputs a fractional competitive solution which then needs to be
rounded online. For various problems such as Steiner connectivity problems, rounding
a solution online is very challenging, even if offline rounding techniques are known.
Moreover, the situation becomes hopeless if the integrality gap is unbounded. However,
for bounded-frequency IPs, our algorithm directly produces an integral competitive
solution. Thus it does not depend on rounding methods, and is applicable to problems
with large integrality gap, or the problems for which it is shown that rounding methods
do not preserve any approximation guarantee, and as such, the traditional approach fails.
Azar et al. find the best competitive ratio with respect to the number of packing constraints
and the size of constraints. Although these parameters are shown to be bounded in
several problems, in many problems such as connectivity problems and flow problems,
formulations with exponentially many variables are very natural. Our techniques provide
an alternative solution with a tight competitive ratio, for formulations with bounded
covering frequency.

1.2 Preliminaries
Let G = (V,E) be an undirected graph of size n (|V | = n). Let w : E → Z>0 be a function
denoting the edge weights. For a subgraph H ⊆ G, we define w(H) :=

∑
e∈E(H) w(e).

For every vertex v ∈ V , let bv ∈ Z>0 denote the degree bound of v. Let degH(v) denote
the degree of vertex v in subgraph H. We define the load lH(v) of vertex v w.r.t. H as

ICALP 2016



42:6 Online Weighted Degree-Bounded Steiner Networks

degH(v)/bv. In DB-SF we are given graph G, degree bounds, and k connectivity demands.
Let σi denote the i-th demand. The i-th demand is a pair of vertices σi = (si, ti), where
si, ti ∈ V . In DB-SF the goal is to find a subgraph H ⊆ G such that for each demand σi, si
is connected to ti in H, for every vertex v ∈ V , lH(v) ≤ 1, and w(H) is minimized. In this
paper without loss of generality we assume the demand endpoints are distinct vertices with
degree one in G and degree bound infinity.

In the online variant of the problem, we are given graph G and degree bounds in advance.
However the sequence of demands are given one by one. At arrival of demand σi, we are
asked to provide a subgraph Hi, such that Hi−1 ⊆ Hi and si is connected to ti in Hi.

The following integer program is a natural mixed packing and covering integer program for
EW-DB-SF. Let S denote the collection of subsets of vertices that separate the endpoints
of at least one demand. For a set of vertices S, let δ(S) denote the set of edges with exactly
one endpoint in S. In SF_IP, for an edge e, xe = 1 indicates that we include e in the solution
while xe = 0 indicates otherwise. The variable α indicates an upper bound on the violation
of the load of every vertex and an upper bound on the violation of the weight. The first set
of constraints ensures that the load of a vertex is upper bounded by α. The second constraint
ensures that the violation for the weight is upper bounded by α. The third set of constraints
ensures that the endpoints of every demand are connected. Here we assume wopt is known
to the algorithm, although this can be waived by standard doubling techniques.

minimize α . (SF_IP)

∀v ∈ V 1
bv

∑
e∈δ({v})

xe ≤ α . (1)

1
wopt

∑
e∈E

w(e)xe ≤ α . (2)

∀S ⊆ S
∑
e∈δ(S)

xe ≥ 1 . (3)

xe ∈ {0, 1}, α ∈ Z>0 .

1.3 Overview of the Paper
We begin Section 2 by providing a bounded frequency IP for EW-DB-SF. The IP is not
a proper formulation of the problem, however, we can show that one can map feasible
solutions of EW-DB-SF to feasible solutions of the IP without increasing the cost too
much. In Section 3 we provide a deterministic algorithm for online bounded frequency mixed
packing/covering IPs. In the full version of the paper, we also provide a matching lower
bound for the competitive ratio of any randomized algorithm. Finally, in Section 4 we merge
our techniques to obtain online polylogarithmic-competitive algorithms for EW-DB-SF.

2 Finding the Right Integer Program

In this section we design an online mixed packing and covering integer program for EW-DB-SF.
We show this formulation is near optimal, i.e. any f−approximation for this formulation,
implies an O(f log2 n)-approximation for EW-DB-SF. In Section 4 we show there exists
an online algorithm that finds an O(logn)-approximation solution for this IP and violates
degree bounds by O(log3 n logwopt), where wopt denotes the optimal weight.

First we define some notations. For a sequence of demands σ = 〈(s1, t1), . . . , (sk, tk)〉,
we define Rσ(i) to be a set of i edges, connecting the endpoints of the first i demands.
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v1

v2 v4

t2: v6t1: v5

s1:

s2: v3

Figure 1 An example where every vertex has degree-bound 3 and every edge has weight 1. The
first demand is (v2, v5) and the second demand is (v3, v6). The optimal solution for SF_IP is a
subgraph, say H, with the set of all edges and vertices, i.e. H = G. However an optimal solution
for PC_IP is: Two subgraphs H1 for the first request which has edges {e(v1, v2), e(v1, v4), e(v4, v5)}
and H2 for the second request which has edges {e(v2, v3), e(v4, v5), e(v4, v6)}. Note that w(H) = 5
and w(H1) + w(H2) = 6, since we have edge e(v4, v5) in both H1 and H2. Moreover the number of
edges incident with v4 in the solution of PC_IP is 4, i.e. degH1 (v4) + degH2 (v4) = 4.

In particular Rσ(i) :=
⋃i
j=1 e(sj , tj), where e(sj , tj) denotes a direct edge from sj to tj .

Moreover, we say subgraph Hi satisfies the connectivity of demand σi = (si, ti), if si and ti
are connected in graph Hi ∪Rσ(i− 1). Let Hi denote the set of all subgraphs that satisfy
the connectivity of demand σi. In PC_IP variable α denotes the violation in the packing
constraints. Furthermore for every subgraph H ⊆ G and demand σi, there exists a variable
xiH ∈ {0, 1}. xiH = 1 indicates we add the edges of H to the existing solution, at arrival of
demand σi. The first set of constraints ensure the degree-bounds are not violated more than
α. The second constraint ensures the weight is not violated by more than α. The third set
of constraints ensure the endpoints of every demand are connected.

minimize α . (PC_IP)

∀v ∈ V 1
bv

k∑
i=1

∑
H⊆G

degH(v)xiH ≤ α . (4)

1
wopt

k∑
i=1

∑
H⊆G

w(H)xiH ≤ α . (5)

∀σi
∑
H∈Hi

xiH ≥ 1 . (6)

∀H ⊆ G, 1 ≤ i ≤ k xiH ∈ {0, 1} .
α > 0 .

We are considering the online variant of the mixed packing and covering program. We
are given the packing Constraints (4) and (5) in advance. At arrival of demand σi, the
corresponding covering Constraint (6) is added to the program. We are looking for an
online solution which is feasible at every online stage. Moreover the variables xH should be
monotonic, i.e. once an algorithm sets xH = 1 for some H, the value of xH is 1 during the
rest of the algorithm. Figure 1 illustrates an example which indicates the difference between
the solutions of PC_IP and SF_IP.

Let popt and lopt denote the optimal solutions for PC_IP and SF_IP, respectively.
Lemma 4 shows that given an online solution for PC_IP we can provide a feasible online
solution for SF_IP of cost popt.

I Lemma 4. Given a feasible solution {x, α} for PC_IP, there exists a feasible solution
{x′, α} for SF_IP.

ICALP 2016



42:8 Online Weighted Degree-Bounded Steiner Networks

In the rest of this section, we show that we do not lose much by changing SF_IP to
PC_IP. In particular we show popt ≤ O(log2 n)lopt.

To this end, we first define the connective list of subgraphs for a graph G, a forest F , and
a list of demands σ. We then prove an existential lemma for such a list of subgraphs with a
desirable property for any 〈G,F, σ〉. With that in hand, we prove popt ≤ O(log2 n)lopt. In
what follows, we refer the reader to the full version of the paper for detailed proofs.

Given G, a list of demands σ = 〈(s1, t1), . . . , (sk, tk)〉, and a forest F ⊆ G:

I Definition 5. Let Q = 〈Q1, Q2, Q3, . . . , Qk〉 be a list of k subgraphs of F . We say Q is a
connective list of subgraphs for 〈G,F, σ〉 iff for every 1 ≤ i ≤ k there exists no cut disjoint
from Qi that separates si from ti, but does not separate any sj from tj for j < i.

The intuition behind the definition of connective subgraphs is the following: If Q is a
connective list of subgraphs for an instance 〈G,F, σ〉 then for every i we are guaranteed that
the union of all subgraphs ∪ij=1Qi connects si to ti. In Lemma 6 we show for every 〈G,F, σ〉,
there exists a connective list of subgraphs for 〈G,F, σ〉, such that each edge of F appears in
at most O(log2 n) subgraphs of Q.

I Lemma 6. Let G be a graph and F be a forest in G. If σ is a collection of k demands
〈(s1, t1), . . . , (sk, tk)〉, then there exists a connective list of subgraphs Q = 〈Q1, Q2, . . . , Qk〉
for 〈G,F, σ〉 such that every edge of F appears in at most 3 log2 |V (F )| number of Qi’s.

Proof. Here we give a sketch of the proof of lemma; we refer the reader to the full version
for detailed proofs. We first prove a cost-minimization variant of the lemma. Consider an
arbitrary weight vector ŵ : F → R≥0. We argue that there is a connective list Q, such
that

∑
i ŵ(Qi) ≤ O(log2 n)ŵ(F ). Let Ĥi = (V, F ∪ Rσ(i), ŵi) denote a weighted graph

for which ŵi(e) = ŵ(e) for e ∈ F , and ŵi(e) = 0 for e ∈ Rσ(i). Now we note that there
is no cost-sharing among Qi’s in the goal

∑
i ŵ(Qi). Therefore the optimal choice for Qi

corresponds to the minimum-weight (si, ti)-path in Ĥi−1. Hence, we need to analyze the
cost of these greedy choices.

Awerbuch et al. [4] showed that the greedy algorithm is indeed O(log2 n)-competitive for
the edge-weighted Steiner forest problem. The standard greedy algorithm is slightly different
from the greedy process we discussed above. In the greedy algorithm of Awerbuch et al., at
time step i we choose a minimum-cost (si, ti)-path in a graph in which there is a zero-cost
edge between any pair of vertices in the same connected component of the current solution;
not just the (sj , tj) pairs of the previous demands. However, in their analysis they only use
the zero-cost edges among the terminals of a previous demand. This is indeed not surprising
since we hardly have any control on the greedy choices other than the fact that they satisfy
the demands. Therefore the following claim follows from the result of Awebuch et al.2:

I Claim 7 (implicitly proven in Theorem 2.1 of [4]). For any weight function ŵ defined over
F , there exists a connective list Q for which∑

i

ŵ(Qi) ≤ O(log2 n)ŵ(F ).

However, Claim 7 is not enough for us. We need a solution in which every edge is used
at most O(log2 n) times, not just in an amortized sense. Indeed we can show that since

2 There is also a lower bound of Ω(log n) for the competitive ratio of the greedy algorithm. Closing the
gap between this lower bound and the upper bound of O(log2 n) for EW Steiner forest is an important
open problem.



S. Dehghani, S. Ehsani, M. Hajiaghayi, V. Liaghat, H. Räcke, and S. Seddighin 42:9

there is a solution for every weight function, we can have a fractional connective list Q in
which every edge is used (fractionally) at most O(log2 n) times. This implies that we have a
fractional connective list. Finally, we provide a rounding argument which obtains an integral
connective list by losing only a constant factor; which completes the proof of lemma. J

Finally, we can leverage Lemma 6 to show popt ≤ O(log2 n)lopt. This shows we
can use PC_IP as an online mixed packing/covering IP to obtain an online solution for
online edge-weighted degree-bounded Steiner forest losing a factor of O(log2 n).
In Section 4 we show this formulation is an online bounded frequency mixed packing/covering
IP, thus we leverage our technique for such IPs to obtain a polylogarithmic-competitive
algorithm for online EW-DB-SF.

3 Online Bounded Frequency Mixed Packing/Covering IPs

In this section we consider bounded frequency online mixed packing and covering integer
programs. For every online mixed packing and covering IP with covering frequency k,
we provide an online algorithm that violates each packing constraint by at most a factor
of O(k logm), where m is the number of packing constraints. We note that this bound
is independent of the number of variables, the number of covering constraints, and the
coefficients of the mixed packing and covering program. Moreover the algorithm is for integer
programs, which implies obtaining an integer solution does not rely on (online) rounding.

In particular we prove there exists an online O(k logm)-competitive algorithm for any
mixed packing and covering IP such that every variable has covering frequency at most k,
where the covering frequency of a variable xr is the number of covering constraints with a
non-zero coefficient for xr.

We assume that all variables are binary. One can see this is without loss of generality as
long as we know every variable xr ∈ {1, 2, 3, . . . , 2l}. Since we can replace xr by l variables
y1
r , . . . , y

l
r denoting the digits of xr and adjust coefficients accordingly. Furthermore, for now

we assume that the optimal solution for the given mixed packing and covering program is
1. In Theorem 10 we prove that we can use a doubling technique to provide an O(k logm)-
competitive solution for online bounded frequency mixed packing and covering programs
with any optimal solution. The algorithm is as follows. We maintain a family of subsets S.
Initially S = ∅. Let S(j) denote S at arrival of Cj+1. For each covering constraint Cj+1,
we find a subset of variables Sj+1 and add Sj+1 to S. We find Sj+1 in the following way.
For each set of variables S, we define a cost function τS(S(j)) according to our current S
at arrival of Cj+1. We find a set Sj+1 that satisfies Cj+1 and minimizes τS(S(j)). More
precisely we say a set of variables S satisfies Cj+1 if∑

xr∈S Cj+1,rxr ≥ 1, where Cj+1,r denotes the coefficient of Cj+1 for xr.
For each packing constraint Pi,

∑
xr∈S

1
kPir ≤ 1.

Now we add Sj+1 to S and for every xr ∈ Sj+1, we set xr = 1. We note that there always
exists a set S that satisfies Cj+1, since we assume there exists an optimal solution with value
1. Setting S to be the set of all variables with value one in an optimal solution which have
non-zero coefficient in Cj+1, satisfies Cj+1. It only remains to define τS(S(j)). But before
that we need to define ∆i(S) and Fi(S(j)). For packing constraint Pi and subset of variables
S, we define ∆i(S) as ∆i(S) :=

∑
xr∈S

1
kPir. For packing constraint Pi and S(j), let

Fi(S(j)) :=
∑

S∈S(j)

∆i(S) . (7)
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Now let τS(S(j)) =
∑m
i=1 ρ

Fi(S(j))+∆i(S) − ρFi(S(j)), where ρ > 1 is a constant to be defined
later.

Algorithm 1
Input: Packing constraints P , and an online stream of covering constraints C1, C2, . . ..
Output: A feasible solution for online bounded frequency mixed packing/covering.
Offline Process:
1: Initialize S ← ∅.
Online Scheme; assuming a covering constraint Cj+1 is arrived:
1: Sj+1 ← arg minS{τS(S(j)) | S satisfies Cj+1}.
2: for all xr ∈ Sj+1 do
3: xr ← 1.

Let x∗ be an optimal solution, and x∗(j) denote its values at online stage j. We define
Gi(j) as

Gi(j) :=
j∑
l=1

∑
r:Clr>0

1
k
x∗rPir . (8)

Now we define a potential function Φj for online stage j.

Φj =
m∑
i=1

ρFi(S(j))(γ −Gi(j)) , (9)

where ρ, γ > 1 are constants to be defined later.

I Lemma 8. There exist constants ρ and γ, such that Φj is non-increasing.

Proof. We find ρ and γ such that Φj+1 − Φj ≤ 0. By the definition of Φj ,

Φj+1 − Φj =
m∑
i=1

ρFi(S(j+1))(γ −Gi(j + 1))− ρFi(S(j))(γ −Gi(j)) . (10)

By Equation (7), ρFi(S(j+1)) − ρFi(S(j)) = ρFi(S(j))+∆i(S) − ρFi(S(j)). Moreover by Equation
(8), (γ − Gi(j + 1)) − (γ − Gi(j)) = −

∑
r:Cj+1,r>0

1
kx
∗
rPir. For simplicity of notation we

define Bi(j + 1) :=
∑
r:Cj+1,r>0

1
kx
∗
rPir. Thus we can write Equation (10) as:

Φj+1 − Φj =
m∑
i=1

ρFi(S(j+1))(γ −Gi(j)−Bi(j + 1))− ρFi(S(j))(γ −Gi(j)) (11)

=
m∑
i=1

(γ −Gi(j))(ρFi(S(j))+∆i(S) − ρFi(S(j)))− ρFi(S(j+1))Bi(j + 1) Since Gi(j) ≥ 0

≤
m∑
i=1

γ(ρFi(S(j))+∆i(S) − ρFi(S(j)))− ρFi(S(j+1))Bi(j + 1) Fi(S(j + 1)) ≥ Fi(S(j))

≤
m∑
i=1

γ(ρFi(S(j))+∆i(S) − ρFi(S(j)))− ρFi(S(j))Bi(j + 1) .

Now according to the algorithm for each subset of variables S′ such that
∑
xr∈S′ Cj+1(xr) ≥ 1,

either τS(S(j)) ≤ τS′(S(j)) or there exists a packing constraint Pi such that ∆i(S′) > 1. In
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Bi(j + 1), we are considering variables xr such that x∗e = 1, thus for every Pi, Bi(j + 1) ≤ 1.
Therefore setting S′ to be the set of variables xr such that x∗r = 1 and Cj+1,r > 0, we
have τS(S(j)) ≤ τS′(S(j)). Thus

∑m
i=1 ρ

Fi(S(j))+∆i(S)− ρFi(S(j)) ≤
∑m
i=1 ρ

Fi(S(j))+Bi(j+1)−
ρFi(S(j)). Therefore we can rewrite Inequality (11) as

Φj+1 − Φj ≤
m∑
i=1

γ(ρFi(S(j))+Bi(j+1) − ρFi(S(j)))− ρFi(S(j))Bi(j + 1) (12)

=
m∑
i=1

ρFi(S(j))(γρBi(j+1) − γ −Bi(j + 1)) .

We would like to find ρ and γ such that Φj is non-increasing. We find ρ and γ such that for
each packing constraint Pi, γρBi(j+1) − γ −Bi(j + 1) ≤ 0. Thus

γρBi(j+1) − γ ≤ Bi(j + 1) Since 0 ≤ Bi(j + 1) ≤ 1 (13)
γρBi(j + 1)− γ ≤ Bi(j + 1) By simplifying (14)

ρ ≤ 1 + 1/γ . (15)

Thus if we set ρ ≤ 1 + 1/γ, Φj is non-increasing, as desired. J

Now we prove Algorithm 1 obtains a solution of at most O(k logm).

I Lemma 9. Given an online bounded frequency mixed packing covering IP with optimal
value 1, there exists a deterministic integral algorithm with competitive ratio O(k logm),
where m is the number of packing constraints and k is the covering frequency of the IP.

Proof. By Lemma 8 for each stage j, Φj+1 ≤ Φj . Therefore Φj ≤ Φ0 = γm. Thus for each
packing constraint Pi,

ρFi(S(j))(γ −Gi(j)) ≤ γm . (16)

Thus,

ρFi(S(j)) ≤ γm

(γ −Gi(j))
≤ γm

γ − 1 . Since Gi(j) ≤ 1 (17)

Thus we can conclude

Fi(S(j)) ∈ O(logm) . (18)

By definition of Fi(S(j)), Fi(S(j)) =
∑
S∈S(j) ∆i(S) =

∑
S∈S(j)

∑
xr∈S

1
kPir. Since each

variable xr is present in at most k sets, 1
kPi · x(j) ≤ Fi(S(j)) . Thus by Inequality (18)

Pix(j) ∈ O(k logm), which completes the proof. J

Finally we prove there exists an online O(k logm)-competitive algorithm for bounded
frequency online mixed packing and covering integer programs with any optimal value.

I Theorem 10. Given an instance of the online mixed packing/covering IP, there exists a
deterministic integral algorithm with competitive ratio O(k logm), where m is the number of
packing constraints and k is the covering frequency of the IP.
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4 Putting Everything Together

In this section we consider the online mixed packing/covering formulation discussed in
Section 2 for online edge-weighted degree-bounded Steiner forest PC_IP. In this
section we show this formulation is an online bounded frequency mixed packing/covering IP.
Therefore we our techniques discussed in Section 3 to obtain a polylogarithmic-competitive
algorithm for online edge-weighted degree-bounded Steiner forest.

First we assume we are given the optimal weight wopt as well as degree bounds. We can
obtain the following theorem.

I Theorem 11. Given the optimal weight wopt, there exists an online deterministic algorithm
which finds a subgraph with total weight at most O(log3 n)wopt while the degree bound of a
vertex is violated by at most a factor of O(log3 n).

Proof. By Lemma 4, given a feasible online solution for PC_IP with violation α, we can
provide an online solution for SF_IP with violation α. Moreover, in Section 2 we show that
popt ≤ O(log2 n)lopt. Thus given an online solution for PC_IP with competitive ratio f , there
exists an O(f logn)-competitive algorithm for online degree-bounded Steiner forest.
We note that in PC_IP we know the packing constraints in advance. In addition every variable
xiH has non-zero coefficient only in the covering constraint corresponding to connectivity
of the i-th demand endpoints, i.e. the covering frequency of every variable is 1. Therefore
by Theorem 10 there exists an online O(logm)-competitive solution for PC_IP, where m is
the number of packing constraints, which is n + 1. Thus there exists an online O(log3 n)-
competitive algorithm for online degree-bounded Steiner forest. This means the
violation for both degree bounds and weight is of O(log3 n). J

Finally if wopt is not given, we show in the full version of the paper that by applying
standard doubling techniques one can prove Theorem 1 using the result shown above.
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