
Incremental 2-Edge-Connectivity in Directed
Graphs∗

Loukas Georgiadis1, Giuseppe F. Italiano2, and Nikos Parotsidis3

1 University of Ioannina, Ioannina, Greece
loukas@cs.uoi.gr

2 University of Rome Tor Vergata, Rome, Italy
giuseppe.italiano@uniroma2.it

3 University of Rome Tor Vergata, Rome, Italy
nikos.parotsidis@uniroma2.it

Abstract
We present an algorithm that can update the 2-edge-connected blocks of a directed graph with n
vertices through a sequence of m edge insertions in a total of O(mn) time. After each insertion,
we can answer the following queries in asymptotically optimal time:

Test in constant time if two query vertices v and w are 2-edge-connected. Moreover, if v and
w are not 2-edge-connected, we can produce in constant time a “witness” of this property, by
exhibiting an edge that is contained in all paths from v to w or in all paths from w to v.
Report in O(n) time all the 2-edge-connected blocks of G.

This is the first dynamic algorithm for 2-connectivity problems on directed graphs, and it matches
the best known bounds for simpler problems, such as incremental transitive closure.

1998 ACM Subject Classification E.1 Graphs and networks – Trees, F.2.2 Computations on
discrete structures, G.2.2 Graph algorithms – Trees

Keywords and phrases 2-edge connectivity on directed graphs; dynamic graph algorithms; in-
cremental algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.49

1 Introduction

A dynamic graph algorithm aims at updating efficiently the solution of a problem after an
update, such as an edge insertion or an edge deletion, faster than recomputing it from scratch.
A problem is said to be fully dynamic if the update operations include both insertions and
deletions of edges, and it is said to be partially dynamic if only one type of update, either
insertions or deletions, is allowed. More specifically, a problem is said to be incremental
(resp., decremental) if only insertions (resp., deletions) are allowed. In this paper, we present
new incremental algorithms for 2-edge connectivity problems on directed graphs (digraphs).
Before defining the problem, we first review some definitions. Let G = (V,E) be a digraph.
G is strongly connected if there is a directed path from each vertex to every other vertex.
The strongly connected components (in short SCC’s) of G are its maximal strongly connected
subgraphs. Vertices u, v ∈ V are strongly connected if they are in the same SCC of G.
An edge of G is a strong bridge if its removal increases the number of SCC’s. Let G be
strongly connected: G is 2-edge-connected if it has no strong bridges. The 2-edge-connected
components of G are its maximal 2-edge-connected subgraphs. Vertices u, v ∈ V are said to

∗ A full version of the paper is available at http://arxiv.org/abs/1607.07073.

EA
T

C
S

© Loukas Georgiadis, Giuseppe F. Italiano, and Nikos Parotsidis;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 49; pp. 49:1–49:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.49
http://arxiv.org/abs/1607.07073
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


49:2 Incremental 2-Edge-Connectivity in Directed Graphs

𝑠

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

ℎ

𝑖

𝑚

𝑘

𝑙

𝑗

Figure 1 The 2-edge-connected blocks of a digraph G. Strong bridges of G are shown red and
dashed. (Better viewed in color.)

be 2-edge-connected, denoted by u↔2e v, if there are two edge-disjoint directed paths from u

to v and two edge-disjoint directed paths from v to u. A 2-edge-connected block of a digraph
G = (V,E) is a maximal subset B ⊆ V such that u↔2e v for all u, v ∈ B (see Figure 1).

We remark that in digraphs 2-connectivity has a much richer and more complicated
structure than in undirected graphs. To see this, observe that, while in undirected graphs
blocks are exactly the same as components, in digraphs there is a substantial difference
between those two notions. In particular, two vertices that are 2-edge-connected (i.e., in the
same 2-edge-connected block) may lie in different 2-edge-connected components (e.g., vertices
i and j in Figure 1, each of them being in a 2-edge-connected component by itself). As a
result, 2-connectivity problems on digraphs appear to be much harder than on undirected
graphs. For undirected graphs it has been known for over 40 years how to compute 2-edge-
and 2-vertex- connected components in linear time [33]. For digraphs, however, only O(mn)
algorithms were known (see e.g., [25, 26, 28, 30]). It was shown only recently how to compute
the 2-edge- and 2-vertex- connected blocks in linear time [13, 14], and the best current bound
for computing the 2-edge- and the 2-vertex- connected components is O(n2) [18].

Our Results. We initiate the study of the dynamic maintenance of 2-edge-connectivity
relationships in directed graphs. We present an algorithm that can update the 2-edge-
connected blocks of a digraph G with n vertices through a sequence of m edge insertions
in a total of O(mn) time. After each insertion, we can answer the following queries in
asymptotically optimal time:

Test in constant time if two query vertices v and w are 2-edge-connected. Moreover, if
v and w are not 2-edge-connected, we can produce in constant time a “witness” of this
property, by exhibiting an edge that is contained in all paths from v to w or in all paths
from w to v.

Report in O(n) time all the 2-edge-connected blocks of G.
Ours is the first dynamic algorithm for 2-connectivity problems on digraphs, and it matches
the best known bounds for simpler problems, such as incremental transitive closure [23]. This
is a substantial improvement over the O(m2) simple-minded algorithm, which recomputes
the 2-edge-connected blocks from scratch after each edge insertion.



L. Georgiadis, G. F. Italiano, and N. Parotsidis 49:3

Related Work. Many efficient algorithms for several dynamic graph problems have been
proposed in the literature, including dynamic connectivity [20, 22, 31, 37], minimum spanning
trees [8, 11, 21, 22], edge/vertex connectivity [8, 22] on undirected graphs, and transitive
closure [7, 19, 27] and shortest paths [6, 27, 38] on digraphs. Once again, dynamic problems
on digraphs appear to be harder than on undirected graphs. Indeed, most of the dynamic
algorithms on undirected graphs have polylog update bounds, while dynamic algorithms on
digraphs have higher polynomial update bounds. The hardness of dynamic algorithms on
digraphs has been recently supported also by conditional lower bounds [1].

Our Techniques. Known algorithms for computing the 2-edge-connected blocks of a digraph
G [13, 16] hinge on properties that seem very difficult to dynamize. The algorithm in [13] uses
very complicated data structures based on 2-level auxiliary graphs. The loop nesting forests
used in [16] depends heavily on an underlying dfs tree of the digraph, and the incremental
maintenance of dfs trees on general digraphs is still an open problem (incremental algorithms
are known only for the special case of DAGs [10]). Despite those inherent difficulties, we find
a way to bypass loop nesting forests by suitably combining the approaches in [13, 16] in a
novel framework, which is amenable to dynamic implementations. Another complication is
that, although our problem is incremental, strong bridges may not only be deleted but also
added (when a new SCC is formed). As a result, our data structures undergo a fully dynamic
repertoire of updates, which is known to be harder. By organizing carefully those updates,
we are still able to obtain the desired bounds. For lack of space, some technical details and
proofs are omitted from this extended abstract and will be given in the full paper.

2 Dominator trees and 2-edge-connected blocks

Given a rooted tree, we denote by T (v) the subtree of T rooted at v (we also view T (v) as
the set of descendants of v). Given a digraph G = (V,E), and a set of vertices S ⊆ V , we
denote by G[S] the subgraph induced by S. We introduce next some of the building blocks
of our new incremental algorithm.

Flow graphs, dominators, and bridges. A flow graph is a digraph with a distinguished start
vertex s such that every vertex is reachable from s. Let G = (V,E) be a strongly connected
graph. The reverse digraph of G, denoted by GR = (V,ER), is obtained by reversing the
direction of all edges. Let s be a fixed but arbitrary start vertex of a strongly connected
digraph G. Since G is strongly connected, all vertices are reachable from s and reach s,
so we can view both G and GR as flow graphs with start vertex s. To avoid ambiguities,
throughout the paper we will denote those flow graphs respectively by Gs and GRs . Vertex u
is a dominator of vertex v (u dominates v) in Gs if every path from s to v in Gs contains u.
The dominator relation can be represented by a tree D rooted at s, the dominator tree of Gs:
u dominates v if and only if u is an ancestor of v in D. For any v 6= s, we denote by d(v) the
parent of v in D. Similarly, we can define the dominator relation in the flow graph GRs , and
let DR denote the dominator tree of GRs , and dR(v) the parent of v in DR. Dominators and
dominator trees can be computed in linear time [2, 5, 9, 12]. An edge (u, v) is a bridge of a
flow graph Gs if all paths from s to v include (u, v).1 Let s be an arbitrary start vertex of G.

1 Throughout the paper, to avoid confusion we use consistently the term bridge to refer to a bridge of a
flow graph and the term strong bridge to refer to a strong bridge in the original graph.

ICALP 2016



49:4 Incremental 2-Edge-Connectivity in Directed Graphs

𝑠

𝑎 𝑏
𝑙

𝑘

𝐷𝑅

𝑚

𝑠

𝑎 𝑏 𝑐 𝑑

𝑓

𝑒

𝐷

𝑔 𝑘 𝑙

ℎ

𝑚

𝑖 𝑗

𝑔𝑓

𝑖 𝑗𝑑

𝑐 𝑒

ℎ

Figure 2 The dominator trees of flow graphs Gs and GR
s . Strong bridges of G are shown red and

dashed. (Better viewed in color.)

As shown in [24], an edge e = (u, v) is strong bridge of G if and only if it is either a bridge of
Gs or a bridge of GRs .

As a consequence, all the strong bridges of G can be obtained from the bridges of the flow
graphs Gs and GRs , and thus there can be at most 2(n− 1) strong bridges overall. Figure 2
illustrates the dominator trees D and DR of the flow graphs Gs and GRs that correspond
to the strongly connected digraph G of Figure 1. After deleting from the dominator trees
D and DR respectively the bridges of Gs and GRs , we obtain the bridge decomposition of D
and DR into forests D and DR. Throughout the paper, we denote by Du (resp., DR

u ) the
tree in D (resp., DR) containing vertex u, and by ru (resp., rRu ) the root of Du (resp., DR

u ).
The following lemma from [13] holds for a flow graph Gs of a strongly connected digraph G
(and hence also for the flow graph GRs of GR).

I Lemma 1 ([13]). Let G be a strongly connected digraph and let (u, v) be a strong bridge of
G. Also, let D be the dominator tree of the flow graph Gs, for an arbitrary start vertex s.
Suppose u = d(v). Let w be any vertex that is not a descendant of v in D. Then there is
path from w to v in G that does not contain any proper descendant of v in D. Moreover, all
simple paths in G from w to any descendant of v in D must contain the edge (d(v), v).

Lemma 1 gives an initial partition of the vertices of G into subsets that contain the
2-edge-connected blocks of G. That is, for any two vertices u and v, we have u↔2e v only if
u and v are in the same trees in the forests D and DR (i.e., ru = rv and rRu = rRv ).

Loop nesting forests and bridge-dominated components. Let G be a digraph. A loop
nesting forest represents a hierarchy of strongly connected subgraphs of G [35], defined with
respect to a dfs tree T of G, as follows. For any vertex u, loop(u) is the set of all descendants
x of u in T such that there is a path from x to u in G containing only descendants of u
in T . Any two vertices in loop(u) reach each other. Therefore, loop(u) induces a strongly
connected subgraph of G; it is the unique maximal set of descendants of u in T (that includes
u) that does so. The loop(u) sets form a laminar family of subsets of V : for any two vertices
u and v, loop(u) and loop(v) are either disjoint or nested. The loop nesting forest H of
G, with respect to T , is the forest in which the parent of any vertex v, denoted by h(v),
is the nearest proper ancestor u of v in T such that v ∈ loop(u) if there is such a vertex
u, and null otherwise. Then loop(u) is the set of all descendants of vertex u in H, which
we will also denote as H(u) (the subtree of H rooted at vertex u). A loop nesting forest
can be computed in linear time [5, 35]. Since we deal with strongly connected digraphs,
each vertex is contained in a loop, so H is a tree. Therefore, we will refer to H as the loop
nesting tree of G. Let e = (u, v) be a bridge of the flow graph Gs, and let G[D(v)] denote the



L. Georgiadis, G. F. Italiano, and N. Parotsidis 49:5

𝑠

𝑎
𝑏

𝑐

𝑑 𝑒

 𝐺𝑠

𝑓

𝑔

𝑖

𝑚

𝑘 𝑙𝑗

 𝐺𝑓

ℎ 𝐺ℎ

𝑠

𝑎 𝑏 𝑐 𝑑 𝑒

𝐷𝑠

𝑓

𝑔 𝑘 𝑙 𝑚

𝑖 𝑗

𝐷𝑓

ℎ

𝐷ℎ

Figure 3 The bridge decomposition of the dominator tree D of Figure 2, the corresponding
auxiliary graphs Ĝr (the auxiliary edges are shown dashed) and their SCC’s shown encircled.

subgraph induced by the vertices in D(v). Let C be an SCC of G[D(v)]: we say that C is an
e-dominated component of G. We also say that C ⊆ V is a bridge-dominated component if
it is an e-dominated component for some bridge e: it can be shown that bridge-dominated
components form a laminar family. Let e = (u, v) be a bridge of Gs, and let w be a vertex in
D(v) such that h(w) 6∈ D(v). As shown in [16], H(w) induces an SCC in G[D(v)], and thus
it is an e-dominated component.

Bridge decomposition and auxiliary graphs. Now we define a notion of auxiliary graphs
that play a key role in our approach. Auxiliary graphs were defined in [13] to decompose the
input digraph G into smaller digraphs (not necessarily subgraphs of G) that maintain the
original 2-edge-connected blocks of G. Unfortunately, the auxiliary graphs of [13] are not
suitable for our purposes, and we need a slightly different definition. For each root r of a tree
in the bridge decomposition D we define the auxiliary graph Ĝr = (Vr, Er) of r as follows.
The vertex set Vr of Ĝr consists of all the vertices in Dr. The edge set Er contains all the
edges of G among the vertices of Vr, referred to as ordinary edges, and a set of auxiliary
edges, which are obtained by contracting vertices in V \ Vr, as follows. Let v be a vertex in
Vr that has a child w in V \ Vr. Note that (v, w) is a bridge and w is a root in the bridge
decomposition D of D. For each such child w of v, we contract w and all its descendants
in D into v. Figure 3 shows the bridge decomposition of the dominator tree D and the
corresponding auxiliary graphs. Differently from [13], our auxiliary graphs do not preserve
the 2-edge-connected blocks of G. Note that each vertex appears exactly in one auxiliary
graph. Furthermore, each original edge corresponds to at most one auxiliary edge. Therefore,
the total number of vertices in all auxiliary graphs is n, and the total number of edges is at
most m. We use the term auxiliary components to refer to the SCC’s of the auxiliary graphs.

I Lemma 2. All the auxiliary graphs of a flow graph Gs can be computed in linear time.

A new algorithm for 2-edge-connected blocks. We next sketch a new linear-time algorithm
to compute the 2-edge-connected blocks that combines ideas from [13] and [16] and that will
be useful for our incremental algorithm. We refer to this algorithm as the 2ECB labeling
algorithm. Similarly to [16], our algorithm assigns a label to each vertex, so that two vertices

ICALP 2016



49:6 Incremental 2-Edge-Connectivity in Directed Graphs

are 2-edge-connected if and only if they have the same label. The labels are defined by the
bridge decomposition of the dominator trees and by the auxiliary components, as follows.
Let Ĝr be an auxiliary graph of Gs. We pick a canonical vertex for each SCC C of Ĝr, and
denote by cx the canonical vertex of the SCC that contains x. We define cRx for the SCC’s of
the auxiliary graphs of GRs analogously. We define the label of x as label(x) = 〈rx, cx, rRx , cRx 〉.

I Lemma 3. Let x and y be any vertices of G. Then, x and y are 2-edge-connected if and
only if label(x) = label(y).

I Theorem 4. The 2ECB labeling algorithm computes the 2-edge-connected blocks of a strongly
connected digraph in linear time.

Incremental dominators and incremental SCC’s. We will use two other building blocks
for our new algorithm, namely incremental algorithms for maintaining dominator trees
and SCC’s. As shown in [15], the dominator tree of a flow graph with n vertices can be
maintained in O(mmin{n, k}+ kn) time during a sequence of k edge insertions, where m
is the total number of edges after all insertions. For maintaining the SCC’s of a digraph
incrementally, Bender et al. [4] presented an algorithm that can handle the insertion of m
edges in a digraph with n vertices in O(mmin{m1/2, n2/3}) time. Since we aim at an O(mn)
bound, we maintain the SCC’s with a simpler data structure based on topological sorting
[29], augmented so as to handle cycle contractions, as suggested by [17]. We refer to this data
structure as IncSCC, and we will use it both for maintaing the SCC’s of the input graph, and
the auxiliary components (i.e., the SCC’s of the auxiliary graphs). We maintain the SCC’s
and a topological order for them. Each SCC is represented by a canonical vertex, and the
partition of the vertices into SCC’s is maintained through a set union data structure [34, 36].
The data structure supports unite(p, q), which, given canonical vertices p and q, merges the
SCC’s containing p and q into one new SCC and makes p the canonical vertex of the new
SCC. It also supports find(v), which returns the canonical vertex of the SCC containing v.
Here we use the abbreviation f(v) to stand for find(v). The topological order is represented
by a simple numbering scheme, where each canonical vertex is numbered with an integer in
the range [1, n], so that if (u, v) is an edge of G, then either f(u) = f(v) (u and v are in the
same SCC) or f(u) is numbered less than f(v) (when u and v are in different SCC’s). With
each canonical vertex p we store a list out(p) of edges leaving vertices that are in the same
SCC as p, i.e., edges (u, v) with f(u) = p. Note that out(p) may contain multiple vertices in
the same SCC (i.e., vertices u and v with f(u) = f(v)), due to the SCC contractions (and
shortcut edges, in case of the auxiliary components) during edge insertions. Also, out(p) may
contain loops, that is, vertices v with f (v) = p. Each out list is stored as a doubly linked
circular list, so that we can merge two lists and delete a vertex from a list in O(1). When
the incremental SCC data structure detects that a new SCC is formed, it locates the SCC’s
that are merged and chooses a canonical vertex for the new SCC. The IncSCC data structure
can handle m edge insertions in a total of O(mn) time.

3 Incremental 2-edge-connectivity in strongly connected digraphs

To maintain the 2-edge-connected blocks of a strongly connected digraph during edge
insertions, we design an incremental version of the labeling algorithm of Section 2. In order
to respond to the insertion of an edge, we have to update the vertex labels, so we need to
update both the bridge decomposition of D and DR, and the strongly connected components
of the resulting auxiliary graphs. Note, in particular, that the second task involves moving



L. Georgiadis, G. F. Italiano, and N. Parotsidis 49:7

𝑥

𝑟𝑥

𝑝

𝑞

𝑟𝑧
𝐷

𝑧 = 𝑛𝑐𝑎(𝑥, 𝑦)

𝑦

𝑟𝑦

Figure 4 The bridge decomposition of D before the insertion of a new edge (x, y).

and merging vertices from one auxiliary graph to another. If labels are maintained explicitly,
one can answer in O(1) time queries on whether two vertices are 2-edge-connected, and
report in O(n) time all the 2-edge-connected blocks. Let (x, y) be the edge to be inserted.
We say that vertex v is affected by the update if d(v) (its parent in D) changes. Let Dom(v)
denote the set of all vertices that dominate v: note that Dom(v) may change even if v is not
affected. Similarly, an auxiliary component (resp., auxiliary graph) is affected if it contains
an affected vertex.

We let nca(x, y) denote the nearest common ancestor of x and y in the dominator tree
D. We also denote by D[u, v] the path from u to v in D. If nca(x, y) and y are in different
subtrees in the bridge decomposition of D before the insertion of the edge (x, y), we let (p, q)
be the first bridge encountered on the path D[nca(x, y), y] (Figure 4). We denote by depth(v)
the depth of vertex v in D. Most of the proofs in this section will be given in the full paper.

Affected vertices and canceled bridges. There are affected vertices after the insertion of
(x, y) if and only if nca(x, y) is not a descendant of d(y) [32]. A characterization of the
affected vertices is provided by the following lemma, which is a refinement of a result in [3].

I Lemma 5. ([15]) A vertex v is affected after the insertion of edge (x, y) if and only if
depth(nca(x, y)) < depth(d(v)) and there is a path π in G from y to v such that depth(d(v)) <
depth(w) for all w ∈ π. If v is affected, then it becomes a child of nca(x, y) in D.

The algorithm in [15] applies Lemma 5 to identify affected vertices by starting a search
from y (if y is not affected, then no other vertex is). We assume that the outgoing and
incoming edges of each vertex are maintained as linked lists, so that a new edge can be
inserted in O(1), and that the dominator tree D is represented by the parent function d. We
also maintain the depth of vertices in D. We say that a vertex v is scanned, if the edges
leaving v are examined during the search for affected vertices, and that it is visited if there is
a scanned vertex u such that (u, v) is an edge in G. Every scanned vertex is either affected
or a descendant of an affected vertex in D. By Lemma 5, a visited vertex v is scanned if
depth(nca(x, y)) < depth(d(v)). Let (u, v) be a bridge of Gs. We say that (u, v) is canceled
by the insertion of edge (x, y) if it is no longer a bridge after the insertion. We say that (u, v)
is locally canceled if (u, v) is a canceled bridge and v is not affected. We need to treat the
case of locally canceled bridges separately because in such an event the bridge decomposition
of D changes, even if D remains the same. Note that if (u, v) is locally canceled, then
u = nca(x, y). In the next lemmata, we consider the effect of the insertion of edge (x, y) on

ICALP 2016



49:8 Incremental 2-Edge-Connectivity in Directed Graphs

the bridges of Gs, and relate the affected and scanned vertices with the auxiliary components.
Recall that (p, q) is the first bridge encountered on the path D[nca(x, y), y] (Figure 4), D(v)
denotes the descendants of v in D, and G[C] is the subgraph induced by the vertices in C.

I Lemma 6. Suppose that bridge (p, q) is not locally canceled after the insertion of (x, y).
Let z = nca(x, y) and let v be an affected vertex such that rv 6= rz. All vertices reachable
from v in G[D(q)] are either affected or scanned.

I Lemma 7. Let e = (u, v) be a bridge of Gs that is canceled by the insertion of edge (x, y).
Then (i) y is a descendant of v in D, and (ii) y is in the same e-dominated component as v.

I Corollary 8. A bridge e = (u, v) of Gs is canceled by the insertion of edge (x, y) if
and only if depth(nca(x, y)) ≤ depth(u) and there is a path π in G from y to v such that
depth(u) < depth(w) for all w ∈ π.

By Corollary 8, we can use the incremental algorithm of [15] to detect canceled bridges,
without affecting the O(mn) bound. Indeed, suppose e = (u, v) is a canceled bridge. By
Lemma 7, y is a descendant of v in D and in the same e-dominated component as v. Hence,
v will be visited by the search from y. If a bridge (u, v) is locally canceled, there can be
vertices in Dv that are not scanned, and that after the insertion will be located in Du,
without having their depth changed. This is a difficult case for our analysis: fortunately, the
following lemma shows that this case can happen only O(n) times overall.

I Lemma 9. Suppose (u, v) is a bridge of Gs that is locally canceled by the insertion of edge
(x, y). Then (u, v) is no longer a strong bridge in G after the insertion.

Note that a canceled bridge that is not locally canceled may still appear as a bridge in
GRs after the insertion of edge (x, y). The next lemmata allow us to identify the necessary
changes in the auxiliary components of the affected subgraphs and Ĝrz

. All lemmata assume
that bridge (p, q) is not locally canceled after the insertion of (x, y) and that z = nca(x, y).

I Lemma 10. Let C be an affected auxiliary component of an auxiliary graph Ĝr with r 6= rz.
Then C consists of a set of affected siblings in D and possibly some of their affected or
scanned descendants in D.

An auxiliary component is scanned if it contains a scanned vertex. As with vertices,
affected auxiliary components are also scanned (the converse is not necessarily true).

I Lemma 11. Let C be a scanned auxiliary component of an auxiliary graph Ĝr with r 6= rz.
Then all vertices in C are scanned.

We say that a vertex v is moved if it is located in an auxiliary graph Ĝr with r 6= rz
before the insertion of (x, y), and in Ĝrz

after the insertion. Lemmata 10 and 11 imply that
if an auxiliary component C contains a moved vertex, then all vertices in the component are
also moved. We call such an auxiliary component moved. Now we describe how to find the
moved auxiliary components that need to be merged. Let H be the subgraph of G induced
by the scanned vertices in D(q). We refer to H as the scanned subgraph.

I Lemma 12. Let ζ and ξ be two distinct roots in the bridge decomposition of D, such that
ζ, ξ 6= rz, and Dζ and Dξ are contained in D(q). Let Cζ and Cξ be scanned components in
Ĝζ and Ĝξ, respectively. Then Cζ and Cξ are strongly connected in G[D(q)] if and only if
they are strongly connected in H.



L. Georgiadis, G. F. Italiano, and N. Parotsidis 49:9

Now we introduce a dummy root r∗ in H, together with an edge (v, r∗) for each scanned
vertex v that has a leaving edge (v, w) such that w ∈ Dz and w is in the auxiliary component
of p in Ĝrz

. We denote this graph by H∗.

I Lemma 13. A scanned vertex v 6∈ Dz is strongly connected in G[D(rz)] to a vertex w ∈ Dz

if and only if r∗ is reachable from v in H∗. In this case, v and p are also strongly connected
in G[D(rz)].

The Algorithm. We describe next our incremental algorithm for maintaining the 2-edge-
connected blocks of a strongly connected digraphG. We refer to this algorithm as SCInc2ECB(G).
We initialize the algorithm and the associated data structures by executing the labeling
algorithm of Section 2. Algorithm Initialize(G, s), shown below, computes the dominator
tree D, the set of bridges Br of flow graph Gs, the bridge decomposition D of D, and the
corresponding auxiliary graphs Ĝr. Finally, for each auxiliary graph Ĝr, it finds its auxiliary
components, computes the labels rw and cw for each vertex w ∈ Vr, and initializes an IncSCC
data structure. The execution of Initialize(GR, s) performs analogous steps in the reverse
flow graph GRs .

Algorithm 1: Initialize(G, s)
1 Set s to be the designated start vertex of G.
2 Compute the dominator tree D and the set of bridges Br of the corresponding flow

graph Gs.
3 Compute the bridge decomposition D of D.
4 foreach root r in D do
5 Compute the auxiliary graph Ĝr of r.
6 Compute the strongly connected components in Ĝr.
7 foreach strongly connected component C in Ĝr do
8 Choose a vertex v ∈ C as the canonical vertex of the auxiliary component C.
9 foreach vertex w ∈ C do

10 Set rw = r and cw = v.
11 end
12 end
13 Initialize a IncSCC data structure for Ĝr.
14 end

Algorithm 2: SCInsertEdge(G, e)
1 Let s be the designated start vertex of G, and let e = (x, y).
2 Compute the nearest common ancestor z and zR of x and y in D and DR respectively.
3 Update the dominator trees D and DR, and return the lists S and SR of the vertices

that were scanned in D and DR respectively.
4 if a bridge is locally canceled in Gs or in GRs then
5 Execute Initialize(G, s) and Initialize(GR, s).
6 else
7 Execute UpdateAC(D, z, x, y, S) and UpdateAC(DR, zR, y, x, SR).
8 end

ICALP 2016



49:10 Incremental 2-Edge-Connectivity in Directed Graphs

Algorithm 3: UpdateAC(D, z, x, y, L)
1 Let rz be root of the tree Dz in D that contains z.
2 Let cx′ be the canonical vertex of the nearest ancestor x′ of x in D such that x′ ∈ Dz.
3 Let (p, q) be the first bridge on the path D[z, y], and let cp be the canonical vertex of p.
4 Form the scanned graph H∗ that contains the scanned vertices S \Dz and the edges

among them.
5 Compute the strongly connected components C of H∗ \ r∗ and order them topologically.
6 Compute the components C∗ of C that reach r∗ in H∗.
7 foreach strongly connected component C in C∗ that is moved do
8 Merge C with the component of cp.
9 end

10 forall strongly connected components in C \ C∗ that are moved do
11 Insert the components in the topological order of Ĝrz

just after the component of
cp.

12 end
13 foreach vertex w ∈ S do
14 if w is moved to Ĝrz

then set rw = rz.
15 end
16 Update the lists of out edges in the IncSCC data structures of Ĝrz and of the affected

auxiliary graphs.
17 Insert edge (cx′ , y) in the list of outgoing edges of cx′ and update the IncSCC data

structure of Ĝrz .

When a new edge e = (x, y) is inserted, algorithm SCInc2ECB executes procedure
SCInsertEdge(G, e), which updates dominator trees D and DR, together with the correspond-
ing bridge decompositions. It also finds the set of scanned vertices in Gs and GRs . If a
bridge of D or DR is locally cancelled, then we restart the algorithm by executing Initialize.
Otherwise, we need to update the auxiliary components in Gs and GRs . These updates are
handled by procedure UpdateAC. Before describing UpdateAC, we provide some details on
the implementation of the IncSCC data structures, which maintain the auxiliary components
of each auxiliary graph Ĝr using the “one-way search” structure of [17, Sections 2 and 6].
Since we need to insert and delete canonical vertices, we augment this data structure as
follows. We maintain the canonical vertices of each auxiliary component in a linked list Lr,
arranged according to the given topological order of Ĝr. For each vertex v in Lr, we also
maintain a rank in Lr which is an integer in [1, n] such that for any two canonical vertices u
and v in Lr, rank(u) < rank(v) if and only if u precedes v in Lr. The ranks of all vertices
can be stored in a single array of size n. Also, with each canonical vertex w, we store a
pointer to the location of w in L. We represent Lr with a doubly linked list so that we can
insert and delete a canonical vertex in constant time. When we remove vertices from a list
Lr we do not need to update the ranks of the remaining vertices in Lr. The insertion of an
edge (x, y) may remove vertices from various lists Lr, but may insert vertices only in Lrz

.
After these insertions, we recompute the ranks of all vertices in Lrz

just by traversing the
list and assigning rank i to the i-th vertex in the list. We maintain links between an original
edge e, stored in the adjacency lists of G, and at most one copy of e in a out list of IncSCC.
This enables us to keep for each shortcut edge e′ = (v′, w) a one-to-one correspondence with
the original edge e = (v, w) that created e′. We do that because if an ancestor of v is moved



L. Georgiadis, G. F. Italiano, and N. Parotsidis 49:11

to the auxiliary graph Ĝrz that contains v′ (v′ = p in Figure 5), then e may correspond to a
different shortcut edge or it may even become an ordinary edge of Ĝrz

. Using this mapping
we can update the out lists of IncSCC. To initialize the IncSCC structure of an auxiliary
graph, we compute a topological order of the auxiliary components in Ĝr, and create the list
of outgoing edges out(v) for each canonical vertex v.

If inserting edge (x, y) does not locally cancel a bridge in Gs and GRs , then we update the
auxiliary components of Gs using procedure UpdateAC(D, z, x, y, S), where D is the updated
bridge decomposition of D, z = nca(x, y), and S is a list of the vertices scanned during
the update of D. We do the same to update the auxiliary components of GRs . Procedure
UpdateAC first computes the auxiliary components that are moved to Ĝrz , possibly merging
some of them, and then inserts the edge (x, y) as an original or a shortcut edge of Ĝrz

,
depending on whether x ∈ Drz

or not. Note that the insertion of (x, y) may cause the
creation of a new auxiliary component in Ĝrz . Now we specify some further details in the
implementation of UpdateAC. The vertices that are moved to Ĝrz

are the scanned vertices
in S that are not descendants of a strong bridge. Hence, we can mark the vertices that are
moved to Ĝrz

during the search for affected vertices. The next task is to update the out lists
of the canonical vertices in Ĝrz and the affected auxiliary graphs. We process the list of
scanned vertices S as follows. Let v be such a vertex. If v is not marked, i.e., is not moved
to Ĝrz

, then we process the edges leaving v; otherwise, we process both the edges leaving
v and the edges entering v. Suppose v is marked. Let (v, w) be an edge leaving v in G. If
w is also in Ĝrz

after the insertion, then we add the edge (v, w) in out(f(v)). Moreover,
if w is not in S, then it was already located in Ĝrz before the insertion, so we delete the
shortcut edge stored in out(f(p)). If w is not in Ĝrz

after the insertion, then (v, w) is a
bridge in D and we do nothing. Now consider an edge (w, v) entering v in G. If w is scanned,
then we will process (w, v) while processing the edges leaving w. Otherwise, w remains a
descendant of p, so we insert the edge (w, v) in out(f(p)). Now we consider the unmarked
scanned vertices v. Let (v, w) an edge leaving v in G. If w ∈ Dz, we insert the edge (v, w)
into out(f(v′)), where v′ is the nearest marked ancestor of v in D. Otherwise, if w /∈ D(rz),
the edge (v′′, w), where v′′ is the nearest ancestor of v in Dw, already exists since v was a
descendant of v′′ before the insertion of (x, y). Next, we consider the updates in the Lr lists
and the vertex ranks. While we process S, if we encounter a moved canonical vertex v ∈ S
that was located in an auxiliary graph Ĝr with rz 6= r, then we delete v from Lr. Note that
we do not need to update the ranks of the remaining vertices in lists Lr with r 6= rz. To
update Lrz

, we insert the moved canonical vertices of the SCC’s in C \ C∗, in a topological
order of H = H∗ \ r∗, just after f(p). Then we traverse Lrz

and update the ranks of the
canonical vertices. The final step is to actually insert edge (x, y) in the IncSCC data structure
of Ĝrz

. We do that by adding (x, y) in out(f(x′)), where x′ is the nearest ancestor of x in
Dz. If rank(f(x′)) > rank(f(y)), then we execute the forward-search procedure of IncSCC.

The proof of correctness of Algorithm SCInc2ECB will be given in the full paper.

Running time of SCInc2ECB. We analyze the running time of Algorithm SCInc2ECB.
Recall that G is a strongly connected digraph with n vertices that undergoes a sequence of
edge insertions. We let m be the total number of edges in G after all insertions (m ≥ n).
First, we bound the time spent by Initialize. This procedure is called twice in the beginning
of the SCInc2ECB, and twice after each time a bridge in Gs or in GRs is locally canceled.
Then, Lemma 9 implies that such an event can happen at most 2(n− 1) times. Hence, there
are at most 4n calls to Initialize, and since each execution takes O(m) time, the total time
spent on Initialize is O(mn). Similarly, the dominator trees of Gs and GRs can be updated

ICALP 2016



49:12 Incremental 2-Edge-Connectivity in Directed Graphs

𝑟𝑧 𝐷

𝑣

𝑤

𝑐𝑤𝑐𝑝

𝑝

𝑐

𝑟𝑧

𝑣

𝑤

𝑐𝑝

𝑝

𝑐′
𝑐𝑤

𝐷

Figure 5 Before the insertion of (x, y), edge (v, w) corresponds to the shortcut edge (p, w) of
Ĝrz , and is stored in out(cp). An auxiliary component with canonical vertex c is affected by the
insertion of (x, y) and is merged into a component with canonical vertex c′ (c′ = c if the component
is moved without merging with another component). Now c′ becomes the canonical vertex of the
nearest ancestor of v in Dz, and edge (v, w) is stored as a shortcut edge in out(c′).

in total O(mn) time [15]. We next bound the total time required to update the auxiliary
components. Consider an execution of UpdateAC. Let ν and µ, respectively, be the number
of scanned vertices, after the insertion of edge (x, y), and their adjacent edges. The time
to compute the affected subgraph H∗, compute the SCC’s of H∗ \ r∗, and the vertices that
reach r∗ is O(ν + µ). In the same time, we can update the auxiliary components of Ĝrz

and
of the affected auxiliary graphs, their corresponding topological orders, and the out lists of
the corresponding IncSCC data structures. Since each scanned vertex w is a descendant of
an affected vertex, the depth of w decreases by at least one. Hence, the total time spent by
UpdateAC for all insertions, excluding the execution of line 17, is O(mn). It remains to bound
the time required by the IncSCC data structures to handle the edge insertions in line 17 of
UpdateAC. To do this, we extend the analysis from [17]. Note that we cannot immediately
apply the analysis in [17], since here we have the complication that vertices and edges can
be inserted to and removed from the IncSCC structures. We say that a vertex v and an edge
e are related if there is a path that contains both v and e (in any order). Then, there are
O(mn) pairs of vertices and edges that can be related in all IncSCC structures for every
auxiliary graph. We argue that each time the IncSCC structure traverses an edge (after the
insertion in line 17 of UpdateAC), the cost of this action can be charged to a newly-related
vertex-edge pair. Consider a vertex v and an edge e = (u,w). Call the pair 〈v, e〉 active if v
and e are in the same auxiliary graph Ĝr, and inactive otherwise. Note that since we identify
shortcut edges with their corresponding original edge, e may actually appear in Ĝr as an
edge (u′, w), where u′ is the nearest ancestor of u in Dr. This fact, however, does not affect
our analysis.

I Lemma 14. The total number of edge traversals made during the forward searches in all
IncSCC data structures is O(mn).

Proof. To prove the bound, it suffices to show that in all IncSCC data structures the total
number of unrelated 〈v, e〉 pairs that are ever created is O(mn). Consider an active pair
〈v, e〉 that becomes related in Ĝr. Then there is some path π in G[D(r)] that contains both
v and e. Suppose that the pair 〈v, e〉 later becomes active but unrelated in an auxiliary
graph Ĝr′ , where r′ may be vertex r. Then π does not exist in G[D(r′)], which implies
that some vertices of π are not descendants of r′. Then, by Lemma 1, π must contain the



L. Georgiadis, G. F. Italiano, and N. Parotsidis 49:13

bridge (d(r′), r′). Since π exists in G[D(r)], the bridge (d(r′), r′) was a descendant of r before
some insertion, and then became an ancestor of v. But this is impossible, since after an
edge insertion, the new parent d′(v) of v is on the path D[s, d(v)]. Hence, once a 〈v, e〉 pair
becomes related, it can never become unrelated. The bound follows. J

I Lemma 15. The total time to update all the IncSCC data structures is O(mn).

Proof. Updating the lists of out edges in the IncSCC data structures, and inserting or deleting
canonical vertices can be charged to the cost of updating the dominator tree, and is thus
O(mn). By Lemma 14, all edge insertions that do not trigger merges of auxiliary components
can be handled in O(mn) time. The number of edge insertions that trigger merges of auxiliary
components is at most n − 1, and each such insertion can be handled in O(m + n) time,
excluding unite operations. Taking into account also the total time for all unite operations
yields the lemma. J

I Theorem 16. The total running time of Algorithm SCInc2ECB for a sequence of edge
insertions in a strongly connected digraph with n vertices is O(mn), where m is the total
number of edges in G after all insertions.

Extension to general digraphs. Our approach can be extended to general (not strongly
connected) digraphs, as shown in the following theorem. Details will be given in the full
paper.

I Theorem 17. We can maintain the 2-edge-connected blocks of a digraph with n vertices
through a sequence of edge insertions in O(mn) time, where m is the total number of edges
in G after all insertions.

References
1 A. Abboud and V. Vassilevska Williams. Popular conjectures imply strong lower bounds

for dynamic problems. In Proc. 55th IEEE Symp. on Foundations of Computer Science,
FOCS, pages 434–443, 2014. doi:10.1109/FOCS.2014.53.

2 S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup. Dominators in linear time. SIAM
Journal on Computing, 28(6):2117–32, 1999.

3 S. Alstrup and P. W. Lauridsen. A simple dynamic algorithm for maintaining a dominator
tree. Technical Report 96-3, Department of Computer Science, University of Copenhagen,
1996.

4 M. A. Bender, J. T. Fineman, S. Gilbert, and R. E. Tarjan. A new approach to incremental
cycle detection and related problems. ACM Transactions on Algorithms, 12(2):14:1–14:22,
December 2015. doi:10.1145/2756553.

5 A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and J. R. Westbrook.
Linear-time algorithms for dominators and other path-evaluation problems. SIAM Journal
on Computing, 38(4):1533–1573, 2008.

6 C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest paths.
Journal of ACM, 51(6):968–992, 2004. doi:10.1145/1039488.1039492.

7 C. Demetrescu and G. F. Italiano. Mantaining dynamic matrices for fully dynamic transitive
closure. Algorithmica, 51(4):387–427, 2008. doi:10.1007/s00453-007-9051-4.

8 D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification – A technique for
speeding up dynamic graph algorithms. Journal of ACM, 44(5):669–696, September 1997.
doi:10.1145/265910.265914.

ICALP 2016

http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1145/2756553
http://dx.doi.org/10.1145/1039488.1039492
http://dx.doi.org/10.1007/s00453-007-9051-4
http://dx.doi.org/10.1145/265910.265914


49:14 Incremental 2-Edge-Connectivity in Directed Graphs

9 W. Fraczak, L. Georgiadis, A. Miller, and R. E. Tarjan. Finding dominators via disjoint set
union. Journal of Discrete Algorithms, 23:2–20, 2013. doi:10.1016/j.jda.2013.10.003.

10 P. G. Franciosa, G. Gambosi, and U. Nanni. The incremental maintenance of a depth-first-
search tree in directed acyclic graphs. Information Processing Letters, 61(2):113–120, 1997.
doi:10.1016/S0020-0190(96)00202-5.

11 G. N. Frederickson. Data structures for on-line updating of minimum spanning trees. SIAM
Journal on Computing, 14:781–798, 1985.

12 H. N. Gabow. The minset-poset approach to representations of graph connectivity. ACM
Transactions on Algorithms, 12(2):24:1–24:73, February 2016. doi:10.1145/2764909.

13 L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-edge connectivity in directed
graphs. In Proc. 26th ACM-SIAM Symp. on Discrete Algorithms, pages 1988–2005, 2015.

14 L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-vertex connectivity in directed
graphs. In Proc. 42nd Int’l. Coll. on Automata, Languages, and Programming, pages 605–
616, 2015.

15 L. Georgiadis, G. F. Italiano, L. Laura, and F. Santaroni. An experimental study of dynamic
dominators. In Proc. 20th European Symp. on Algorithms, pages 491–502, 2012.

16 L. Georgiadis, G. F. Italiano, and N. Parotsidis. A New Framework for Strong Connectivity
and 2-Connectivity in Directed Graphs. ArXiv e-prints, abs/1511.02913, November 2015.
arXiv:1511.02913.

17 B. Haeupler, T. Kavitha, R. Mathew, S. Sen, and R. E. Tarjan. Incremental cycle de-
tection, topological ordering, and strong component maintenance. ACM Transactions on
Algorithms, 8(1):3:1–3:33, January 2012. doi:10.1145/2071379.2071382.

18 M. Henzinger, S. Krinninger, and V. Loitzenbauer. Finding 2-edge and 2-vertex strongly
connected components in quadratic time. In Proc. 42nd International Colloquium on Au-
tomata, Languages, and Programming (ICALP 2015), 2015.

19 M. R. Henzinger and V. King. Fully dynamic biconnectivity and transitive closure. In
Proc. 36th IEEE Symp. on Foundations of Computer Science, pages 664–672, 1995. doi:
10.1109/SFCS.1995.492668.

20 M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with polylog-
arithmic time per operation. Journal of ACM, 46(4):502–536, 1999.

21 M. R. Henzinger and V. King. Maintaining minimum spanning forests in dynamic
graphs. SIAM Journal on Computing, 31(2):364–374, February 2002. doi:10.1137/
S0097539797327209.

22 J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal
of ACM, 48(4):723–760, July 2001. doi:10.1145/502090.502095.

23 G. F. Italiano. Amortized efficiency of a path retrieval data structure. Theoretical Computer
Science, 48(3):273–281, 1986. doi:10.1016/0304-3975(86)90098-8.

24 G. F. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and strong articulation
points in linear time. Theoretical Computer Science, 447:74–84, 2012. doi:10.1016/j.tcs.
2011.11.011.

25 R. Jaberi. Computing the 2-blocks of directed graphs. RAIRO-Theor. Inf. Appl., 49(2):93–
119, 2015. doi:10.1051/ita/2015001.

26 R. Jaberi. On computing the 2-vertex-connected components of directed graphs. Discrete
Applied Mathematics, 204:164–172, 2016. doi:10.1016/j.dam.2015.10.001.

27 V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive
closure in digraphs. In Proc. 40th IEEE Symp. on Foundations of Computer Science,
FOCS’99, pages 81–91, 1999. doi:10.1109/SFFCS.1999.814580.

28 S. Makino. An algorithm for finding all the k-components of a digraph. International
Journal of Computer Mathematics, 24(3–4):213–221, 1988.

http://dx.doi.org/10.1016/j.jda.2013.10.003
http://dx.doi.org/10.1016/S0020-0190(96)00202-5
http://dx.doi.org/10.1145/2764909
http://arxiv.org/abs/1511.02913
http://dx.doi.org/10.1145/2071379.2071382
http://dx.doi.org/10.1109/SFCS.1995.492668
http://dx.doi.org/10.1109/SFCS.1995.492668
http://dx.doi.org/10.1137/S0097539797327209
http://dx.doi.org/10.1137/S0097539797327209
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1016/0304-3975(86)90098-8
http://dx.doi.org/10.1016/j.tcs.2011.11.011
http://dx.doi.org/10.1016/j.tcs.2011.11.011
http://dx.doi.org/10.1051/ita/2015001
http://dx.doi.org/10.1016/j.dam.2015.10.001
http://dx.doi.org/10.1109/SFFCS.1999.814580


L. Georgiadis, G. F. Italiano, and N. Parotsidis 49:15

29 A. Marchetti-Spaccamela, U. Nanni, and H. Rohnert. Maintaining a topological order
under edge insertions. Information Processing Letters, 59(1):53–58, 1996. doi:10.1016/
0020-0190(96)00075-0.

30 H. Nagamochi and T. Watanabe. Computing k-edge-connected components of a multigraph.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences, E76–A.4:513–517, 1993.

31 M. Pătraşcu and M. Thorup. Planning for fast connectivity updates. In Proc. 48th IEEE
Symp. on Foundations of Computer Science, FOCS’07, pages 263–271, 2007. doi:10.1109/
FOCS.2007.54.

32 G. Ramalingam and T. Reps. An incremental algorithm for maintaining the dominator
tree of a reducible flowgraph. In Proc. of the 21st ACM SIGPLAN-SIGACT Symp. on
Principles of programming languages, pages 287–296, 1994.

33 R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

34 R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of ACM,
22(2):215–225, 1975.

35 R. E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informatica,
6(2):171–85, 1976.

36 R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms. Journal of
ACM, 31(2):245–81, 1984.

37 M. Thorup. Near-optimal fully-dynamic graph connectivity. In Proc. 32nd ACM Symp. on
Theory of Computing, STOC’00, pages 343–350, 2000. doi:10.1145/335305.335345.

38 M. Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles. In
Algorithm Theory – SWAT 2004, 9th Scandinavian Workshop on Algorithm Theory,, pages
384–396, 2004. doi:10.1007/978-3-540-27810-8_33.

ICALP 2016

http://dx.doi.org/10.1016/0020-0190(96)00075-0
http://dx.doi.org/10.1016/0020-0190(96)00075-0
http://dx.doi.org/10.1109/FOCS.2007.54
http://dx.doi.org/10.1109/FOCS.2007.54
http://dx.doi.org/10.1145/335305.335345
http://dx.doi.org/10.1007/978-3-540-27810-8_33

	Introduction
	Dominator trees and 2-edge-connected blocks
	Incremental 2-edge-connectivity in strongly connected digraphs

