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Abstract
In a series of recent breakthroughs, Allen-Zhu and Orecchia [2, 1] leveraged insights from the
linear coupling method [15], which is a first-order optimization scheme, to provide improved al-
gorithms for packing and covering linear programs. The result in [1] is particularly interesting,
as the algorithm for packing LP achieves both width-independence and Nesterov-like accelera-
tion, which was not known to be possible before. Somewhat surprisingly, however, while the
dependence of the convergence rate on the error parameter ε for packing problems was improved
to O(1/ε), which corresponds to what accelerated gradient methods are designed to achieve, the
dependence for covering problems was only improved to O(1/ε1.5), and even that required a
different more complicated algorithm, rather than from Nesterov-like acceleration. Given the
primal-dual connection between packing and covering problems and since previous algorithms
for these very related problems have led to the same ε dependence, this discrepancy is surprising,
and it leaves open the question of the exact role that the linear coupling is playing in coordinating
the complementary gradient and mirror descent step of the algorithm. In this paper, we clarify
these issues, illustrating that the linear coupling method can lead to improved O(1/ε) depend-
ence for both packing and covering problems in a unified manner, i.e., with the same algorithm
and almost identical analysis. Our main technical result is a novel dimension lifting method that
reduces the coordinate-wise diameters of the feasible region for covering LPs, which is the key
structural property to enable the same Nesterov-like acceleration as in the case of packing LPs.
The technique is of independent interest and that may be useful in applying the accelerated linear
coupling method to other combinatorial problems.
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50:2 Unified Acceleration Method for Packing and Covering Problems

1 Introduction

A fractional covering problem, in its generic form, can be written as the following linear
program (LP): minx≥0{cTx : Ax ≥ b}, where c ∈ Rn≥0, b ∈ Rm≥0, and A ∈ Rm×n≥0 .

Without loss of generality, one can scale the coefficients, in which case one can write this
LP in the standard form:

min
x≥0
{~1Tx : Ax ≥ ~1}, where A ∈ Rm×n≥0 (1)

The fractional packing problem, which is the dual of fractional covering, can be written in
the standard form as:

max
y≥0
{~1T y : Ay ≤ ~1}, where A ∈ Rm

′×n′
≥0 (2)

We denote by OPT the optimal value of a LP. In this case, we say that x is a (1 + ε)-
approximation for the covering LP if Ax ≥ ~1 and ~1Tx ≤ (1 + ε) OPT, and we say that y is a
(1− ε)-approximation for the packing LP if Ay ≤ ~1 and ~1T y ≥ (1− ε) OPT.

Packing and covering problems are important classes of LPs with wide applications,
including most resource allocation problems, and they have long drawn interest in theoretical
computer science. Although one can use general LP solvers such as the interior point
method to solve packing and covering with convergence rate of log(1/ε), such algorithms
usually have very high per-iteration cost, as methods such as the computation of the Hessian
and matrix inversion are involved. In the setting of large-scale problems, low precision
iterative solvers are often more popular choices. Such solvers usually run in time with
a nearly-linear dependence on the problem size, and they have poly(1/ε) dependence on
the approximation parameter. Most such work falls into one of two categories. The first
category follows the approach of transforming LPs to convex optimization problems, then
applying efficient first-order optimization algorithms. Examples of work in this category
include [8, 3, 9, 12, 2, 1], and all except [2, 1] apply to more general classes of LPs. The
second category is based on the Lagrangian relaxation framework, and some examples of
work in this category include [11, 5, 7, 13, 14, 6, 4]. For a more detailed comparison of this
prior work, see Table 1 in [1]. Also, based on whether the running time depends on the width
ρ, a parameter which typically depends on the dimension and the largest entry of A, these
algorithms can also be divided into width-dependent solvers and width-independent solvers.
Width-dependent solvers are usually pseudo-polynomial, as the running time depends at least
linearly on ρOPT, which itself can be large, while width-independent solvers are independent
or logarithmically dependent on the width.

In this paper, we describe a solver for covering LPs of the form (1). The solver is
width-independent, and it is a first-order method with a linear rate of convergence. That
is, if we let N be the number of non-zeros in A, then the running time of our algorithm
is O

(
N log2(N/ε) log(1/ε)

ε

)
. To simplify the following discussion, we will follow the standard

practice of using Õ to hide poly-log factors, in which case the running time of our algorithm
for the covering problem is Õ (N/ε). Among other things, our result is an improvement over
the recent bound of Õ(N/ε1.5) provided by Allen-Zhu and Orecchia for the covering problem
in [1], and our result corresponds to the linear rate of convergence that accelerated gradient
methods are designed to achieve [9].

At least as interesting as the Õ(1/ε0.5) improvement for covering LPs, however, is the
context of this problem and the main technical contribution that we developed and exploited
to achieve our improvement.
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The context for our results has to do with the linear coupling method that was introduced
recently by Allen-Zhu and Orecchia [15]. This is a first order method for solving convex
optimization problems, and it provides a conceptually simple way to integrate a gradient
descent step and mirror descent step in each iteration. In the setting of standard smooth
convex optimization, the method achieves the same convergence rate as that of the
accelerated gradient descent method of Nesterov [9], and indeed the former can be viewed
as an insightful reinterpretation of the latter. The high-level view of the method as
a coupling of gradient descent steps and mirror descent steps offers more flexibility to
the framework, as the combination allows the two steps to complement each other in
ways beyond simply Nesterov-like acceleration. Indeed, it has shown initial promise by
providing improved algorithms for packing and covering LPs [2, 1]. The packing algorithm
of Allen-Zhu and Orecchia in [1] is particularly surprising, as it exploits the linear coupling
framework to achieve both width-independence and Nesterov-like acceleration, which is
widely believed to be very difficult, and is the first success in a long line of works in this
area.
The particular motivation for our work is a striking discrepancy between bounds provided
for packing and covering LPs in [1]. In particular, they provide a (1− ε)-approximation
solver for the packing problem in Õ(N/ε), but they are only able to obtain Õ(N/ε1.5) for
the covering problem. In the case of covering, they are unable to use the linear coupling
method to achieve Nesterov-like acceleration, and even to get width-independence the
authors need to integrate some ad-hoc and complicated techniques. This discrepancy
between results for packing and covering LPs is rare, due to the duality between them.
Filling this gap is of particular interests, as not being able to do so would suggest some
fundamental structural differences between the two problems.

Our main technical contribution is a novel diameter reduction method for fractional
covering LPs that helps resolve this discrepancy. Recall that the smoothness parameter,
e.g., Lipschitz constant, and the diameter of the feasible region are the two most natural
limiting factors for most gradient based optimization algorithms. Indeed, many applica-
tions of general first-order optimization techniques can be attributed to the existence of
norms or proximal setups for the specific problems that gives both good smoothness and
diameter properties. In the particular case of coordinate descent algorithms based on the
linear coupling idea, we additionally need good coordinate-wise diameter properties to
achieve accelerated convergence.
This is easy to accomplish for packing problems, but it is not easy to do for covering
problems, and this is the difference that leads to the Õ(1/ε0.5) discrepancy between
packing and covering algorithms in previous work [1]. Our diameter reduction method for
general covering problems is based on dimension lifting, which transforms the covering
problem space to a higher dimensional space, and the feasible region in the lifted space
has both good global diameter bounds with respect to the canonical norm for accelerated
stochastic coordinate descent (as is needed generally [10, 1]) as well as good coordinate-
wise diameter bounds (as is needed for linear coupling [1]). Thus, it is likely of interest
more generally for combinatorial optimization problems.

Once the diameter reduction is achieved, covering LP shares all the essential properties
necessary to achieve both width-independence and Nesterov-like acceleration as in the case of
packing problems, and fits elegantly into the scheme and analysis from [1] that was developed
for packing LPs. We obtain improved Õ (N/ε) results for covering LPs, and this provides
a unified acceleration method (unified in the sense that it is with the same algorithm and
almost identical analysis) for both packing and covering LPs.

ICALP 2016
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We will start in Section 2 with a discussion of some selected technical ideas and challenges
from previous work. Then, in Section 3 we will present our main technical contribution, a
novel diameter reduction method for any covering LP of the form given in (1). Finally, in
Section 4 we describe how to combine this with previous work to obtain a unified acceleration
method for packing and covering problems.

2 High-level Description of Challenges

At a high level, we (as well as Allen-Zhu and Orecchia [2, 1]) use the same two-step approach
of Nesterov [9]. The first step involves smoothing, which transforms the constrained problem
into a smooth objective function with trivial or no constraints. By smooth, we mean that
the gradient of the objective function has some property in the flavor of Lipschitz continuity.
Once smoothing is accomplished, the second step uses one of several first order methods for
convex optimization in order to obtain an approximate solution to the smoothed objective.
Standard applications of this approach usually lead to width-dependent algorithms, where
the width enters the performance analysis as the magnitude of the gradients.

The first width-independent result following the optimization approach in [2] achieves
width-independence by truncating the gradient, thus effectively reducing the width to 1.
The algorithm uses, in a white-box way, the coupling of mirror descent and gradient descent
from [15], where the progress from gradient descent covers the loss incurred by the truncation
of the gradient (see Eqn. (7) below for the precise formulation of this loss), thus achieving
width-independence. However, the role of gradient descent in the coupling is limited to
width-independence, but not acceleration.

To improve the sequential packing solver in [2] with convergence Õ(1/ε3) to Õ(1/ε), the
same authors in [1] apply a stochastic coordinate descent method based on the linear coupling
idea. Barring the difference between Lipschitz and local Lipschitz continuity, the results
in [1] can be viewed as a variant of accelerated coordinate descent method [10]. There are
two places where the algorithm achieves an improvement over prior packing-covering results.

One factor of improvement is due to the better coordinate-wise Lipschitz constant over
the full dimensional Lipschitz constant. Intuitively, in the case of packing or covering,
the gradient of variable xi depends on the penalties of constraints involving xi, which
further depend on all the variables in those constraints. As a result, if we move all the
variables simultaneously, we can only take a small step before changing the gradient of xi
drastically. Sometimes coordinate descent comes with a downside, since if we update one
variable each iteration, computing n partial derivatives in n iterations can be much more
expensive than computing all the n partial derivatives in the same iteration. However,
it can be shown in the case of packing and covering LPs, there is no such computation
overhead.
The other factor of improvement comes from Nesterov-like acceleration. In addition to
giving width-independence as in [2], the gradient descent also covers the regret term
incurred by the mirror descent step (see Eqn. (7) below for the precise formulation of
this regret), which is the key insight from the original linear coupling result [15] to
reproduce Nesterov’s accelerated convergence. It turns out that nice diameter properties
are necessary for the latter to be possible. On a high level, the regret incurred by
mirror descent is proportional to its step size, which has an upper-bound proportional
to the coordinate-wise diameter of the feasible region. On the other hand, the progress
made by the gradient descent step is also proportional to its step size, which is inversely
proportional to the Lipschitz parameter. For both packing and covering problems, the
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coordinate-wise Lipschitz parameter of xi is proportional to 1/‖A:i‖∞, as ‖A:i‖∞ captures
the impact of xi on the values of the constraints, which determine the gradient of xi. This
works out particularly well for packing problems, since the packing constraints Ax ≤ ~1
impose a natural coordinate-wise diameter of x∗i ≤ 1/‖A:i‖∞ on the feasible region, which
aligns the gradient descent step size and mirror descent step size, making the coupling
possible to accelerate. The same small coordinate-wise diameter is also crucial to get
good global diameter for the proximal setup used in mirror descent, which is necessary
for mirror descent to achieve good convergence.

The combination of gradient truncation, stochastic coordinate descent, and acceleration due
to the nice diameter properties lead to the Õ(N/ε) solver for the packing LP [1].

Shifting to solvers for the covering LP, one obvious obstacle to reproducing the packing
result is we no longer have the small diameters. Indeed, a naive coordinate-wise upper bound
from the covering constraints only gives x∗i ≤ 1/minj{Aji : Aji > 0}, which is far from
sufficient to give acceleration as the packing solver in [1]. The authors instead go back to the
setup in their earlier work [2], where linear coupling only gives width-independence. The
authors use a negative-width technique as in [3] (Theorem 3.3 with l =

√
ε), that leads to

the (improved, but still worse than for packing) Õ(1/ε1.5) convergence rate.
To get an Õ(1/ε) solver for the covering LP, it seems crucial to relate the gradient descent

step and mirror descent step the same way as in the packing solver in [1]. Thus, we will
work directly to reduce the coordinate-wise diameter. Our main result (presented next in
Section 3) is a general diameter reduction method to achieve the same diameter property as
in the packing solver, and this enables us (in Section 4) to extend all the crucial ideas of the
packing solver in [1], as outlined in this section, to get a covering solver with running time
Õ(N/ε).

3 Diameter Reduction Method for General Covering Problems

Given any covering LP of the form in (1), characterized by a matrix A, we formulate an
equivalent covering LP with good diameter properties. This will involve lifting the instance
to higher dimensional space by adding variables and redundant constraints. On a high level,
as we discussed in last section, the obstacle for covering problems lies in the discrepency
between the large coordinate-wise diameter of the feasible region and the small gradient
descent step size. Our answer is essentially for each variable to create multiple copies with
different resolutions. Certain copies will be in charge of searching over larger regions, but for
them we modify their coefficients in the lifted space to allow larger gradient descent steps.
We use i ∈ [n] to denote the indices of the variables (i.e., columns of A) and j ∈ [m] to
denote the indices of constraints (i.e., rows of A). For ease of comparison with [1], and since
our unified approach for both packing and covering uses their packing solver and a similar
analysis, we use the same notation whenever possible.

For any i ∈ [n], let

ri
def= maxj{Aji : Aji > 0}

minj{Aji : Aji > 0} ,

be the ratio between the largest non-zero coefficient and the smallest non-zero coefficient of
variable xi in all constraints, and let ni

def= dlog rie. We first duplicate each original variable
ni times to obtain x̄(i,l), i ∈ [n], l ∈ [ni] as the new variables. In terms of the coefficient

matrix, we now have a new matrix, call it Ā ∈ R
m×(

∑
i
ni)

≥0 , which contains ni copies of
the i-th column A:i. We denote a column of Ā by the tuple (i, l) with l ∈ [ni]. Obviously,

ICALP 2016
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the covering LP given by Ā is equivalent to the original covering LP given by A. Adding
additional copies of variables, however, will allow us to improve the diameter. To reduce the
diameter of this new covering LP, we further decrease some of the coefficients in Ā, and we
put upper bounds on the variables. In particular, for j, i, l, we have

Āj,(i,l) = min{Aj,i, 2l min
j
{Aji : Aji > 0}}, (3)

and for variable x̄(i,l), we add the constraint

x̄(i,l) ≤
2

2l minj{Aji : Aji > 0} . (4)

The next lemma shows that the covering LP given by Ā and the covering LP given by A
are equivalent.

I Lemma 1. The covering LP of A and the covering LP of Ā have the same optimal value
OPT. Furthermore, there exists an optimal solution of the covering LP of Ā inside the region
specified by (4).

Proof. Let OPT be the optimal of the LP given by the covering constraints of Ā and the
coordinate-wise upper-bounds in (4). We need to show OPT = OPT. Given any feasible
solution x̄, consider the solution x where xi =

∑ni

l=1 x̄(i,l). It is obvious ~1Tx = ~1T x̄, and
Ax ≥ ~1, as coefficients in Ā are no larger than coefficients in A. Thus OPT ≤ OPT.

For the other direction, consider any feasible x. For each i, we can assume without loss
of generality that

xi ≤
1

minj{Aji : Aji > 0} .

Let li be the largest index such that

xi ≤
2

2li minj{Aji : Aji > 0} ,

and then let

x̄(i,l) =
{
xi if l = li
0 if l 6= li

.

By construction, x̄ satisfies all the upper bounds described in (4). Furthermore, for
constraint j, we must have Āj:x̄ ≥ 1. Since for any i, Āj,(i,li) differs from Aji only when
Aji > 2li minj{Aji : Aji > 0}, and we must have li < ni in this case by definition of ni,
which gives x̄(i,li) = xi ≥ 1

2li minj{Aji:Aji>0} by our choice of li being the largest possible.
Then we know Āj,(i,li) = 2li minj{Aji : Aji > 0}, so the j-th constraint is satisfied. Thus
OPT ≥ OPT, and we can conclude OPT = OPT. J

Given the equivalence of the covering LP defined by Ā and that defined by A, we now
point out that the seemingly-redundant constraints of (4) turn out to be crucial. The reason
is that we can search over a feasible region with nice diameter properties necessary to tap
the full power of the linear coupling method. In particular, we can rewrite the constraints (4)
to be

x̄(i,l) ≤
2

‖Ā:(i,l)‖∞
.
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For any i, this is the same upper bound on x̄(i,l) for l < ni (consider the row j∗ =
argmaxj{Aji, Aji > 0}), and it is a relaxation on x̄(i,ni).

The price we pay for this diameter improvement is that the new LP defined by Ā is
larger than that defined by A. Two comments on this are in order. First, by Observation 3,
ri is bounded by n2m/ε2, and so the diameter reduction step only increases the problem
size by O(log(mn/ε)). Second, we have presented our diameter reduction as an explicit
pre-processing step so we can use one unified optimization algorithm (Algorithm 1 below)
for both packing and covering, but in practice the diameter reduction would not have to be
carried out explicitly. It can equivalently be implemented implicitly within the algorithm (a
trivially-modified version of Algorithm 1 below) by randomly choosing a scale after picking
the coordinate i and then computing Āj,(i,l) in (3) by shifting bits on the fly.

Given this reduction, in the rest of the paper, when we refer to the covering LP, we will
implicitly be referring to the diameter reduced version, and we have the additional guarantee
that there exists an optimal solution x∗ to (1) such that

0 ≤ x∗i ≤
2

‖A:i‖∞
∀i ∈ [n]. (5)

4 An Accelerated Solver for (Packing and) Covering LPs

In this section, we will show covering LPs fit neatly into the scheme and analysis developed for
packing LPs in [1], thus establishing a unified acceleration method for packing and covering
problems. To motivate this, recall that for packing problems of the form (2), bounds of the
form (5) automatically follow from the packing constraints Ax ≤ ~1. For readers familiar
with the packing LP solver in [1], it should be plausible that—once we have this diameter
property—the same stochastic coordinate descent optimization scheme will lead to a Õ(N/ε)
covering LP solver.

In Section 4.1, we’ll present some preliminaries and describe how we perform smoothing
on the original covering objective function; and then in Section 4.2, we’ll present the main
algorithm. This algorithm involves a mirror descent step, that will be described in Section 4.3,
a gradient descent step, that will be described in Section 4.4, and a careful coupling between
the two, that will be described in Section 4.5. Finally, in Section 4.6, we will describe how to
ensure we start at a good starting point. Some of the following results are technically-tedious
but conceptually-straightforward extensions of analogous results from [1], and some of the
results are restated from [1]; we defer most of the proofs to the full version.

4.1 Preliminaries and Smoothing the Objective
To start, let’s assume that minj∈[m] ‖Aj:‖∞ = 1. This assumption is without loss of generality:
since we can simply scale A for this to hold without sacrificing approximation quality. With
this assumption, the following lemma holds.

I Lemma 2. OPT ∈ [1,m] .

With OPT being at least 1, the error we introduce later in the smoothing step will be
small enough that the smoothing function approximates the covering LP well enough with
respect to ε around the optimum.

I Observation 3. It can be shown that to obtain a (1+O(ε))-approximation, we can eliminate
entries smaller than ε

mn and entries larger than n
ε from matrix A.

ICALP 2016
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We will turn the covering LP objective into a smoothed objective function fµ(x), as
used in [4, 2, 1], and we are going to find a (1 + ε)-approximation of the covering LP by
approximately minimizing fµ(x) over the region

∆ def= {x ∈ Rn : 0 ≤ xi ≤
3

‖A:i‖∞
}.

The function fµ(x) is

fµ(x) def= ~1Tx+ max
y≥0
{yT (~1−Ax) + µH(y)},

and it is a smoothed objective in the sense that it turns the covering constraints into soft
penalties, with H(y) being a regularization term. Here, we use the generalized entropy
H(y) = −

∑
j yj log yj + yj , where µ is the smoothing parameter balancing the penalty and

the regularization. It is straightforward to compute the optimal y, and write fµ(x) explicitly,
as stated in the following lemma.

I Lemma 4. fµ(x) = ~1Tx+ µ
∑m
j=1 pj(x), where pj(x) def= exp( 1

µ (1− (Ax)j)).

Optimizing fµ(x) over ∆ gives a good approximation to OPT, in the following sense. If we
let x∗ be an optimal solution satisfying (5), and u∗ def= (1 + ε/2)x∗ ∈ ∆, then we have the
properties in the following lemma.

I Lemma 5. Setting the smoothing parameter µ = ε
4 log(nm/ε) , we have

1. fµ(u∗) ≤ (1 + ε) OPT.
2. fµ(x) ≥ (1− ε) OPT for any x ≥ 0.
3. For any x ≥ 0 satisfying fµ(x) ≤ 2 OPT, we must have Ax ≥ (1− ε)~1.
4. If x ≥ 0 satisfies fµ(x) ≤ (1 + O(ε)) OPT, then 1

1−εx is a (1 + O(ε))-approximation to
the covering LP.

5. The gradient of fµ(x) is

∇fµ(x) = ~1−AT ~p(x) where pj(x) def= exp( 1
µ

(1− (Ax)j),

and ∇ifµ(x) = 1−
∑
j Ajipj(x) ∈ [−∞, 1].

Although fµ(x) gives a good approximation to the covering LP, fµ(x) doesn’t have the
necessary Lipschitz-smoothness property due to the fast changing nature of exponential
functions. However, fµ(x) is locally Lipschitz continuous, in a sense quantified by the following
lemma, and so we have a good improvement with a gradient step within certain range.

I Lemma 6. Let L def= 4
µ , for any x ∈ ∆, and i ∈ [n]

1. If ∇ifµ(x) ∈ (−1, 1), then for all |γ| ≤ 1
L‖A:i‖∞ , we have

|∇ifµ(x)−∇ifµ(x+ γ ei)| ≤ L‖A:i‖∞|γ|.

2. If ∇ifµ(x) ≤ −1, then for all γ ≤ 1
L‖A:i‖∞ , we have

∇ifµ(x+ γ ei) ≤ (1− L‖A:i‖∞
2 |γ|)∇ifµ(x).

We call L‖A:i‖∞ the coordinate-wise local Lipschitz constant. The significance of Lemma 6
is that for covering LPs the coordinate-wise local Lipschitz constant is inversely proportional
to the coordinate-wise diameter. (This fact has been established previously for the case of
packing LPs [1].)
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4.2 An Accelerated Coordinate Descent Algorithm

Algorithm 1 Accelerated stochastic coordinate descent for both packing and covering
Input: A ∈ Rm×n≥0 , xstart ∈ ∆, fµ, ε Output: yT ∈ ∆
1: µ← ε

4 log(nm/ε) , L←
4
µ , τ ←

1
8nL

2: T ← d8nL log(1/ε)e = Õ(nε )
3: x0, y0, z0 ← xstart, α0 ← 1

nL

4: for k = 1 to T do
5: αk ← 1

1−τ αk−1
6: xk ← τzk−1 + (1− τ)yk−1
7: Select i ∈ [n] uniformly at random.
. Gradient truncation:

8: Let (ξ(i)
k )i ←


− ei ∇ifµ(xk) < −1
∇ifµ(xk) · ei ∇ifµ(xk) ∈ [−1, 1]
ei ∇ifµ(xk) > 1

. Mirror descent step:
9: zk ← z

(i)
k

def= argminz∈∆{Vzk−1(z) + 〈z, nαkξ(i)
k 〉}.

. Gradient descent step:
10: yk ← y

(i)
k

def= xk + 1
nαkL

(z(i)
k − zk−1)

11: end for
12: return yT .

We will now show that the accelerated coordinate descent used in packing LP solver in [1]
also works as a covering LP solver, with appropriately-chosen starting points and smoothed
objective functions. Consider Algorithm 1, which is our main accelerated stochastic coordinate
descent for both packing and covering. Note for both packing and covering LPs, we give
∆ = {x ∈ Rn : 0 ≤ xi ≤ 3

‖A:i‖∞ } as the input feasible region. The correctness of this
algorithm and its running time guarantees for the packing problem have already been nicely
presented in [1], and so here we will focus on the covering problem.

Our main result is summarized in the following theorems.

I Theorem 7. With xstart computable in time Õ(N) to be specified later, Algorithm 1 outputs
yT satisfying E[fµ(yT )] ≤ (1 + 6ε) OPT, and the running time is Õ(N/ε).

A standard application of Markov bound gives the following corollary.

I Corollary 8. There is a algorithm that, with probability at least 9/10, computes a (1+O(ε))-
approximation to the fractional covering problem and has Õ(N/ε) expected running time.

Before proceeding with our proof of these theorems, we discuss briefly the optimization
scheme from [1] we will use. First, the A-norm is used as the proximal setup for mirror
descent, where

‖x‖A =
√∑

i

‖A:i‖∞x2
i , (6)

The corresponding distance generating function is w(x) = 1
2‖x‖

2
A, and the Bregman divergence

is Vx(y) = 1
2‖x− y‖

2
A.1

1 In particular, w is a 1-strongly convex function with respect to ‖ · ‖A, and Vx(y) def= w(y)− 〈∇w(x), y −
x〉 − w(x). See [15] for a detailed discussion of mirror descent as well as and several interpretations.

ICALP 2016
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Next, observe that Algorithm 1 works as follows. Each iteration integrates a mirror
descent step and a gradient descent step. The standard analysis of mirror descent gives a
convergence of 1

ε2 , and it depends on the width of the problem. Here is how the coupling
of gradient descent and mirror descent achieves both width-independence and linear-rate
acceleration.

To eliminate the width from the convergence rate, the gradient ∇ifµ(xk) is split into
the small component, ξ(i)

k = max{−1,∇ifµ(xk)} ei, and the large component, η(i)
k =

∇ifµ(xk) ei−ξ(i)
k . Only the small component ξ(i) is given to the mirror descent step,

and thus the width is effectively 1. However, the truncation incurs loss from the large
component, as the mirror descent only acts on the small component. The progress from
the gradient descent step is used to cover that loss.
In order to get to 1/ε convergence, recall that the 1/ε2 in the convergence of mirror
descent is largely due to the regret term accumulated along all iterations of mirror descent.
The progress from the gradient step also covers the regret from the mirror descent step
(see Eqn. (7) below for the precise formulation of this loss and regret). This enables the
coupling to get Nesterov-like acceleration using the same approach in [15].

Before we moving to formalize the above discussion, here are some lemmas about the
algorithm. The first lemma says that the gradient step we take is always valid (i.e., in ∆),
which is crucial in the sense that we need the step length to be at least 1

nαkL
of the mirror

descent step length for the coupling to work.

I Lemma 9. We have xk, yk, zk ∈ ∆ for all k = 0, 1, . . . , T .

The second lemma is clearly crucial to achieve the nearly linear time Õ(N/ε) algorithm.

I Lemma 10. Each iteration can be implemented in expected O(N/n) time.

4.3 Mirror Descent Step
We now analyze the mirror descent step of Algorithm 1:

zk ← z
(i)
k

def= argmin
z∈∆

{Vzk−1(z) + 〈z, nαkξ(i)
k 〉}.

I Lemma 11. 〈nαkξ(i)
k , zk−1 − u∗〉 ≤ n2α2

kL〈ξ
(i)
k , xk − y(i)

k 〉+ Vzk−1(u∗)− Vzk
(u∗) .

Also, we note that the mirror descent step, defined above in a variational way, can be
explicitly written as
1. z

(i)
k ← zk−1

2. z
(i)
k ← z

(i)
k − nαkξ

(i)
k /‖A:i‖∞

3. If z(i)
k,i < 0, z(i)

k,i ← 0; if z(i)
k,i > 3/‖A:i‖∞, z(i)

k,i ← 3/‖A:i‖∞.

4.4 Gradient Descent Step
We now analyze the gradient descent step of Algorithm 1. In particular, from the explicit
formulation of the mirror descent step, we have that |z(i)

k,i − zk−1,i| ≤
nαk|ξ(i)

k
|

‖A:i‖∞ , which gives

|y(i)
k,i − xk,i| =

1
nαkL

|z(i)
k,i − zk−1,i| ≤

|ξ(i)
k |

L‖A:i‖∞
.

The gradient step we take is within the local region, and so Lemma 6 applies. We bound the
progress from the gradient descent step in the following lemma.

I Lemma 12. fµ(xk)− fµ(y(i)
k ) ≥ 1

2 〈∇fµ(xk), xk − y(i)
k 〉 .
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4.5 Coupling of Gradient and Mirror Descent
Here, we will analyze the coupling between the gradient descent and mirror descent steps.
This and the next section will give a proof of Theorem 7.

As we take steps on random coordinates, we will write the full gradient as

∇fµ(xk) = Ei[n∇ifµ(xk)] = Ei[nη(i)
k + nξ

(i)
k ].

As discussed earlier, we have the small component ξ(i)
k ∈ (−1, 1) ei and the large component

η
(i)
k = ∇ifµ(xk)− ξ(i)

k ∈ (−∞, 0] ei. We put the gradient and mirror descent steps together,
and we bound the gap to optimality at iteration k:

αk(fµ(xk)− fµ(u∗)) ≤〈αk∇fµ(xk), xk − u∗〉
=〈αk∇fµ(xk), xk − zk−1〉+ 〈αk∇fµ(xk), zk−1 − u∗〉

=〈αk∇fµ(xk), xk − zk−1〉+ Ei[〈nαkη(i)
k , zk−1 − u∗〉]

+ Ei[〈nαkξ(i)
k , zk−1 − u∗〉]

=1− τ
τ

αk〈∇fµ(xk), yk−1 − xk〉+ Ei[〈nαkη(i)
k , zk−1 − u∗〉]

+ Ei[〈nαkξ(i)
k , zk−1 − u∗〉]

≤1− τ
τ

αk(fµ(yk−1)− fµ(xk)) + Ei[〈nαkη(i)
k , zk−1 − u∗〉]

+ Ei[n2α2
kL〈ξ

(i)
k , xk − y(i)

k 〉+ Vzk−1(u∗)− V
z

(i)
k

(u∗)].

The first line is due to convexity. The fourth line is due to xk = τzk−1 + (1 − τ)yk−1, so
τ(xk − zk−1) = (1− τ)(yk−1 − xk). The last line is by Lemma 11.

We need to use the progress from the gradient step given in Lemma 12 to cover the loss
from η

(i)
k , and the regret from the mirror descent step:

Ei[〈nαkη(i)
k , zk−1 − u∗〉]︸ ︷︷ ︸

loss from η
(i)
k

+Ei[n2α2
kL〈ξ

(i)
k , xk − y(i)

k 〉]︸ ︷︷ ︸
regret from mirror descent

, (7)

The following lemma crucially relies on the nice coordinate-wise diameters of the feasible
region ∆.

I Lemma 13. The (scaled) progress from the gradient step covers both the loss from gradient
truncation and the regret incurred by the mirror descent step

Ei[〈nαkη(i)
k , zk−1 − u∗〉] + Ei[n2α2

kL〈ξ
(i)
k , xk − y(i)

k 〉] ≤ Ei[8nαkL(fµ(xk)− fµ(y(i)
k ))].

Now we can show this gives Nesterov-like acceleration. We have

αk(fµ(xk)− fµ(u∗)) ≤1− τ
τ

αk(fµ(yk−1)− fµ(xk)) + Ei[8nαkL(fµ(xk)− fµ(y(i)
k )]

+ Ei[Vzk−1(u∗)− V
z

(i)
k

(u∗)].

With our choice of τ = 1
8nL , αk = 1

1−τ αk−1, we get

−αkfµ(u∗) ≤ 8nLαk−1fµ(yk−1)− Ei[8nLαkfµ(y(i)
k )] + Ei[Vzk−1(u∗)− V

z
(i)
k

(u∗)].
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Telescoping the above inequality 2 along k = 1, . . . , T , we get

E[8nLαT fµ(yT )] ≤
T∑
k=1

αkfµ(u∗) + 8nLα0fµ(y0) + Vz0(u∗),

and thus

E[fµ(yT )] ≤
∑T
k=1 αk

8nLαT
fµ(u∗) + α0

αT
fµ(y0) + 1

8nLαT
Vz0(u∗).

We have
∑T
k=1 αk = αT

∑T−1
k=0 (1− 1

8nL )k = 8nLαT (1− (1− 1
8nL )T ) ≤ 8nLαT , and by our

choice of T = d8nL log(1/ε)e, we also have

α0

αT
= (1− 1

8nL )T ≤ ε, 1
8nLαT

≤ ε

8nLα0
= ε

8 ,

and thus

Ei[fµ(yT )] ≤ fµ(u∗) + εfµ(y0) + ε

8Vz0(u∗). (8)

4.6 Finding a Good Starting Point

From (8), we see a good starting point y0 = xstart for Algorithm 1 is a point that is not too
far away from the optimal in terms of the function value (i.e small fµ(y0)), and not too far
away from u∗ in A-norm (i.e. small Vz0(u∗)). For packing problems, starting with the all-0’s
vector will work, but this will not work for covering problems. Instead, for covering problems,
we will show now a good enough xstart can be obtained in Õ(N).

To do so, recall that we can get a 2-approximation x# to the original covering LP in time
Õ(N) using various nearly linear time covering solvers, e.g., those of [7, 4, 6, 14]. Without
loss of generality, we can assume x#

i ∈ [0, 2
‖A:i‖∞ ], since we can use the diameter reduction

process as specified in Lemma 1 to get a equivalent solution satisfying the conditions. Then,
we have the following lemma.

I Lemma 14. Let xstart = (1 + ε/2)x#, we have xstart ∈ ∆, fµ(xstart) ≤ 4 OPT, and
Vxstart(u∗) ≤ 6 OPT

It is now clear from (8) that we have

Ei[fµ(yT )] ≤ fµ(u∗)+εfµ(y0)+ ε

8Vz0(u∗) ≤ (1+ε) OPT +4εOPT +εOPT = (1+6ε) OPT .

Thus, we have the approximation guarantee in Theorem 7. The running time follows directly
from Lemma 10 and T = Õ(n/ε).

2 More accurately, the telescoping works on

−αkfµ(u∗) ≤ 8nLαk−1EIk−1 [fµ(yk−1)]− EIk
[8nLαkfµ(y(i)

k )] + EIk−1 [Vzk−1 (u∗)]− EIk
[V
z

(i)
k

(u∗)].

where Ik is all the random coordinate choices made through the first iteration till k-th iteration. The
final expectation on fµ(yT ) is over all the T random choices.
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