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Abstract
Random-Edge and Random-Facet are two very natural randomized pivoting rules for the
simplex algorithm. The behavior of Random-Facet is fairly well understood. It performs an
expected sub-exponential number of pivoting steps on any linear program, or more generally, on
any Acyclic Unique Sink Orientation (AUSO) of an arbitrary polytope, making it the fastest
known pivoting rule for the simplex algorithm. The behavior of Random-Edge is much less
understood. We show that in the AUSO setting, Random-Edge is slower than Random-Facet.
To do that, we construct AUSOs of the n-dimensional hypercube on which Random-Edge
performs an expected number of 2Ω(

√
n logn) steps. This improves on a 2Ω( 3√n) lower bound of

Matoušek and Szabó. As Random-Facet performs an expected number of 2O(
√
n) steps on any

n-dimensional AUSO, this established our result. Improving our 2Ω(
√
n logn) lower bound seems

to require radically new techniques.
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1 Introduction

Linear programming and the simplex algorithm. Linear programs (LPs) [3, 4, 28, 32] are
among the most important mathematical optimization problems. The simplex algorithm
(Dantzig [4]) is one of the most widely used methods for solving linear programs. It starts at a
vertex of the polytope corresponding to the linear program. (We assume, for simplicity, that
the LP is feasible, bounded, non-degenerate, that no two vertices have the same objective
value, and that an initial vertex of the polytope is available.) If the current vertex is not
optimal, then at least one of the edges incident to it leads to a neighboring vertex with a
larger objective value. A pivoting rule determines which one of these vertices to move to.
The simplex algorithm, with any pivoting rule, is guaranteed to find an optimal solution of
an LP in a finite number of steps.

Unfortunately, with essentially all known deterministic pivoting rules, the simplex method
requires an exponential number of steps on some LPs (see Klee and Minty [24] and [1, 2, 7,
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15, 18]). While there are polynomial time algorithms for solving LP problems, most notably
the ellipsoid algorithm (Khachian [23]) and interior point methods (Karmarkar [22]), these
algorithms are not strongly polynomial, i.e., their running time, in the unit-cost model,
depends on the number of bits in the representation of the coefficients of the LP, and not
just on the combinatorial size of the problem, i.e., the number of variables and constraints.
The question whether there exists a strongly polynomial time algorithm for solving linear
programs is of great theoretical importance.

Randomized pivoting rules. Kalai [20] and Matoušek, Sharir and Welzl [29] devised a
randomized pivoting rule, Random-Facet, that performs a subexponential number of
pivoting steps, in expectation, on any LP. In particular, for an LP with n variables and
O(n) constraints, the expected number of pivoting steps performed by Random-Facet is at
most 2O(

√
n logn). A slightly improved version that performs an expected number of at most

2O(
√
n) pivoting steps on such LPs was recently obtained by the authors [17]. This improved

version is currently the fastest known pivoting rule for the simplex algorithm.
Perhaps the most natural randomized pivoting rule is Random-Edge. When there are

several improving edges from the current vertex, simply choose one of them uniformly at
random. The best upper bound for Random-Edge on general LPs is exponential (Gärtner
and Kaibel [13]). Whether this can be improved to a subexponential upper bound, similar
to the one available for Random-Facet, is an intriguing open problem.

Friedmann et al. [8, 9, 11], building on results of Friedmann [6] and Fearnley [5], obtained a
2Ω̃(n1/3) lower bound on the expected number of pivoting steps performed by Random-Facet
on LPs that correspond to shortest paths problems. 1 Friedmann et al. [9] also constructed
LPs on which Random-Edge performs an expected number of 2Ω̃(n1/4) pivoting steps. We
believe that this lower bound is not tight. However, as the 2Ω̃(n1/4) lower bound is already
quite complicated, improving it seems to be a hard task. As a step in this direction we
obtain a 2Ω(

√
n logn) lower bound for Random-Edge in the more general setting of Acyclic

Unique Sink Orientations (AUSOs). In particular, this shows that in the AUSO setting,
Random-Edge is slower than Random-Facet.

Acyclic Unique Sink Orientations (AUSOs). Each bounded LP has a polytope associated
with it. The geometric vertices and edges of this polytope define a combinatorial graph.
The objective function of the LP defines an orientation of the edges of this graph; An edge
connecting vertices u and v is directed from u to v if and only if v has a better objective value.
(We assume that no two vertices have the same objective value.) This orientation is clearly
acyclic. It follows easily from the properties of LPs that every subgraph corresponding to
a geometric face of the polytope has a unique sink, i.e., a unique vertex with no outgoing
edges. The unique sink of the whole graph is then the optimal vertex of the LP.

This naturally motivates the definition of Acyclic Unique Sink Orientations (AUSOs).
Let G(P ) be that graph that corresponds to a polytope P . An orientation of G(P ) is said to
be an AUSO if and only if it is acyclic and any subgraph that corresponds to a face of P has
a unique sink. The term AUSO was introduced by Szabó and Welzl [34]. The same notion
was considered before, however, under several different names. Williamson Hoke [36] refers to
them as Completely Unimodal Numberings, while Kalai [19, 20, 21] refers to them as Abstract

1 In [9] we obtained a 2Ω̃(
√

n) lower bound for a one-permutation variant of Random-Facet and erroneously
claimed that the expected number of steps performed by this variant is equal to the expected number
of steps performed by Random-Facet. Unfortunately, as we point out in [10], this is not the case.
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Objective Functions. AUSOs provide an appealing abstraction of LPs. The subexponential
upper bound on the behavior of Random-Facet only relies on the AUSOs properties and is
thus valid also in the AUSO setting.

Of special interest are AUSOs of the n-dimensional hypercube whose properties we review
in Section 2. In the sequel we restrict our attention to such AUSOs. Gärtner [12] proved a
2O(n1/2) upper bound on the complexity of Random-Facet on AUSOs, and Matoušek [27]
obtained an essentially tight 2Ω(n1/2) lower bound. (The improved version of Random-Facet
of [17], which is not specialized to cubes, essentially matches Gärtner’s bound. It is an
interesting open problem whether a similar lower bound can be obtained for this algorithm.)
Matoušek and Szabó [30, 31] obtained a lower bound of 2Ω(n1/3) on the complexity of
Random-Edge on AUSOs. We improve their lower bound to 2Ω(

√
n logn), thus showing that

Random-Edge is slower than Random-Facet on AUSOs. Hansen et al. [16] obtained a
1.8n upper bound for Random-Edge on AUSOs. There is a large gap between the available
upper and lower bounds. However, the 2Ω(

√
n logn) lower bound that we obtain is the best

lower bound that can be obtained using current techniques. Improving it would require the
use of non-layered AUSOs which are not yet known to exist.

Organization of paper. In the next section we review some basic properties of AUSOs of
the Boolean hypercube. In Section 3 we describe a randomized product construction of
AUSOs that plays a central role in the lower bound of Matoušek and Szabó [30, 31] as well
as in our improved lower bound of 2Ω(

√
n) which is described in Section 4. Section 5 contains

an analysis of a random walk with reshuffles on a simple path AUSO. This analysis is needed
to complete the proof of the lower bound presented in Section 4. In Section 6 we make the
final push and improve the lower bound from 2Ω(

√
n) to 2Ω(

√
n logn). In Section 7 we note

that the AUSOs used to prove all known lower bounds for Random-Edge are layered and
explain why it is unlikely that layered AUSOs could be used to obtain further improved
lower bounds. A similar observation was made independently by Gärtner and Thomas [14].
We end in Section 8 with some concluding remarks and open problems.

2 Acyclic Unique Sink Orientations of the Hypercube

In this section we review the definition of AUSOs and describe some of their basic properties.
We also introduce a simple path AUSO which plays a central role in our lower bound.

The n-cube is the undirected graph Cn = (Vn, En), where Vn = {0, 1}n and En =
{{x,y} | x,y ∈ Vn, dH(x,y) = 1}, where dH(x,y) is the Hamming distance between x
and y. Every string s ∈ {0, 1, ∗}n defines a subcube of Cn induced by the vertex set
Vs = {x ∈ {0, 1}n | xi = si or si = ∗}. The subcube defined by s is clearly isomorphic to a
cube whose dimension is the number of ∗’s in s.

An orientation of the n-cube is a directed graph obtained by orienting each edge {x,y} ∈
En either from x to y or from y to x. An orientation can be specified using a mapping
A : Vn → {0, 1}n that satisfies the condition A(x)i 6= A(x⊕ i)i, for every x ∈ Vn. 2 The i-th
edge of x, i.e., {x,x⊕ i} is directed away from x if and only if A(x)i = 1. (Some authors
refer to A as the out-map of the orientation. We consider it to be the orientation itself.)
An orientation of a cube clearly induces orientations on all its subcubes. An orientation is

2 Here, A(x)i denotes the i-th bit of A(x) ∈ {0, 1}n, and x ⊕ i is a shorthand for x ⊕ ei, where
ei = 0i−110n−i is the i-th unit vector.

ICALP 2016
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Uniform Klee-Minty Path

Figure 1 The uniform, Klee-Minty and the path AUSOs in dimension 3.

acyclic if there are no directed cycles. A sink of an orientation A of Cn is a vertex x ∈ Vn
with no outgoing edges, i.e., A(x) = 0n. An acyclic orientation clearly has at least one sink,
but it may have several.

I Definition 1 (AUSOs). An orientation A of the n-cube is an n-AUSO if and only if it is
acyclic and if every subcube has a unique sink under A.

Perhaps the simplest AUSO is the uniform AUSO defined as follows U(x) = x. The sink
of this AUSO is clearly 0n. A more interesting and famous AUSO is the Klee-Minty cube [24]
defined as follows KM(x)i = xi ⊕ xi+1 ⊕ · · ·xn, for i = 1, 2, . . . , n, where x = x1x2 . . . xn.
The sink is again 0n. (It is an instructive exercise to verify that the Klee-Minty cube is indeed
an AUSO.) The Klee-Minty cube plays a prominent role in the lower bound of Matoušek and
Szabó [30, 31]. One of the major steps in obtaining our improved lower bound is replacing the
Klee-Minty cubes used in the lower bound of Matoušek and Szabó [30, 31] by the following
much simpler AUSO.

I Definition 2 (Path AUSO). The path n-AUSO is defined as follows

P (x)i = xi ⊕ (x1 ∧ x2 ∧ · · · ∧ xi−1) .

In other words, if x = x1x2 . . . xn ∈ {0, 1}n, then the i-th edge of x is directed away
from x if and only if x1x2 . . . xi = 1i−10 or xi = 1 but x1x2 . . . xi−1 6= 1i−1. (Informally,
a bit wants to become, or remain, a 1 if and only if all the bits preceding it are 1.) The
sink of the path AUSO is clearly at 1n. The uniform, Klee-Minty and the path AUSO for
n = 3 are shown in Figure 1. The path AUSO is also used in a building block in [9, 11]. A
realization of the path AUSO as a shortest paths problem in a weighted directed graph is
given in Figure 2. Each n-bit string x = x1x2 . . . xn corresponds to a tree of directed paths
directed towards the target vertex 0. If xi = 0, then (i, 0) is included in the tree, otherwise
(i, i− 1) is included in the tree. The i-th edge of x in the n-cube is directed away from x if
and only if switching the outgoing edge of i in the tree reduces the distance to the target of
at least one vertex. With this interpretation, it is clear that the path AUSO is an AUSO. (It
is of course also easy to prove it directly.)

I Lemma 3. The path AUSO is indeed an AUSO.

Schurr and Szabó [33] describe two useful methods of constructing new AUSOs from
existing ones. The first method takes an n-AUSO and expands each one of its 2n vertices into
an m-AUSO, resulting in an (n+m)-AUSO. (Each one of the 2n vertices may be expanded
into a different m-AUSO.) Schurr and Szabó [33] call it the blowup construction. We view it
as a product of AUSOs.
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Figure 2 A realization of the path AUSO as a shortest paths problem in a weighted directed
graph. Numbers attached to edges are edge weights.

I Definition 4 (Product of AUSOs [33]). Let A be an n-AUSO, and let m > 1. For every
x ∈ {0, 1}n, let Bx be an m-AUSO. Define an (n+m)-AUSO C = A× 〈Bx〉 as follows:

C(x,y) = (A(x), Bx(y)) , for x ∈ {0, 1}n,y ∈ {0, 1}m .

The proof that the product AUSO is indeed an AUSO is straightforward. (For the details,
see [33].) Before describing the second method we need another definition.

I Definition 5 (Hypersink [33]). A subcube of an AUSO is a hypersink if and only if all
edges between vertices of the subcube and vertices outside the subcube are directed towards
the subcube.

I Lemma 6 (Hypersink replacement [33]). Let A be an AUSO, let B be a subcube of A which
is a hypersink, and let B′ be an AUSO of the same dimension as B. Then, the AUSO A′

obtained by modifying the orientation of the edges within B so that the resulting orientation
is isomorphic to B′ is again an AUSO.

The proof of the lemma is again straightforward and can be found in [33]. Finally, the
following well-known lemma will be used in Section 6.

I Lemma 7 (Unique outmaps [34]). Let A be an n-AUSO. Then, for every x1 6= x2 ∈ {0, 1}n
we have A(x1) 6= A(x2). In particular, the number of vertices of A of out-degree k is

(
n
k

)
.

3 Random-Edge on Randomized Products

Matoušek and Szabó [30, 31] introduced the following simple and elegant randomized product
construction. Let A be an n-AUSO and let B be an m-AUSO. Assume, for simplicity, that
the sinks of A and B are at 1n and 1m, respectively. For every x ∈ {0, 1}n, let Bx be a
version of B in which the m coordinates are randomly permuted, each permutation being
equally likely. (Note that the sink of Bx is still at 1m.) Consider now the product A× 〈Bx〉.
It is easy to check that the copy of A corresponding to y = 1m is a hypersink of A× 〈Bx〉.
We replace this copy of A by a random translation A′ of A. A random translation of an
n-AUSO A is obtained by choosing a random vertex x0 ∈ {0, 1}n and making it the sink of
an AUSO A′ isomorphic to A. More precisely, we let A′(x) = A(x⊕ x0). A formal definition
of randomized products follows.

I Definition 8 (Randomized product [30, 31]). Let A be an n-AUSO and let B be anm-AUSO
whose sinks are at 1n and 1m, respectively. For every x ∈ {0, 1}n, let Bx be a randomly
permuted version of B, and let A′ be a random translation of A. Then, the randomized
product C = A×R B is a distribution over AUSOs defined as follows:

C(x,y) =
{

(A(x), Bx(y)) , if y 6= 1m ,

(A′(x), Bx(y)) , otherwise .

ICALP 2016
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As C = A×R B is obtained by performing a product of AUSOs followed by a hypersink
replacement, it is clearly an AUSO, or rather a probability distribution over AUSOs.

Consider now the behavior of Random-Edge on C = A×RB, starting from some vertex
(x,y), where x ∈ {0, 1}n, y ∈ {0, 1}m. Assume at first that x 6= 1n and y 6= 1m. Each
step of Random-Edge either changes a coordinate of x or of y. If we only consider the
steps in which x changes, and look only at x, then as long as y 6= 1m, we get a standard
Random-Edge walk on A.

The random walk on y induced by the Random-Edge walk on C = A ×R B is more
interesting. When x is fixed, y performs a standard Random-Edge walk on Bx. But, when
a step from x to x′ in A is made, the walk on y finds itself in a new AUSO Bx′ . Due to the
acyclicity of A, Bx′ was never visited before, and is thus completely random. The resulting
random walk on y is what Matoušek and Szabó [30, 31] call a random walk with reshuffles
on B. Such a random walk is likely to be much longer than a standard Random-Edge walk
on B as the random reshuffles tend to destroy progress made since the last reshuffle.

When the random walk with reshuffles on B reaches its sink y = 1m, the hypersink A′ is
entered, and y remains fixed. Note that y = 1m may be reached either before x reaches 1n,
or after it does. We prefer the second option, as then the Random-Edge walk on A ran
to completion. Our construction will ensure that this happens with very high probability.
As A′ is a random translation of A, the ensuing random walk on A′, even if it starts at
x = 1n, is equivalent to a Random-Edge walk starting at a random vertex of A. Thus,
under appropriate conditions, a Random-Edge walk on C = A×R B is expected to be at
least twice as long as a Random-Edge walk on A itself. This is the crux of the matter.

We next consider the probability of a reshuffle in a random walk with reshuffles on B. This
probability must be high to make the random walk long. If the current vertex in C = A×RB
is (x,y) and there are s and t outgoing edges from x in A and y in B, respectively, then
a reshuffle occurs with probability s/(s + t), as Random-Edge on C = A ×R B chooses
each outgoing edge with equal probability and each step in A causes a reshuffle of B. We let
Random-Reshufflek denote a random walk with reshuffles on B induced by a Random-
Edge walk on C = A ×R B, conditioned on all visited vertices of A having outdegree at
least k. The probability of a reshuffle when y has outdegree t in B is then at least k/(k + t).

To ensure that reshuffles occur with sufficiently high probability, we need a slight general-
ization of the randomized product construction.

I Definition 9 (k-fold randomized product [30, 31]). Let A be an n-AUSO and let B be an
m-AUSO whose sinks are at 1n and 1m, respectively, and let k ≥ 1. For every x ∈ {0, 1}n
and 1 ≤ i ≤ k, let Bx,i be a randomly permuted version of B, and let A′ be a random
translation of A. Then, the k-fold randomized product C = A×kR B is a distribution over
AUSOs defined as follows:

C(x,y1, . . . ,yk) =
{

(A(x), Bx,1(y1), . . . , Bx,k(yk)) , if y1 6= 1m ∧ · · · ∧ yk 6= 1m ,

(A′(x), Bx,1(y1), . . . , Bx,k(yk)) , otherwise .

It is not difficult to check that for every random choice C = A×kR B is indeed an AUSO.
Matoušek and Szabó [30, 31] need to apply the k-fold randomized product with k = n1/3.
We only need k = 2. As a result, the lower bound is improved from 2Ω( 3√n) to 2Ω(

√
n). Using

k = 1 is actually enough, but the probabilistic analysis is slightly more complicated. The
details will appear in the full version of the paper.

I Lemma 10 ([30, 31]). Let A be an n-AUSO, let B be an m-AUSO and let k > 1. Suppose
that the probability that the Random-Edge walk on A, starting at a random vertex, reaches
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a vertex with outdegree less than k in less than T steps is at most p. Suppose that the
probability that a Random-Reshufflek walk on B, starting at a random vertex, reaches
the sink in less than T steps is at most q. Then, the probability that the Random-Edge
walk on C = A×kR B, starting at a random vertex, reaches a vertex of outdegree less than k
in less than 2T steps is at most 2p+ kq.

Proof. Partition the Random-Edge walk on C = A×kRB, starting at a random vertex, into
two stages. The first stage ends when one of B1, . . . , Bk reaches its sink, i.e., when a state of
the form (x,y1, . . . ,yk), where yi = 1m, for some 1 ≤ i ≤ k, is reached. When the first stage
ends, the orientation on the first n-coordinates changes to A′, a random translation of A,
and the second stage begins. The second stage lasts until the sink of C = A×kR B is reached.

The probability that the first stage lasts less than T steps is at most p + kq. Indeed,
during the first T steps on C, at most T steps on A are performed. Thus, the probability
that the Random-Edge walk on A reaches a vertex of outdegree less than k is at most p.
As long as the walk on A visits vertices of outdegree at least k, the induced random walks
on B1, . . . , Bk are Random-Reshufflek walks. Thus, the probability that a specific Bi
reaches its sink during the first T steps on C is at most q, and the claim follows. During the
first phase, there is at least one improving switch in every Bi, thus the outgedree of each
visited vertex is at least k.

In the second stage, the orientation on the first n-coordinates changes to A′. As A′ is
a random translation of A, this is equivalent to starting a Random-Edge walk on A at a
random starting vertex. The probability that this random walk reaches a vertex of outdegree
less than k in less than T is steps is at most p.

Thus, the probability that the Random-Edge walk on C = A ×kR B, starting at a
random vertex, reaches a vertex of outdegree less than k in less than 2T steps is at most
(p+ kq) + p = 2p+ kq. J

4 The Lower Bound

A distribution of AUSOs on which Random-Edge makes 2Ω(
√
n) steps, with high probability,

is obtained by iterating the randomized product construction of the previous section. We
follow the footsteps of Matoušek and Szabó [30, 31] making one crucial change; We use
the path AUSO, defined in Section 2, instead of the Klee-Minty cube, as the main building
block. Using the path AUSO allows us to simplify the proof and improve the lower bound.
The following lemma, whose proof is given in the next section, is one of the main technical
contributions of this paper.

I Lemma 11. Let Pm be the path m-AUSO. There are constants α, β > 0 such that the
probability that Random-Reshuffle2 on Pm, starting from a random vertex, performs less
than 2αm steps before reaching the sink is at most 2−βm.

Let m be an integer, and let ` = γm, where γ < min{α, β}, where α, β are the constants
in Lemma 11. Let A0 be an arbitrary m-AUSO. For concreteness, we let A0 = Pm, the
path AUSO of Section 2. We construct a sequence of A0, A1, . . . , A` of AUSOs, where
Ai = Ai−1 ×2

R Pm is an (2i + 1)m-AUSO, for 0 ≤ i ≤ `. Note that A` is of dimension
(2`+ 1)m = O(m2). The following lemma, which easily implies a 2Ω(

√
n) lower bound, claims

that with high probability, Random-Edge performs at least 2Ω(m) steps when started at a
random vertex of A`. We give an improved version of the lemma in Section 6.

I Lemma 12. The probability that Random-Edge performs less than 2` steps when started
at a random vertex of A`, where ` < αm, is at most 4 · 2`−βm.

ICALP 2016
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Proof. Let pi be the probability that Random-Edge, started at a random vertex of Ai,
performs less than 2i steps before reaching a vertex of outdegree less than 2. Note that
p0 = (m+ 1)2−m is just the probability that the random starting vertex of A0 has outdegree
at most 1, which by Lemma 7 is exactly (m+ 1)2−m.

Let qi be the probability that the Random-Reshuffle2 walk on Pm, in which the
probability of reshuffle from a vertex of outdegree j is at least 2/(j + 2), reaches the sink in
less than 2i steps, when started at a random vertex. Clearly, for every 1 ≤ i ≤ ` we have
qi ≤ q`. As ` ≤ αm, Lemma 11 implies that q` ≤ 2−βm.

By Lemma 10, we have pi ≤ 2(pi−1 + qi−1). It follows easily by induction that pi ≤
2ip0 + 2(2i − 1)qi, for 1 ≤ i ≤ `. Thus, p` ≤ 2`(m+ 1)2−m + 2`+12−βm ≤ 4 · 2`−βm. J

As a corollary, we get:

I Theorem 13. There exist n-AUSOs and appropriate starting points from which Random-
Edge performs 2Ω(n1/2) steps with probability at least 1− 2−δ

√
n, for some δ > 0.

5 Random Walk with Reshuffles on the Path AUSO

In this section we provide a proof of Lemma 11, completing the proof of our first lower bound.
Let y ∈ {0, 1}m be a state of Random-Reshuffle2 on the path AUSO Pm. Let k be

the weight, i.e., the number of 1’s in y and let i be the number of leading 1’s in y. For
example, if m = 7 and y = 1100101, then k = 4 and i = 2. Also let j = k − i, the number
of non-leading 1’s. We say that y is of type (i, j). The outdegree of a state of type (i, j) is
clearly j + 1.

From a state y of type (i, j) of Random-Reshuffle2 on Pm, there is a reshuffle with a
probability of at least 2/(j + 3), as all states of type (i, j) are of outdegree j + 1. Several
reshuffles may occur in a row, but they have exactly the same effect as a single reshuffle.

If a state of weight k is reshuffled, the obtained state is of type (k− j, j), where 0 ≤ j ≤ k,
with probability ak,j =

(
m−(k−j+1)

j

)
/
(
m
k

)
. (Among the

(
m
k

)
binary strings of length m and

weight k, there are exactly
(
m−(k−j+1)

j

)
strings that start with 1k−j0.) Clearly

∑k
j=0 ak,j = 1.

When a reshuffle occurs, we initially consider only the type of the state obtained. We
delay the decision as to which state exactly we are in. (All states belonging to the type
are equally likely.) This simplifies the analysis, as we only need to consider O(m2) types
(
(
m+1

2
)

+ 1 to be exact) rather than 2m possible states.
Suppose that we are now in a state of type (i, j), where k = i+ j. One or more reshuffles

are performed with a probability of at least 2/(j+ 3), and then a standard move is performed.
Let (i′, j′), where k′ = i′ + j′, be the type of the new state obtained. Note that k′ = k− 1 or
k′ = k + 1, as a reshuffle does not change the weight and a single move either increases or
decreases the weight by 1. We show that the probability of a weight increase, i.e., k′ = k + 1
is bounded by some constant c < 1

2 . As the weight of a random starting vertex is close
to m/2 and as the weight of the sink is m, it would follow that an exponential number of
steps are needed, with high probability, to reach the sink.

Let p̄k be the probability of a weight increase from a state of weight k given that a
reshuffle occurs. We have p̄k =

∑k
j=0

ak,j
j+1 , as the reshuffle generates a state of type (k − j, j)

with probability ak,j and the probability of a weight increase from such a state is 1/(j + 1).
Let pk,j(s) be the probability of a weight increase from a state of type (k− j, j), when the

corresponding state in A has s outgoing edges. The probability of a reshuffle from a state of
type (k − j, j) is s

j+s+1 , and the probability of no reshuffle is j+1
j+s+1 . If there is no reshuffle,
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the probability of a weight increase is 1
j+1 . If there is a reshuffle, then the probability of a

weight increase is p̄k. Hence,

pk,j(s) = j + 1
j + s+ 1 ·

1
j + 1 + s

j + s+ 1 · p̄k = 1
j + s+ 1 + s

j + s+ 1 · p̄k .

We next upper bound p̄k, the probability of a weight increase following a reshuffle from a
state of weight k.

I Lemma 14. p̄k <
m− k

(k + 1)(m− k − 1) .

Proof. A simple manipulation of binomial coefficients yields:

ak,j
j + 1 =

(
m−k+j−1

j

)(
m
k

) 1
j + 1 =

(
m−k+j−1

j+1
)(

m
k

) 1
m− k − 1 = 1

m− k − 1

(
m
k+1
)(

m
k

) ak+1,j+1 .

Hence,

p̄k =
k∑
j=0

ak,j
j + 1 = 1

m− k − 1

(
m
k+1
)(

m
k

) k∑
j=0

ak+1,j+1 <
1

m− k − 1

(
m
k+1
)(

m
k

) = m− k
(k + 1)(m− k − 1) .

J

I Lemma 15. Let (i, j) be a type of Random-Reshuffle2 walk on the path AUSO Pm
of weight k = i + j satisfying 8 ≤ k ≤ m − 9. Then, the probability that the type obtained
after one step of a Random-Reshuffle2 walk, i.e., a reshuffle with a probability of at least
2/(j + 3) followed by a standard move, is of weight k + 1 is at most 5

12 .

Proof. We need to show that pk,j(s) ≤ 5
12 , for every 8 ≤ k ≤ m− 9, 0 ≤ j ≤ k, and s ≥ 2.

Recall that pk,j(s) = j+1
j+s+1 ·

1
j+1 + s

j+s+1 · p̄k. For 8 ≤ k ≤ m − 9 we have p̄k ≤ 1
8 , as

1
k+1 ≤

1
9 while m−k

m−k−1 ≤
9
8 . If j ≥ 2, then pk,j(s) ≤ 1

3 , for every s ≥ 1, as 1
j+1 ≤

1
3 and

p̄k ≤ 1
3 . If j = 1, then pk,1(s) ≤ 1

2 ·
1
2 + 1

2 ·
1
8 = 5

16 , again for every s ≥ 1. Finally, if j = 0,
then pk,0(s) ≤ 1

3 + 2
3 ·

1
8 = 5

12 , for every s ≥ 2. J

Lemma 15 does not hold for Random-Reshuffle1 as for j = 0 we relied on the
assumption s ≥ 2. This is why we need to use 2-fold randomized products. Alternatively, we
can look at two steps of Random-Reshuffle1 on Pm. This yields a negative drift from all
types, including (i, 0), but the proof is slightly more complicated. The details will appear in
the full version of the paper.

I Definition 16 (Biased random walk). Let 0 ≤ c < 1
2 . A random process on states

{0, 1, . . . , n} is c-bounded if and only if whenever the process is in state i, where i > 0, then
it moves to state i+ 1 with probability at most c, and to state i− 1 with the complementary
probability of at least 1− c. From state 0, the process moves to state 1 with probability 1.

In the above definition, the transition probabilities may depend on the history of the
random process, as well as on external factors. The following claim is well known. For
completeness, we include a proof that follows the presentation in Levin, Peres and Wilmer [25]
(Section 17.3.1).

I Lemma 17. Let 0 ≤ c < 1
2 . The probability that a c-bounded random process on {0, 1, . . . , n}

that starts at state 0 reaches state n in less than K steps is at most K
(

c
1−c
)n−1. In particular,

for any α < 1−c
c , the probability that the random walk reaches n in less than αn−1 steps is at

most
(
αc

1−c
)n−1.
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Proof. Let us assume that the probability of moving from i to i+ 1 is exactly c. It is not
difficult to show that this implies the more general claim.

Let Xt be a c-bounded random walk on the integers starting at 1, i.e., X0 = 1. Let
r = (1 − c)/c. It is easy to check that rXt is a martingale. Consider the stopping time τ
defined as the smallest t for which Xt = 0 or Xt = n. By the Optional Stopping Theorem we
get that E[rXτ ] = E[rX0 ] = r. Let a be the probability that the random walk reaches n before
it reaches 0. Then E[rXτ ] = arn + (1− a). Thus arn + (1− a) = r and a = r−1

rn−1 < (1/r)n−1.
Returning to the c-bounded walk on {0, 1, . . . , n} starting at 0, we note that the expected

number of times that this random walk returns to 0 before visiting n is a geometric random
variable with parameter a. Thus the probability that the random walk reaches n in less
than K steps, and in particular less than K returns to 0, is at most 1− (1− a)K < Ka <

K
(

c
1−c
)n−1. J

Putting everything together, we get a proof of Lemma 11.

Proof of Lemma 11. A Random-Reshuffle2 walk on the path AUSO Pm induces a ran-
dom walk on types (i, j). The random walk on types induces a random walk on weights.
Lemma 15 claims that when 8 ≤ k ≤ m− 9, the random walk on the weights is 5

12 -bounded.
The weight of a random starting point of Random-Reshuffle2 is binomially distributed.
By Chernoff bound, the probability that the starting state of the bounded walk on the
weights starts at a weight larger than ( 1

2 + δ)m, for some δ > 0, is exponentially small. By
Lemma 17 the probability that the random walk moves from the random starting point to
m− 9 in at most an exponential number of steps is exponentially small. The existence of
appropriate constants α, β follows easily. J

6 An Improved Lower Bound

The improved lower bound of 2Ω(
√
n logn) is obtained using essentially the same construction

but with a strengthened analysis. We again let A0 = Pm and Ai = Ai−1×2
RPm, for i = 1, ..., `,

but this time we choose ` = γm logm, for some γ > 0. We can still show that with high
probability Random-Edge performs at least 2` steps on A`. Thus A` is an n-AUSO, where
n = 2γm2 logm, on which Random-Edge performs with high probability at least 2` steps,
where ` = γm logm = Ω(

√
n logn). This establishes the following theorem, which is the

main result of this paper.

I Theorem 18. There exist n-AUSOs and appropriate starting points from which Random-
Edge performs 2Ω(

√
n logn) steps with probability at least 1− 2−δ

√
n, for some δ > 0.

To prove this result, we need a strengthened version Lemma 11. Lemma 11 states that
there are constants α, β > 0 such that the probability that Random-Reshuffle2 on Pm,
starting from a random vertex, performs less than 2αm steps before reaching the sink is
at most 2−βm. The proof of Lemma 11 relied on the fact that from a state of type (i, j),
the probability of a reshuffle is at least 2/(j + 3). If the reshuffle probabilities are always
2/(j + 3), then Lemma 11 is essentially tight. However, the reshuffle probability is 2/(j + 3)
only if the vertex x ∈ A has only two outgoing edges. By Lemma 7 this can happen at most(
n
2
)
times. More generally, let s =

√
n. The number of vertices in A of outdegree less than s

is at most
∑s
i=0
(
n
i

)
≤ ns.

I Definition 19 (Random-Reshuffle(N,s)
k ). A Random-Reshuffle(N,s)

k walk on an m-
AUSO B is a random walk with reshuffles on B in which the reshuffle probability from a
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vertex y ∈ {0, 1}m of outdegree t is at least s/(s+ t), except for at most N times in which
the reshuffle probability is only guaranteed to be at least k/(k + t).

By the above discussion, the random process on B induced by a Random-Edge walk
on A×2

R B is a Random-Reshuffle(N,s)
k process, with N ≤ ns. The following lemma is a

strengthening of Lemma 11. The proof will appear in the full version of the paper.

I Lemma 20. Let Pm be the path m-AUSO. There are constants α, β > 0 such that the
probability that Random-Reshuffle(N,s)

2 on Pm, where s = m1/2, N ≤ m3s, starting from
a random vertex, performs less than 2αm logm steps before reaching the sink is at most 2−βm.

We note that Lemma 20 is essentially best possible, which is one of the reasons we believe
that improving our 2Ω(

√
n logn) lower bound will require new techniques. (See also Section 7.)

I Lemma 21. Let B be any m-AUSO. Then, with high probability Random-Reshufflek
on B makes at most O((km)m) = 2O(m log(km)) steps before reaching its sink.

Proof. Each vertex of B is of distance at most m from the sink (see, e.g., [26, 16]). Thus, if
there are m consecutive steps with no reshuffles and the right edge in B is followed, then the
sink is reached. This happens with a probability of at least ((k + 1)m)−m. J

The proof of Lemma 20 relies on the following strengthening of Lemma 17. The proof
will appear in the full version of the paper.

I Lemma 22. Let 0 ≤ c1 < c2 <
1
2 . Consider a random walk on {0, 1, . . . , n} in which in

each step a controller is allowed to flip a coin with success probability at most c1, or a coin
with success probability at most c2. The controller is allowed to make the second choice at
most N times. According to the outcome of the coin, the process moves from i to either i− 1
or i+ 1. (From 0 the move is always to 1.) Then, the probability that the walk reaches n in
less than K steps is at most K

(
c1

1−c1

)n/2−1 +N
(

c2
1−c2

)n/2−1.

Relying on these strengthened lemmas, Theorem 18 follows using essentially the same
arguments used to prove Theorem 13.

7 Decomposable and Layered AUSOs

The AUSOs used above to obtain the 2Ω(
√
n logn) lower bound, as well as the AUSOs used

by Matoušek and Szabó [30, 31] and by Friedmann et al. [9] are decomposable.

I Definition 23 ((k, `)-decomposable AUSO). A (k`)-AUSO is said to be (k, `)-decomposable
if its coordinates can be partitioned into k blocks B1, . . . , Bk each of size ` such that if x is
the sink of A and y agrees with x in Bi, Bi+1, . . . , Bk, for some 1 ≤ i ≤ k, then all the edges
in these coordinates are directed towards y.

Decomposable AUSOs belong to a much wider class of layered AUSOs. A layered AUSO
is an AUSO whose vertices can be partitioned into a relatively small number of layers such
that from each non-sink vertex there is a relatively short directed path to a vertex of a lower
layer, and such that no directed path may lead from a vertex to a vertex of a higher layer.
More formally:

I Definition 24 ((k, `)-Layered AUSOs). An n-AUSO A is said to be (k, `)-layered if its
vertices can be partitioned into disjoint layers L0, L1, . . . , Lk such that: (i) L0 only contains
the sink. (ii) If x ∈ Li, where i > 0, then there is a directed path of length at most ` in A
from x to some vertex y ∈ Lj , for j < i. (iii) If x ∈ Li, then there is no directed path in A
from x to any vertex y ∈ Lj , for j > i.
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I Lemma 25. If A is a (k, `)-decomposable AUSO then it is also (k, `)-layered.

Proof. Let B1, B2, . . . , Bk be the partition of the coordinates of A and let x be the sink
of A. For i = 0, 1, . . . k, let Li be the set of vertices that agree with x in all the coordinates
of Bi+1, Bi+2, . . . , Bk and differ from x in some coordinate of Bi. It is easy to check that all
conditions are met by using the fact that every vertex in a subcube of dimension ` has a
path of length at most ` to the sink of that subcube (see, e.g., [26, 16]). J

We next show that Random-Edge is fairly quick on layered AUSOs.

I Lemma 26. The expected number of steps that Random-Edge performs on a (k, `)-layered
n-AUSO, from any starting vertex, is at most k`n`.

Proof. We show that the expected number of steps per layer is at most `n`, which proves
the lemma. From every vertex in the current layer there is at least one path of length ` to a
lower layer. Random-Edge follows this path with a probability of at least 1/n`. Therefore
the expected number of trials before successfully following such a path is at most n`, and
since each trial uses at most ` steps, the total expected number of steps is at most `n`. J

We note that the n-AUSOs used to obtain our 2Ω(
√
n logn) lower bound are (k, `)-layered

for k = O(
√
n logn) and ` = O(

√
n/ logn). Lemma 26 therefore shows that the expected

number of steps performed by Random-Edge on our AUSOs is at most 2O(
√
n logn), which

means that our analysis of these AUSOs is tight up to a constant factor in the exponent.
Moreover, to improve the lower bound it is necessary to construct n-AUSOs that are not
(2O(
√
n logn), O(

√
n/ logn))-layered, or, more generally, not (k, `)-layered for any choice of k

and ` such that k`n` = 2O(
√
n logn). No such AUSOs are currently known to exist. Similarly,

to improve on the 1.8n upper bound of Hansen et al. [16] it is enough to prove that every
n-AUSO is (2cn, dn/ logn)-layered, for c+ d < 0.847 < log2 1.8.

The lower bound of Friedmann et al. [9] uses AUSOs that simulate a binary counter.
A t-bit counter is simulated by (t, n/t)-decomposable n-AUSO. The lower bound obtained
using such AUSOs is roughly 2t. As (t, n/t)-decomposable n-AUSO are also (t, n/t)-layered,
we get using Lemma 26 that the best lower bound that can be obtained using such AUSOs
is min{2t, nn/t+1}, which attains a maximum value of about 2Θ(

√
n logn) when t =

√
n logn.

A notion of the niceness of AUSOs and USOs, which is related to the notions of de-
composable and layered AUSOs was defined by Welzl [35]. Gärtner and Thomas [14] have
independently observed that the AUSOs used to obtain our lower bound are

√
n logn-nice

and therefore cannot be used to obtain further improved lower bounds.

8 Concluding remarks and open problems

We proved a 2Ω(
√
n logn) lower bound on the number of steps performed by Random-Edge

on some AUSOs. The two obvious open problems are proving a 2o(n) upper bound and an
improved lower bound of 2ω(

√
n logn). We believe that radically new techniques would be

needed to prove a lower bound of 2ω(
√
n logn). Another interesting open problem is improving

the 2Ω(n1/4) lower bound of [9] for AUSOs that correspond to actual linear programs.
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