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Abstract
Given an undirected, unweighted graph G on n nodes, there is an O(n2poly logn)-time algo-
rithm that computes a data structure called distance oracle of size O(n5/3poly logn) answering
approximate distance queries in constant time. For nodes at distance d the distance estimate is
between d and 2d+ 1.

This new distance oracle improves upon the oracles of Pǎtraşcu and Roditty (FOCS 2010),
Abraham and Gavoille (DISC 2011), and Agarwal and Brighten Godfrey (PODC 2013) in terms
of preprocessing time, and upon the oracle of Baswana and Sen (SODA 2004) in terms of stretch.
The running time analysis is tight (up to logarithmic factors) due to a recent lower bound of
Abboud and Bodwin (STOC 2016).

Techniques include dominating sets, sampling, balls, and spanners, and the main contribution
lies in the way these techniques are combined. Perhaps the most interesting aspect from a
technical point of view is the application of a spanner without incurring its constant additive
stretch penalty.
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1 Introduction

Given a graph G = (V,E) on n := |V | vertices, the All-Pairs Shortest Path (APSP)
problem asks for pairwise distances d(u, v) among all pairs of nodes u, v ∈ V . The fastest
known algorithms to compute these

(
n
2
)
distance values (in this paper, we restrict ourselves

to undirected, unweighted graphs) use fast matrix multiplication [16, 18, 29, 34] or run in
roughly cubic time [12, 20, 33, 37]. Depending on the number of edges m := |E|, computing n
independent shortest-path trees (breadth-first search trees for unweighted graphs) in O(mn)
may be faster.

Algorithms for All-Pairs Approximate Shortest Paths (APASP) trade accuracy for speed.
Their worst-case approximation guarantee is called stretch. Stretch (α, β) means that for
any pair of nodes u, v ∈ V at distance d the algorithm’s estimate is between d and α · d+ β

(typically, when β > 0, graphs are assumed to be unweighted or β depends on the largest
edge weight).

Aingworth, Chekuri, Indyk, and Motwani [5] introduced a technique to handle high-degree
nodes using dominating sets. They apply their technique to derive a (1, 2)-stretch algorithm
that runs in time Õ(n5/2) (as usual, Õ(·) hides logarithmic factors). Their dominating-set
technique has been used in many subsequent algorithms. Dor, Halperin, and Zwick [17]
improved the running time to Õ(min

{
n3/2m1/2, n7/3}). Furthermore, they also gave a

reduction, proving that an APASP algorithm with multiplicative stretch strictly less than 2
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55:2 All-Pairs Approximate Shortest Paths and Distance Oracle Preprocessing

Table 1 A selection of related work on the all-pairs approximate shortest path problem and
constant-time approximate distance oracles for unweighted graphs. Some results hold for weighted
graphs as well, and some methods guarantee better bounds for sparse graphs. To simplify the
comparison for dense graphs, the bounds in this table are for m = n2 (except for the sub-quadratic
algorithm of [6]). Stretch (α, β) means that for pairs at distance d the distance estimate is between d
and αd+ β.

Stretch Time Õ(·) Space Õ(·) Reference
(1,2) n5/2 n2 [5]
(1,2) n7/3 n2 [17]
(3,0) n2 n2 [15]
(3,0) n5/2 n3/2 [31]
(3,0) n2 n3/2 [8, 9]
(3,10) n23/12 +m n3/2 [6]
(2,1) n2 n2 [10]
(2,1) n8/3 n5/3 [7] (space implicit)
(2,3) n2 n5/3 [7] (space implicit)
(2,1) poly n5/3 [21]
(2,1) n2 n5/3 Theorem 1

or constant additive stretch serves as an algorithm for boolean matrix multiplication. After
this reduction, most research efforts have been focused on stretch 2 or higher. Cohen and
Zwick [15] provided various tradeoffs such as an Õ(n2) algorithm with stretch α = 3. Berman
and Kasiviswanathan [10] further improved the stretch to (2, 1). See also the survey by
Zwick [38].

A distance oracle is a compact representation of the AP(A)SP matrix of a graphG = (V,E).
The main quantities of interest are the construction time (also called preprocessing time), the
space consumption, the query time, and the stretch. Thorup and Zwick [31] coined the term
distance oracle, and they also provided an oracle with constant query time, multiplicative
stretch α = 3, space O(n3/2), and preprocessing time Õ(mn1/2), as well as more general
tradeoffs for all odd integers α > 3, which are not discussed any further in this paper.1 For
α = 3, their space bound is asymptotically optimal due to the existence of dense graphs
with large girth [11, 24, 32]. The preprocessing time was subsequently improved in a line
of work: Baswana and Sen [9] improved the preprocessing time to O(n2) for unweighted
graphs, Baswana and Kavitha [8] obtained O(n2) preprocessing time for weighted graphs,
and Baswana, Gaur, Sen, and Upadhyay [6] gave a sub-quadratic preprocessing algorithm
for stretch (3, 10). See also the survey by Sen [26].2

Is stretch α = 3 the best we can expect of a distance oracle with sub-quadratic space?
Pǎtraşcu and Roditty [21]3 provide an oracle with constant query time, stretch (2, 1),
space O(n5/3), and polynomial preprocessing time. The tradeoff between stretch and space
is asymptotically optimal assuming the hardness of set intersection [21, 22]. Less well known,
the work of Baswana, Goyal, and Sen [7] contains a data structure that is remarkably similar

1 For larger stretch values, Wulff-Nilsen [36] provides the fastest preprocessing times and Chechik [13, 14]
provides the fastest query times; for a survey, see [27].

2 Again for larger stretch values, Wulff-Nilsen [36] further improved the preprocessing times.
3 See also Abraham and Gavoille [2] for a distributed distance oracle, also known as a distance labeling

scheme, as well as Agarwal and Brighten Godfrey [4].
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to the distance oracle in the result of Pǎtraşcu and Roditty [21], implicitly providing an
Õ(mn2/3) bound on the preprocessing time for (2, 1)-approximate distance oracles.4 They
also provide an Õ(n2)-time algorithm for a data structure with stretch (2, 3) instead of the
optimal (2, 1). Again, the space bound is not stated explicitly as a distance oracle result.
For an overview, see Table 1.

What is the fastest preprocessing time that can be achieved for distance oracles with
multiplicative stretch α < 3? We propose an algorithm that runs in quadratic time (up to
polylogarithmic factors) and computes a (2, 1)-approximate distance oracle. Analogous to
the distance oracles by Abraham and Gavoille [2], the distance oracle can also be distributed
as distance labels.

I Theorem 1. Given an undirected, unweighted graph G on n nodes, there is an Õ(n2)-time
algorithm that computes a (2, 1)-approximate distance oracle of size Õ(n5/3) with query time
O(1).

Previously known quadratic-time algorithms either produce data structures with quadratic
space ([10, 15, 17], see also Section 2.4) or with worst-case stretch (2, 3) (see [7]). Probably
the most interesting technical aspect of the result is the use of an additive spanner free
of charge, i.e., without incurring its typical stretch penalty (the query time has a linear
dependency on the additive stretch of the spanner). The argument works for any spanner
with constant additive stretch, and hence is tight due to a recent lower bound by Abboud
and Bodwin [1].

For general graphs, Theorem 1 seems hard to improve upon (modulo logarithmic factors)
for two reasons (beyond the obvious reason that the algorithm needs to read the graph
with potentially Ω(n2) edges): the space-stretch tradeoff is essentially tight due to a set
intersection lower bound [21, 22], and the preprocessing-stretch-query tradeoff is essentially
tight as for distance oracles with quadratic preprocessing time and Õ(1) query time (but
independent of the space), any improvement of the multiplicative stretch below 2 would
imply a (quasi-)quadratic algorithm for boolean matrix multiplication [3, 17] (the fastest
known combinatorial algorithm runs in roughly cubic time [37]).

For sparse graphs, I am not aware of any arguments against even faster preprocessing
time Õ(m + n5/3) (and no additive +1 stretch if m = Õ(n) [21]). As mentioned above,
Baswana, Goyal, and Sen [7] implicitly prove an Õ(mn2/3) bound on the preprocessing time
(Theorem 5), which for m = Õ(n) is asymptotically optimal. The optimal preprocessing time
for m between ω̃(n) and õ(n2) remains open.

The distance oracle of Theorem 1 roughly works as follows (the description omits Õ-
notation and assumes familiarity with the techniques described in the preliminaries (Sec-
tion 2)): short distances are exact by storing balls and their intersection (as in [2, 7, 21]);
long distances are triangulations via landmarks. However, we cannot afford to compute
exact distances for each node and all n2/3 landmarks. Instead, we group landmarks by
degree (using dominating sets), where paths from/to the 2i landmarks with degree n/2i are
computed in graphs with n2/2i edges plus the edges of an (1, 6)-spanner [35]. The spanner
ensures that distances do not deteriorate too much. For each node v, we compute a set of
portals by sparsifying its set of (up to logn) nearest landmarks to include a landmark with
degree n/2j if and only if it is closer to v than all landmarks with higher degree n/2i (i.e., for
all i < j). At query time, a constant number of landmarks per node is sufficient to guarantee

4 An important reference I unfortunately failed to include when writing [27].
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55:4 All-Pairs Approximate Shortest Paths and Distance Oracle Preprocessing

stretch (2, 1): the query algorithm triangulates via landmarks by increasing degree, and each
subsequent landmark implies that the target distance increases by at least 1.

The overall framework is described in Section 3. The main part of the argument is
formalized as a distance oracle for heavy paths, where a path is defined to be heavy if it
passes through two consecutive high-degree nodes, see Section 4.

2 Preliminaries

2.1 Spanners
Spanners [23] are relatively sparse subgraphs with additional properties such as stretch
bounds on shortest-path distances. A spanner is deemed to have stretch (α, β) if dH(u, v) 6
α · dG(u, v) + β. Note that, since H is a subgraph, dG(u, v) 6 dH(u, v). While there are no
known distance oracles or distance labeling schemes with constant additive stretch (and are
unlikely to exist [19, 21, 28]), such spanners can be computed efficiently. The preprocessing
algorithm in this paper invokes the following spanner construction as a subroutine.

I Theorem 2 (Woodruff [35]). Given an undirected, unweighted graph G on n nodes, there
is an Õ(n2)-time algorithm that computes a (1, 6)-spanner with Õ(n4/3) edges.

Recently, Abboud and Bodwin [1] proved that Theorem 2 is tight in a very strong way.
Any spanner with constant additive stretch must have essentially n4/3 edges. More precisely,
they prove the following.

I Theorem 3 (Abboud and Bodwin [1]). For all ε > 0 there exists a δ > 0 and an infinite
family of graphs G = (V,E) such that for any subgraph H = (V,E′) with |E′| = O(n4/3−ε),
there exist nodes u, v ∈ V with dH(u, v) = dG(u, v) + Ω(nδ).

Their result illustrates the limitations of the construction in this paper. There is no better
spanner than Woodruff’s for our purposes (as long as we are indifferent to log factors in the
Õ(·) notation).

2.2 Balls and Clusters
While long distances can be approximated well using triangulation via landmarks, many
distance oracles handle short-range distances using balls and clusters [2, 21, 22, 31].

I Definition 4 (Balls and Clusters). Given a graph G = (V,E) and a set of landmarks L ⊆ V ,
the ball of a node v with respect to L is BL(v) := {u : d(v, u) < d(v, L)}. The cluster of a
node u with respect to L is CL(u) := {v : d(v, u) < d(v, L)}.

Note that v ∈ CL(u) if and only if u ∈ BL(v).
For any 0 < ` < n, random sampling with probability `/n yields ` landmarks (in

expectation) and average ball and cluster sizes of O(n/`). A sampling algorithm of Thorup
and Zwick [30] computes a set of landmarks L such that no node cluster CL(u) is larger
than O(n/`) and |L| = O(` logn). The running time of their algorithm is bounded by
O((mn logn)/`). Abraham and Gavoille [2] extend the Thorup-Zwick sampling algorithm to
also guarantee worst-case bounds on balls |BL(v)| = O(n/`).

Roditty, Thorup, and Zwick [25] provide a deterministic algorithm (based on hitting sets)
to select landmarks. They also claim (without proof due to lack of space) that their algorithm
can be used to de-randomize the quadratic-time preprocessing algorithm of Baswana and
Sen [9].
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2.3 Stretch-2 Distance Oracles
In the following, we give a brief description of the distance oracles by [2, 4, 21] for unweighted
graphs. Similar arguments were also used in the analysis for all-pairs approximate shortest
path algorithms [7].

The preprocessing algorithm starts by selecting a set of landmarks L of size roughly
|L| = Õ(n2/3) such that |BL(u)| , |CL(u)| = Õ(n1/3) for all u ∈ V (see sampling algorithm
above). Long-range distances (global queries) are answered by triangulation using the
landmark closest to either of the query nodes. To prepare for those queries, the preprocessing
algorithm computes distances for all pairs of nodes in V × L. Short-range distances (local
queries) are answered using super balls SL(·). For each node u, the algorithm computes the
distance to all nodes in its ball BL(u) as well as all nodes v whose balls BL(v) intersect with
BL(u), i.e., SL(u) := BL(u) ∪

⋃
w∈BL(u) CL(w). Since the sizes of both BL(·) and CL(·) are

bounded by Õ(n1/3), super balls contain at most |SL(u)| = Õ(n2/3) nodes.
The query algorithm for source s and target t checks whether t ∈ SL(s) or s ∈

SL(t). If so, the exact distance has been pre-computed (a local query). Otherwise, let ls
and lt denote the landmarks closest to s and t, respectively. The long-range distance
min {d(s, ls) + d(ls, t), d(s, lt) + d(lt, t)} is returned.

For the stretch analysis, we need to bound the distance returned for global queries.
Without loss of generality, let us assume d(t, lt) 6 d(s, ls). Since BL(s) and BL(t) do not
intersect, d(s, t) + 1 > d(s, ls) + d(t, lt) > 2d(t, lt). By the triangle inequality, d(s, lt) 6
d(s, t) + d(t, lt), hence the distance estimate is at most d(s, t) + 2d(t, lt), which is bounded
by 2d(s, t) + 1.

Baswana, Goyal, and Sen [7, Theorem 5.1] provide a randomized preprocessing algorithm
with expected running time O(m2/3n logn+ n2). More generally, they prove the following.

I Theorem 5 (Baswana, Goyal, and Sen [7]). For any p ∈ (0, 1), an undirected unweighted
graph G = (V,E) can be preprocessed in expected O(m logn+ n2 + (n/p2) logn+mnp logn)
time to build a data structure that can report (2, 1)-approximate distances in constant time.

Instead of super balls, a so-called overlap matrix is pre-computed to decide whether two balls
intersect BL(u) ∩BL(v) ?= ∅. The landmark set L is computed using the sampling algorithm
of Thorup and Zwick [30] (see also Section 2.2) to ensure that balls and their intersections
are not too large.

2.4 High-Degree Dominating Sets
Recall that a dominating set of a graph G is a subset of nodes D ⊆ V (G) such that each
node is in D or has a neighbor in D. Aingworth, Chekuri, Indyk, and Motwani [5] prove
that for a set of high-degree nodes there is an algorithm that can find a small dominating set
(the algorithm is a greedy algorithm with logarithmic approximation ratio).

I Theorem 6 (Aingworth et al. [5]). Let G = (V,E) be an undirected graph with n := |V | and
m := |E|, and let Vδ := {v ∈ V : deg(v) > δ}. There is an algorithm that finds a dominating
set for Vδ with size O((n logn)/δ) in time O(m+ nδ).

Building on this theorem, they derive an Õ(n5/2)-time algorithm computing all-pairs ap-
proximate shortest paths with stretch (1, 2). The dominating-set technique has been used
extensively in algorithms for APASP (and related algorithms). Dor, Halperin, and Zwick [17,
Theorem 6.2] compute an (1, 2)-approximate spanner in time Õ(n2) as follows (Algorithm 1):
for decreasing node degrees (n/2i), split the nodes into high-degree and low-degree nodes,

ICALP 2016



55:6 All-Pairs Approximate Shortest Paths and Distance Oracle Preprocessing

compute a dominating set for the high-degree nodes (as in Theorem 6), compute a BFS tree
from each node in the dominating set in the subgraph with edges adjacent to at least one
low-degree node, and return the union of all these BFS trees.

1: for i ∈ {0, 1, 2, 3, . . . , dlog2
√
ne} do

2: δi = n/2i
3: Vi = {v ∈ V : deg(v) > δi}, Ei = {uv ∈ E : deg(u) < 2δi or deg(v) < 2δi}
4: Di = dominate(Vi) (as in Theorem 6)
5: for p ∈ Di do
6: Ti(p) = bfs(V,Ei)(p) (where Ti denotes the edges of the breadth-first tree)
7: end for
8: end for
9: return

⋃
i,l∈Di

Ti(p)
Algorithm 1: Spanner construction by Dor, Halperin, and Zwick [17, Figure 7].

Cohen and Zwick [15] and Baswana and Kavitha [8] also provide algorithms similar to
Algorithm 1 with different parameters and analysis.

Yet another instantiation of the above algorithm and framework is due to Berman and
Kasiviswanathan [10]. Their all-pairs approximate shortest path algorithm computes (2, 1)-
approximate distances in time O(n2 log2 n). Their main loop is essentially as in Algorithm 1,
Lines 1–8 for i up to dlog2 ne. Each node v remembers its nearest landmark li(v) (for each
level i, and with arbitrary tie breaking). Distance estimates d̃(s, t) are computed as the
minimum over all i of the triangulation via the landmark of s or via the landmark of t. We
apply and extend their argument in Section 4.2.2.

3 Proof of Theorem 1

We split the problem into a dense case and a sparse case, where sparse means O(n4/3) edges.
The overall distance oracle simply returns the minimum from both data structures.

As in most shortest-path algorithms using dominating sets (see Section 2.4), edges uv are
classified by minimum degree of their adjacent vertices u and v:

I Definition 7 (Edge Degree). The degree of an edge uv ∈ E(G), denoted by deg(uv), is
defined as deg(uv) := minu,v {deg(u), deg(v)}.

Let Gδ denote the subgraph of G induced by all edges uv for which deg(uv) 6 δ. Note
that |E(Gδ)| = O(n · δ), since each edge contributes to the degree of two nodes. As degree
threshold in our proof, let ∆ be the smallest power of 2 greater than n1/3.

For the sparse case, we run the O(n2 +m2/3n logn)-time algorithm of Baswana, Goyal,
and Sen [7] (Theorem 5) on G∆. For m = O(n4/3), the running time is O(n2). As mentioned
in the introduction, their data structure is similar to the distance oracles by Pǎtraşcu and
Roditty [21] and Abraham and Gavoille [2]. See Section 2.3 for more details.

For the dense case, we compute a data structure for G called Heavy Path Oracle. It
is essentially an approximate distance oracle but limited in the following way: it can only
return heavy paths.

I Definition 8 (Heavy Paths). A path is called δ-heavy if and only if it contains an edge uv
with degree deg(uv) > δ.
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Quite naturally, and analogously to a shortest path, there is a shortest δ-heavy path between
any pair of nodes s, t ∈ V (G). Let the shortest δ-heavy distance between s and t be the
length of a shortest δ-heavy path between s and t.

The distance oracle for the dense case handles those pairs correctly for which any shortest
path is ∆-heavy. If no shortest path between s and t is ∆-heavy, any shortest path must be
in G∆, and hence the distance oracle for the sparse case provides an accurate estimate.

The remainder of this paper is devoted to the proof of the following lemma, which
concludes the proof of Theorem 1.

I Lemma 9 (Heavy Path Oracle). Given an undirected, unweighted graph G on n nodes,
let ∆ denote the smallest power of 2 greater than n1/3. There is an Õ(n2)-time algorithm
that computes a data structure of size Õ(n5/3) with query time O(1) that returns (2, 1)-
approximations for shortest ∆-heavy distances.

4 Heavy Path Oracle

We prove Lemma 9 by adapting the APASP algorithms of Dor, Halperin, and Zwick [17] and
Berman and Kasiviswanathan [10].

As typical in distance oracles, each node v ∈ V stores distances to a set of landmarks,
chosen as the union of hierarchical dominating sets (details below). Furthermore, each node
stores a constant-size subset of nearby landmarks called portals. At query time, triangulation
happens via portals.

4.1 Preprocessing Algorithm
For a pseudo-code description, see Algorithm 2. Given G = (V,E), the algorithm begins by
computing a sparse (1, 6)-spanner H = (V, S) as in Theorem 2. Recall that Gδ is defined to
be the subgraph of G induced by all edges uv for which deg(uv) 6 δ. In the remainder of the
preprocessing algorithm, each breadth-first search in a subgraph Gδ = (V,Eδ) of G = (V,E)
shall also consider the edges of the spanner, i.e., the breadth-first search is executed in
Gδ +H = (V,Eδ ∪ S).

Independent of the spanner, the edge set E is organized into dlogn2/3e hierarchical classes:
for δi = n/2i, let Vi := {v ∈ V : deg(v) > δi}. Class Ei consists of all edges uv for which u
or v has degree < 2δi. The algorithm then finds a dominating set for Vi, denoted by Li (the
union of all Li is the landmark set). For each node ` ∈ Li, the algorithm runs a breadth-first
search in (V,Ei∪S), computing and storing distances d(V,Ei∪S)(`, ·). Each node v remembers
its nearest landmark as a portal pi(v) if and only if it is closer than all portals pj(v) on
previous levels j < i. This selection of portals is essential for the query time and stretch
analysis. Let K > 12 (twice the additive stretch of the spanner). For each node v, let P (v)
denote the set that contains the K + 1 portals closest to v.

4.1.1 Space and Running Time Analysis
We have O(logn) distance tables Li × V . The dominating sets are small |Li| 6 Õ(n2/3),
hence the distance tables can be kept (and stored in a distributed way at the non-landmark
node to also enable distance labels).

For each level i, each node v stores distances to all nodes of the dominating set Li. This
dominating set Li has size O(2i logn) due to Theorem 6. The last level has the largest
dominating set of size O(n2/3 logn). The overall space consumption is thus bounded by
O(n5/3 log2 n).

ICALP 2016
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.
1: (V, S) = Spanner(V,E) (as in Theorem 2)
2: for i ∈

{
0, 1, 2, 3, . . . , dlog2 n

2/3e
}

do
3: δi = n/2i
4: Vi = {v ∈ V : deg(v) > δi}
5: Li = DominatingSet(Vi) (as in Theorem 6)
6: Ei = {uv ∈ E : deg(u) < 2δi or deg(v) < 2δi}
7: for ` ∈ Li do
8: BreadthFirstSearch(V,Ei∪S)(`)
9: for v ∈ V do

10: store distance d(V,Ei∪S)(v, `) to landmark
11: if d(V,Ei∪S)(v, `) < d(V,Ei∪S)(v, `i(v)) then
12: `i(v) = ` (remember nearest landmark per level)
13: end if
14: end for
15: end for
16: end for

Portal Selection
17: for v ∈ V do
18: for i ∈

{
0, 1, 2, 3, . . . , dlog2 n

2/3e
}

do
19: if d(V,Ei∪S)(v, `i(v)) < d(V,Ej∪S)(v, `j(v)) for all j < i then
20: store `i(v) as a candidate portal
21: end if
22: end for
23: let P (v) be the first K + 1 portals closest to v
24: end for

Algorithm 2: Preprocessing of graph G = (V,E)

For each level i, the dominating set is computed in time at most O(n2) by Theorem 6.
For each ` ∈ Li the algorithm computes a breadth-first search in a graph with at most
|Ei| = O(n2/2i) plus |S| = Õ(n4/3) edges (the latter are the edges of the (1, 6)-spanner).
Hence, the running time per level is at most O(n2 + |Li| · (|Ei|+ |S|)) = Õ(n2).

Summing up over all levels, the running time is Õ(n2) plus the time to compute the
spanner, which is Õ(n2) by Theorem 2, plus the time to select the portals per node, which is
at most O(n2 logn) (since they are already generated in sorted order).

4.2 Query Algorithm

Distance estimates d̃(s, t) are computed as the minimum over all the triangulations via
portals of s and t: minp∈P (s)∪P (t)

{
d̃(s, p) + d̃(p, t)

}
, where d̃(s, p) and d̃(p, t) denote the

distances stored at s and t, respectively, to/from landmark p.

4.2.1 Query Time

There are K + 1 portals per node, each triangulation requires two table lookups for landmark
distances (one for d̃(s, p) and the other one for d̃(p, t)), hence the query time is O(K) (using
perfect hashing). For the stretch analysis to work, we need K > 12 (twice the additive
stretch of the spanner), hence the query time is constant.
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s u v

`i(u) `i(v)

t
`i(s) uv6 d̃(s, `i(u))

Figure 1 Worst-case stretch when triangulating via landmark `i(s). Distances are in G =
(V,Ei ∪ S). Solid lines depict edges, dashed lines depict paths (which may have no, one, or multiple
edge(s)). Edge uv is an edge on the shortest path with highest degree deg(uv). In this illustration,
query node s is closer to uv than t. Since `i(s) is the nearest landmark for s, we have that
d̃(s, `i(s)) 6 d̃(s, `i(u)).

4.2.2 Stretch Analysis
The stretch bound for the distance estimate d̃(s, t) is derived as follows.

First, let us assume that, instead of triangulating via portals P (·) we were to triangulate
via all closest landmarks of s and t, respectively. For each level i we compute the triangulation
via the nearest landmark of s, i.e., d̃(s, `i(s)) + d̃(`i(s), t), and via the nearest landmark of t,
i.e., d̃(s, `i(t)) + d̃(`i(t), t) and return the minimum.

The following argument is illustrated in Figure 1. Let Ei be the set that contains all
the edges of the shortest s-t path and maximizes i. Let uv ∈ Ei be an edge on this shortest
path that is not in Ei+1 (an edge between two high-degree nodes). The shortest-path length
is d(s, u) + 1 + d(v, t). Suppose d(s, u) 6 d(v, t) (the other case is symmetric). Let us
consider s and its nearest landmark `i(s). Since u ∈ Vi, u or its neighbor is in Li, hence
d̃(s, `i(s)) = d(s, `i(s)) 6 d(s, u) + 1. Triangulating via `i(s) increases the path length by at
most 2d(s, u) + 2 6 d(s, u) + d(v, t) + 2, which yields stretch (2, 1). The same argument is
also used by Berman and Kasiviswanathan [10].

However, we cannot afford to try all landmarks `i(·) at query time since there may
be logarithmically many for each query node. Instead, the preprocessing algorithm filters
landmarks into a set of portals. For a node u, a landmark `i(u) is defined to dominate
landmark `j(u) if i < j and d̃(u, `i(u)) 6 d̃(u, `j(u)), which means that distances from `j(u)
were computed in a subgraph of the one for which distances from `i(u) were computed. Let
D(u, i) denote the set of all landmarks `j(u) that dominate `i(u).

Again, let Ei be the set that contains all the edges of the shortest s-t path and maximizes i.
We distinguish three cases. The first two cases are both fairly straightforward and could be
combined. The most difficult case is the third, where query nodes are far away from the
dense part of the graph, and hence also far away from the heavy edge uv.

`i(s) ∈ P (s) and `i(t) ∈ P (t). The argument above applies since the query algorithm
triangulates via both landmarks and computes a (2, 1)-approximation.
`i(s) ∈ P (s) or D(s, i) ∩ P (s) 6= ∅, and the same holds for t. Let `j(s) be the landmark
in P (s) that dominates `i(s). When triangulating via `j(s), the stretch cannot increase
since d(V,Ej∪S)(s, `j(s)) 6 d(V,Ei∪S)(s, `i(s)). In Figure 1, simply re-label `i(s) with `j(s).
Since Ei ⊆ Ej graph distances cannot increase. Analogous for t.
Neither the landmark nor a dominating landmark are in the portal set. Now the spanner
comes into play. At least one of the nodes must have had more thanK+1 candidate portals
(without loss of generality it is s), otherwise `i(s) or a landmark `j(s) dominating `i(s)
would have to be in P (s). The preprocessing algorithm truncated the portal list. Let
p(0)(s), p(1)(s), . . . p(K)(s) be the sequence of portals for s, ordered by increasing distance
from s, and let x := d(s, p(0)(s)). Each subsequent portal p(j)(s) increases the distance

ICALP 2016



55:10 All-Pairs Approximate Shortest Paths and Distance Oracle Preprocessing

s u v

`i(u) `i(v)

t

p(0)(s). . .p(K)(s)
`i(s) uv

Figure 2 Worst-case stretch when triangulating via portal p0(s). There are K + 1 portals closer
than `i(s). When computing distances from/to these portals, the edges of the (1, 6)-spanner were
used, hence the distortion is bounded.

by at least 1, hence the last portal considered by the query algorithm is at distance at
least d(s, p(K)(s)) > d(s, p(0)(s)) + K. Note that the best landmark for triangulation,
`i(s), is even farther away, i.e., d(s, `i(s)) > d(s, p(K)(s)) > d(s, p(0)(s)) + K = x + K,
otherwise it would have dominated p(K)(s). The shortest-path distance d(s, t) is thus at
least x+K + y, where y := d(t, p(0)(t)). Without loss of generality, let us assume that s
has a portal no farther than t has, i.e., x 6 y. Since the distance is long, we can safely
triangulate using the first portal p(0)(s), which is relatively close to s. Due to always
including the edges S of the (1, 6)-spanner, the additive stretch when triangulating via
p(0)(s) is at most 2(x+ 6), hence the estimate will be at most (x+K + y) + 2(x+ 6).
Multiplicative stretch (2, 1) means the estimate can be 2(x+K + y) + 1. Since x 6 y,
the bound follows for K > 12. See Figure 2.

5 Conclusion

Distance oracles with stretch (2, 1) can be computed in quadratic time (modulo logarithmic
factors) even for dense graphs. The main technical contribution is the use of a spanner
without paying for its stretch penalty (the additive stretch of the spanner only affects the
query time of the distance oracle). Previous attempts using a spanner increased the stretch
to (2, 3), see [7].

The main difficulty lies in computing distances from/to landmarks. Since there are n2/3

landmarks, we cannot afford to compute exact distances to all of them. Our algorithm allows
constant additive distortion using a spanner. Other than pre-computing a spanner, the main
bottleneck of the preprocessing algorithm in this paper is computing distances from n2/3

nodes in a graph with n4/3 edges. If there were a way to compute a spanner with additive
stretch and fewer edges, there might be ways to push the preprocessing time below quadratic
(if the number of edges m is sub-quadratic of course). However, Abboud and Bodwin [1]
recently showed that Woodruff’s spanner [35] is essentially as good as it gets for constant
additive stretch. For stretch-3 distance oracles, there are sub-quadratic algorithms, increasing
the stretch by a small additive constant [6]. For stretch-2 distance oracles, it seems like any
further improvement to preprocessing times may have to find a way around landmarks or
additive spanners.

Another open question is whether the result can be generalized to weighted graphs. The
APASP algorithm of Berman and Kasiviswanathan [10] guarantees stretch (2, w), where w
denotes the largest edge length/weight on the shortest path. There are two main points
where the algorithm and its analysis do not generalize: a) the additive spanner is insensitive
to edge lengths, and b) each subsequent portal p(i)(·) increases the distance by 1, which
would not necessarily be true when edge lengths come into play.
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