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Abstract
In the aversion k-clustering problem, given a metric space, we want to cluster the points into k
clusters. The cost incurred by each point is the distance to the furthest point in its cluster, and
the cost of the clustering is the sum of all these per-point-costs. This problem is motivated by
questions in generating automatic abstractions of extensive-form games.

We reduce this problem to a “local” k-median problem where each facility has a prescribed
radius and can only connect to clients within that radius. Our main results is a constant-factor
approximation algorithm for the aversion k-clustering problem via the local k-median problem.
We use a primal-dual approach; our technical contribution is a non-local rounding step which we
feel is of broader interest.
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1 Introduction

In this paper, we consider the following clustering problem: given a metric space (X,D) with
a set of clients, and a parameter k, the goal is to group the clients into k clusters. For each
client j, the cost incurred by j is its distance to the furthest client in its cluster. The cost of
the clustering is the sum over all clients, more precisely, of the cost incurred by the client.
We call this problem the aversion k-clustering problem.

This question is motivated by a problem in developing abstractions of extensive-form
games. Since finding equilibria in large extensive form games is computationally expensive,
one appealing approach if speeding things up is to develop an abstraction of this game. Since
the abstraction is typically much smaller, existing algorithms can be used to solve them to
find optimal strategies, which can be mapped back to the original game. However, there
is often some loss in going to the abstraction. Recent work of Kroer and Sandholm [19]
on automated abstraction algorithms proposed a following way to model this: since several
states of the original game may be collapsed into a single state in the abstraction, the loss
for each original state is its distance (in a suitably defined metric) to the furthest state that
is collapsed with it. The overall loss is the sum of per-state losses. This is precisely the
aversion k-clustering problem we study in this paper.
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To the best of our knowledge, no prior approximation algorithms were known for the
aversion k-clustering problem. Although it is related in spirit to several other clustering
problems, it has some interesting and unique features. Indeed, something that makes this
problem difficult is its high “sensitivity”. To explain this, observe that in problems like
k-median, if we re-assign a single client j to a new cluster C, loosely this changes the
cost by the distance of the client to the new cluster. However, in aversion k-clustering,
reassigning client j to a new cluster C may also significantly change the cost of all other
clients in C, since j may become their new furthest client. This creates problems for most
standard techniques used for facilty-location problems. Another facility-location problem
with a similar high-sensitivity property is the min-sum clustering problem, for which only
logarithmic approximations are known via HST embeddings and a non-trivial dynamic
program [4, 5]. Since our objective is not linear (due to each client paying the distance to its
furthest cluster-mate), we cannot even use tree embeddings.

The main result of the paper is the following:

I Theorem 1. There is a constant-factor algorithm for the aversion k-clustering problem.

1.1 Our Techniques
A few words about our techniques. To solve aversion k-clustering, we first move to a related
problem that is more convenient to deal with: in the local k-median problem, each potential
facility location in the metric space has a “range” Ri associated with it. Like in k-median,
we need to open k facilities, to minimize the sum of distances from clients to their assigned
facilities. However, we now additionally require that each client j is assigned to some facility
i at distance at most Ri. This problem is NP-hard to approximate, but for our purpose it is
sufficient to solve the relaxed version where clients can still connect at distance O(Ri).

The (relaxed) locality restriction causes many of the standard techniques for k-median,
like local-search and LP-rounding, not to extend to this problem. (In fact, we do not know
of a constact factor approximation algorithm for local k-median which only violates locaility
constraints by a constant factor). However, we are successful in extending a primal-dual
technique to the instances which arise from the aversion k-clustering problem. The following
theorem is our main technical result, from which Theorem 1 follows immediately.

I Theorem 2. There is an approximation algorithm for the local k-median problem that
achieves a constant-factor approximation for instances arising from the aversion k-clustering
problem. Its solutions violate the locality constraints by a constant factor.

We use the primal-dual framework of Jain and Vazirani: we find two solutions that open
k1 and k2 facilities (such that k1 < k < k2) such that the “average” of these two solutions
has low cost and opens k facilities. This part of the analysis is well-understood by now
and we omit details because of space limitations. We can view this average solution as a
“well-behaved” LP solution, which we now have to round to integrally open k facilities.

The main problem with this rounding is the locality constraint — typical algorithms tend
to round some fractional facility up to 1, round down close-by fractional facilities to zero to
maintain the total facility mass at k, and reroute clients to the newly opened facility without
increasing the cost by much. However, the locality constraint in our problem means that
such simple rounding approaches fail. For example, the facility that we open may have a
very small Ri value, and can only serve clients that are very close to it. However, the clients
who want to be rerouted may be too far from this facility to satisfy the locality constraint,
even if it is relaxed to γRi for some constant γ.
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Our main technical contribution, and the novel ingredient of our rounding algorithm is a
non-local rounding approach. We first transform the fractional solution so that its support is
a forest. Then we partition this forest into carefully chosen subtrees, so that all the clients in
each particular subtree can be reassigned simultaneously without violating the locality. Now
choosing the least expensive of these subtrees to reassign gives us a solution with k facilities
and a constant-factor approximation for instances arising from the aversion k-clustering
problem. We feel that this non-local rounding will be useful in other contexts, and hence be
of independent interest.

Related work. Approximation algorithms for facility location problems have been studied for
a long time. Indeed, many approximation techniques have been developed while investigating
these problems (see [22]). The problem closest to the local k-median problem is naturally the
metric k-median problem. The first constant-factor for this problem was due to Charikar et
al. [8] via rounding the LP; subsequently, primal-dual algorithms were given by Jain and
Vazirani [17] and Charikar and Guha [7], a local-search algorithm was given by Arya et
al. [2]. The recent approach of Li and Svensson [21] gave a 2.73 +ε-approximation, which was
improved to 2.675 + ε by Byrka et al. [6]. The current NP-hardness is a 1 + 2/e-factor due
to Jain, Mahdian, Saberi [16]. The related problem of uncapacitated metric facility location
has constant-factor approximations via most approximation techniques: see, e.g., the book
of [22]. The current best approximation factor is 1.488 due to Li [20], and the hardness is an
1.463-factor due to Guha and Khuller [13].

The k-median problem sums over each cluster, the sum of distances of clients to their
cluster center. Instead of taking the sum of distances within each cluster, we could take
the maximum distance within each cluster; this gives the sum of cluster diameters problem,
for which a O(1)-factor is due to Charikar and Panigrahy [9]. And instead of summing
diameters over the clusters, if we take the maximum diameter over all clusters, we get the
k-center problem, for which a 2-approximation is due to Gonzalez [12], and Hochbaum and
Shmoys [14], and a matching hardness is due to Hsu and Nemhauser [15].

Another related problem is the min-sum clustering problem, where we sum over the clusters
of the distances between all pairs within the cluster. Bartal et al. [4] give a O(ε−1 log1+ε n)-
approximation, which was recently improved to O(logn) by Behsaz [5]. There are easy
examples where these problems differ from aversion k-clustering by arbitrarily large factors.
Moreover, the non-linearity of our objective function means that we cannot use tree embedding
results to even get a logarithmic approximation.

Our algorithm takes a primal-dual approach pioneered by Jain and Vazirani [17]; while
solving the Lagrangian relaxation and getting a Lagrangian-multiplier preserving algorithm
follows relatively easily, the main contribution is in the non-local rounding algorithm. This
adds to the body of work exploring such primal-dual techniques, which include the work
of Charikar and Panigrahy [9] to give a O(1)-factor approximation for the sum of cluster
diameters, and Chuzhoy and Rabani [10] in their O(1)-factor bicriteria approximation for the
capacitated k-median problem. Non-local roundings of a different flavor were also recently
used for the capacitated k-center problem by Cygan et al. [11] and An et al. [1]. To the best
of our understanding, our rounding technique is different from these previous works.

2 Preliminaries

Let (X,D) be a metric space and let C ⊆ X be the set of clients and F ⊆ X be the set of
facilities. The aversion k-clustering problem is the task to partition C into a collection C of
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k disjoint subsets C1, . . . , Ck with C = ∪ki=1Ci such that

ca(C) :=
k∑
`=1

∑
j1∈C`

max
j2∈C`

D(j1, j2) (P1)

is minimized.
For the local k-median problem, we additionally get a radius (or range) Ri for every i ∈ F .

We seek a set F ⊆ F of k facilities that minimizes

cl(F) :=
∑
j∈C

min
i∈F,

D(i,j)≤Ri

D(i, j).

This differs from the classical k-median problem in that a client can only be assigned to a
facility if it lies within the facility’s radius. It is possible that there is no set of k facilities
which can service all clients. If this is the case, we define the minimum clustering cost as
infinity. In the following claim, we show that it is NP-hard to decide whether we are in this
case or not.

I Claim 1. Deciding feasibility of a local k-median instance is NP-hard.

Proof. We use a well-known reduction from set cover. Let S be a set of sets over a universe
U . We construct a metric space that contains a facility iS for every set S ∈ S and a client ju
for every element u ∈ U . The distance between ju and iS is one if u ∈ S and two otherwise.
Observe that this is a metric. We set the radius RiS of all facilities to one. Observe that
there is a feasible solution for this local k-median instance if and only if the set cover instance
has a solution with at most k sets. Since deciding whether a set cover instance has a solution
with at most k sets is NP-hard [18], it is also NP-hard to decide whether there is a feasible
solution for the local k-median problem. J

Any approximation algorithm has to decide whether there is a feasible solution or not.
Hence, we allow the locality constraint to be violated; i.e. a client may connect to a facility i
if it is within a radius of γRi for a constant γ. We say a solution is a (γ, ψ) bicriteria solution
if the solution violates the locality constraints by a factor of γ and has cost at most ψ times
the optimal (with respect to the original problem).

3 Solving the aversion k-clustering problem via the local k-median
problem

We show that the aversion k-clustering problem can be reduced to the local k-median
problem by sacrificing a constant factor. The idea is to identify a cluster C` with a pair of
points with largest distance and to use this information to represent clusters by an artificial
facility with appropriate radius. More precisely, we define the following metric space. Set
F := {pj1j2 | j1, j2 ∈ C} and refer to pj1j2 as the midpoint of clients j1 and j2. To extend D
from C to C ∪ F , we set

D(j1, pj1j2) := D(j2, pj1j2) = D(j1, j2)
2 and D(pj1j2 , pj1j2) := 0

for all j1, j2 ∈ C. So far, no metric property is violated. Now imagine the incompletely
defined metric as a weighted undirected graph G on the vertices C ∪F where some edges are
missing. Let D be defined as the shortest path metric in G. This is a metric by definition. It
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coincides with the previously defined distances since in a metric, the direct edge must be a
shortest path. For the missing edges, we get that

D(j, pj1j2) = D(pj1j2 , j) = min{D(j, j1), D(j, j2)}+ D(j1, j2)
2 (1)

for all j ∈ C: The point pj1j2 is only connected to j1 and j2, thus any path between j

and pj1j2 has to travel over one of them. Since the edge lengths form a metric, the direct
connection between j and j1 or j2 is shortest, so either (j, j1), (j1, pj1j2) or (j, j2), (j2, pj1j2)
is a shortest path. Analogously, we get that

D(pj1j2 , pj3j4) = D(j1, j2)/2 +D(j3, j4)/2 + min{D(j1, j3), D(j1, j4), D(j2, j3), D(j2, j4)}

for all j1, j2, j3, j4 ∈ C. Finally, we define

Rpj1j2
:= D(j1, j2)/2 (2)

for all pj1j2 ∈ F . Notice that our definition of F allows that j1 = j2. This ensures that
singleton clusters can be expressed. Furthermore, notice that Rpj1j1

= 0, so the facility pj1j1

can only serve j1 (or clients at the same location).
For any facility pj1,j2 , we will drop the reference to j1 and j2 when it is clear from the

context. Hence, p ∈ F refers to the midpoint of some two clients j1 and j2 and the radius of
the facility Rp simply refers to half the distance between these points. Intuitively, each new
“facility” corresponds to a midpoint of two clients in the original problem. These midpoints
allow us to cast the current problem as a k-median problem with the addition of locality
constraints placed on each facility.

We now show how solutions for the aversion k-clustering problem and (γ, α) bicriteria
solutions for the local k-median problem are related. For a client j, let F γj := {i ∈ F |
D(i, j) ≤ γRi} be the set of facilities that j is allowed to connect to. The following integer
linear program (ILP) which is a (natural) modification of the ILP proposed in [3] minimizes
over all feasible (γ, α) bicriteria solutions.

min
∑
j∈C

∑
i∈Fγ

j

D(i, j) · xi,j (ILPγ)

∑
i∈F

yi ≤ k∑
i∈Fγ

j

xi,j ≥ 1 ∀j ∈ C

yi − xi,j ≥ 0 ∀j ∈ C, i ∈ F γj
xi,j , yi ∈ {0, 1} ∀j ∈ C, i ∈ F γj

ILPγ has a variable yi for each i ∈ F that indicates whether the ‘facility’ i is opened, and
a variable xi,j for any combination of an original point j and a facility i ∈ F γj that says
whether j is connected to i.

Let (x, y) be any solution of ILPγ and let c(x, y) be the cost of the solution. We relate
the solutions of ILPγ to the problem (P1) by the following lemmas.

I Lemma 3. Given a solution (x, y) of ILPγ, there exists a solution C = {Cl}kl=1 to (P1)
which has cost no more than ca(C) ≤ (γ + 1)c(x, y).

ICALP 2016
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Proof. Since (x, y) is an integral solution, let {p1, . . . , pk} ⊆ F denote the facilities which
are opened. We define the cluster Ci to be the set of clients j such that xpi,j = 1. For
any client j ∈ Ci, let j′ ∈ Ci be the client which maximizes D(j, j′). Since D is a metric,
we know that D(j, j′) ≤ D(pi, j) + D(pi, j′). By the locality constraint, it holds that
D(pi, j′) ≤ γRpi . By definition of D and Rpi , we know D(pi, j) ≥ Rpi , which implies
D(pi, j′) ≤ γD(pi, j). Hence, D(j, j′) ≤ (γ + 1)D(pi, j). Summing this over all clients, we
conclude that ca(C) ≤ (γ + 1)c(x, y). J

I Lemma 4. Given a solution C to (P1), we can construct a solution (x, y) to ILPγ(where
γ ≥ 3) which has cost 1

2ca(C) ≤ c(x, y) ≤ 2ca(C).

Proof. Fix a cluster Ci, let j1, j2 ∈ Ci be two clients which maximize D(j1, j2). Open
facility pj1j2 and connect all clients in Ci to it. Notice that it holds D(j, pj1j2) = Rpj1j2

+
min{D(j, j1), D(j, j2)} ≤ 3Rpj1j2 because D(j1, j2) is the maximum distance between two
clients in Ci and because D(j1, j2) = 2Rpj1j2

. Thus, the solution is feasible for γ = 3.
For any client j ∈ Ci, let j′ ∈ Ci be the element which maximizes D(j, j′). For the first

inequality notice that each client j will pay at least D(j, pj1j2) ≥ 1
2D(j1, j2) ≥ 1

2D(j, j′).
Observe that D(j, j′) ≥ max{D(j, j1), D(j, j2)} ≥ (D(j, j1) + D(j, j2))/2 ≥ D(j1, j2)/2.
Combining this with the observation that D(j, j′) ≥ min{D(j, j1), D(j, j2)}, we get that

D(pj1j2 , j) = min{D(j, j1), D(j, j2)}+D(j1, j2)/2 ≤ 2 ·D(j, j′).

Summing over all clients gives the second inequality. J

Let optγilp be the optimal value for ILPγ and let opta be the value of an optimal solution
for (P1). Lemma 4 implies that opt3ilp ≤ 2 · opta. Assuming we compute an ψ-approximate
solution to the optimal ILP3 solution that violates the locality constraint by an additional
factor of %. Then this solution costs at most ψ · opt3ilp ≤ 2ψ · opta and violates the locality
constraints by 3%. By Lemma 3, we can then construct a feasible solution for (P1) that costs
at most (3%+ 1) · 2ψ · opta.

3.1 Good fractional solutions for the local k-median problem
Since problem ILPγ is NP-hard, we relax the integrality constraints to obtain a linear
program. The only difference between the standard k-median relaxation and LPγP is the
locality constraint, i.e., each client j can only connect to facilities in F γj .

min
∑
i,j

D(i, j)xi,j (LPγP)

s.t.
∑
i∈Fγ

j

xi,j ≥ 1 ∀j ∈ C

yi − xi,j ≥ 0 ∀j ∈ C, i ∈ F γj∑
i∈F
−yi ≥ −k

x, y ≥ 0.

max
∑
j

αj − kZ (LPγD)

s.t.
αj ≤ D(i, j) + βi,j ∀j ∈ C, i ∈ F γj∑
j:i∈Fj

βi,j ≤ Z ∀i ∈ F

α, β, Z ≥ 0.

The above LP is very similar to the LP for facility location and this fact was exploited by
Jain and Vazirani to show that primal-dual solutions to the facility location problem can be
transformed into the solutions for the k-median problem. Let LP-FγP be the facility location
variant of LPγP , and let LP-FγD be its dual:
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min
∑

i∈F,j∈C
D(i, j)xi,j +

∑
i∈F

fiyi (LP-FγP)

s.t.
∑
i∈Fγ

j

xi,j ≥ 1 ∀j ∈ C

yi − xi,j ≥ 0 ∀j ∈ C, i ∈ F γj
x, y ≥ 0.

max
∑
j

αj (LP-FγD)

s.t.
αj ≤ D(i, j) + βi,j ∀j ∈ C, i ∈ F γj∑
j:i∈Fγ

j

βi,j ≤ fi ∀i ∈ F

α, β ≥ 0.

Augmenting ideas introduced by Jain and Vazirani [17], we obtain integer solutions to LP-FγP .
This produces two solutions (x1, y1) and (x2, y2) that are nearly feasible for LP3γ

P , but∑
i y

1
i = k1 < k and

∑
i y

2
i = k2 > k. A suitable convex combination of the two is a feasible

solution for LP3γ
P and is a constant factor away from the optimal value of LPγP .

I Lemma 5. Given any ε > 0 and γ > 0, there exists a polynomial time algorithm which finds
two feasible integer solutions (x1, y1), (x2, y2) for LP-F3γ

P with the following properties:
1.
∑
i y

1
i = k1 and

∑
i y

2
i = k2 for two integers k1 < k < k2.

2. Set ρ = k2−k
k2−k1

. The solution (x̂, ŷ) = ρ(x1, y1) + (1− ρ)(x2, y2) is feasible for LP3γ
P with

cost at most (3 + ε) times the optimal solution to LPγP .

Since the essential ideas behind this lemma use standard techniques, we omit the full proof
because of space limitations. The main differences to the standard Jain-Vazirani primal-dual
process are as follows: When finding the initial set of open facilities, we restrict clients to
paying and connecting only to facilities whose radius they lie in. In the clean-up step, the
Jain-Vazirani algorithm selects the finally open facilities by finding an arbitrary independent
set of facilities in some graph. We use the freedom to choose any independent set and choose
a set that ensures that clients that have to be reassigned (because their original facility was
closed) can always be routed to an open facility with higher radius than their original facility.

3.2 Rounding
Given any two integer solutions (x1, y1) and (x2, y2) for LP-FγP , which open A,B ⊆ F

facilities, respectively, we define a weighted bipartite graph G(x1, y1, x2, y2) as follows. The
graph is defined on the vertex set with bipartitions A and B. We connect i ∈ A to i′ ∈ B if
there exists a client j such that x1

i,j = 1 and x2
i′,j = 1. The weight of an edge (i, i′) is the

number of clients j which satisfy the above requirement.

I Lemma 6. The following holds for local k-median instances that arise from the aversion
k-clustering problem. Given two integer solutions (x1, y1), (x2, y2) for LP-FγP which open
facilities A,B ⊆ F , respectively, we can construct solutions (x̃1, ỹ1), (x̃2, ỹ2) that satisfy:
1. (x̃1, ỹ1) opens facilities A and (x̃2, ỹ2) opens facilities B.
2. If (x1, y1), (x2, y2) are feasible for LP-FγP , then (x̃1, ỹ1), (x̃2, ỹ2) are feasible solutions to

LP-F3γ
P , and they satisfy c(x̃1, ỹ1) ≤ 3γc(x1, y1) and c(x̃2, ỹ2) ≤ 3γc(x2, y2).

3. The graph G(x̃1, ỹ1, x̃2, ỹ2) is a forest.

Proof. We will assume that all radii are distinct (we can ensure this, e.g., by adding
a tiny amount of noise to all the radii, or by breaking ties consistently). We say that

ICALP 2016
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↓R increases
i

i∗

i′

j∗

j
D(j, i∗) ≤ γ(Ri + Ri + Ri∗) ≤ 3γ · Ri∗

(violation of Ri∗ by factor 3γ)
also notice that 3 · Ri∗ ≤ 3 · Ri′

thus the cost can go up by a factor of 3γ

Figure 1 Removing all but one down edge for client i.

an edge {i, i′} in G(x1, y1, x2, y2) is a down edge for i if Ri′ > Ri. For i ∈ A ∪ B, let
D(i) := {i′ | {i, i′} is a down edge} be the set of facilities that are connected to i by down
edges. Furthermore, for every i ∈ A ∪B, let i∗ be a facility that minimizes {Ri | i ∈ D(i)},
i.e., i∗ is the endpoint of a ‘highest’ down edge. For each i ∈ A ∪B, we modify assignments
as follows. For all clients j ∈ C connected to i, and to some facility i′ ∈ D(i) in (x1, y1),
(x2, y2), we reassign them to now connect to i and i∗ in (x̃1, ỹ1), (x̃2, ỹ2). Thus, for all clients
j ∈ C originally connected to i and i∗, the assignment does not change.

Let us calculate the costs of the resulting assignment. Let i′ ∈ D(i) be a facility with
i′ 6= i∗ and let j be a client that is reconnected from i′ to i∗. Notice that D(i, i∗) ≤ γRi+γRi∗
since at least one client lies within the (γ-expanded) radius of i and i∗ simultaneously. We
observe that D(j, i∗) ≤ D(j, i) + D(i, i∗) ≤ γ(Ri + Ri + Ri∗) ≤ 3γ · Ri∗ by the triangle
inequality and by Ri∗ ≥ Ri. Thus, the new solution violates the locality constraint for j by a
factor of at most 3. Since Ri∗ is the smallest radius for all facilities in D(i), it holds that
Ri∗ ≤ Ri′ . Thus, we also have D(j, i∗) ≤ 3γRi′ . Moreover, since the instances arise from
local k-median, equations (1) and (2) imply that D(j, i′) ≥ Ri′ . (This is the only part of the
proof that relies on the local k-median instances arising from aversion k-clustering). Hence
we have D(j, i∗) ≤ 3γRi′ ≤ 3γD(j, i′). Thus the cost of each client j is increased by a factor
of at most 3γ, which immediately proves Property 2. (Figure 1 visualizes this calculation).

We do not open or close any facilities, thus Property 1 is true. To see Property 3 holds,
note that by the distinct radii assumption, any cycle would contain a facility with two down
edges, which is no longer possible after the reassignment. J

Lemma 6 transforms our solution such that it corresponds to a forest T on the vertices
A ∪ B. We first assume that T is a tree and later deal with each connected component
separately. We use the tree structure to define a depending rounding procedure to combine
A and B into an integral solution C with low cost. It will be crucial to look at the difference
between the number of vertices from B and A in subtrees of T .

I Definition 7. For any subtree of T ′ ⊆ T , we define the deficiency of T ′ to be df(T ′) =
|B(T ′)| − |A(T ′)| where B(T ′) (and A(T ′)) are the vertices from B (and A) in this subtree.

We start with C = B. Then we find a subtree T ′ with df(T ′) = 1, i.e., one node more
from B than from A. We want to close all facilities in B(T ′), open all facilities in A(T ′) and
reconnect the affected clients. We want that the reassignment follows the assignments in
(x̃1, x̃2), so all facilities in A that are adjacent to B(T ′) must be contained in A(T ′). We
then iterate this process with more subtrees until C has exactly k vertices. Since we gain
one for every subtree, we need t := k2 − k subtrees until |C| was reduced from k2 to k. The
subtrees must be disjoint on the B side, while the vertices from A can overlap. The following
lemma shows that we can find a large set of suitable subtrees from which we can choose the
cheapest t later. Figure 2 visualizes two examples.
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r r

Figure 2 Examples on finding subtrees of G(x1, y1, x2, y2) with df(Ti) = 1. The two left pictures
show a simple special case that also is a worst case for the number of subtrees: The deficiency of the
shown forest F is df(F ) = 2k = 10 and we get df(F )/2 = 5 subtrees by pairing the nodes from B.
The two right pictures show a connected tree T with df(T ) = 7 and 4 subtrees with df(Ti) = 1.

I Lemma 8. Given any tree T with ddf(T )/2e = l and root r ∈ A, we can find l subtrees
T1, . . . , Tl of T with
1. df(Ti) = 1
2. B(Ti) ∩B(Tj) = ∅
3. A(δ(B(Ti))) ⊆ A(Ti)
where we use δ(X) to denote the set of edges from X to X̄.

Proof. Let r be the root of T and c1, . . . , cν be the children of r. Our proof will proceed
with induction on the height of T . By removing a subtree T ′ we mean that we remove all
edges that are in T ′ from T and all vertices except the root of T ′.
Induction Hypothesis: There exist subtrees T1, . . . , Tz, z ∈ N0, of T that satisfy:
1. Each subtree Ti is rooted at a vertex in A and satisfies that df(Ti) = 1.
2. After removing T1, . . . , Tz from T , the following holds. If r ∈ B then df(T ) ≤ 1. If r ∈ A

then df(T ) ≤ 0.

Base Case: T has height 0 or 1, i.e., it is a star. If r ∈ B, then df(T ) ≤ 1 because there
is only one node from B. If r ∈ A, then we can remove the children in pairs until there
are no pairs left. This is because the subtree consisting of r and any two of its children
has deficiency 1. Therefore, each pair and the root will correspond to a subtree (one of Ti
mentioned in the IH) that we remove. After removing them, T consists of only r or r and
one node from B. In both cases, df(T ) ≤ 0.
Induction Step:
Case r ∈ B: By the induction hypothesis (IH), we can remove some subtrees to ensure

that each subtree rooted at c1 . . . cν will have deficiency at most 0. Since df(T ) =∑ν
i=1 df(Trooted at ci) + 1 ≤ 1, we can conclude that this satisfies the first property in the
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IH. Since we didn’t remove any additional subtrees, the second property is vacuously
satisfied.

Case r ∈ A: By the IH, we know that the subtree rooted at each child ci has deficiency
df(ci) ≤ 1. Without loss of generality, let c1, . . . , cp be the children which have deficiency
1 and cp+1 . . . cν have deficiency ≤ 0. If p ≤ 1, then df(T ) ≤ 0. If p ≥ 2, then we remove
pairs of children with positive deficiency. Observe that the subtree rooted at r containing
only the children c1 and c2 has deficiency exactly 1. Hence, these satisfy the second
property in the IH. We continue this process until there is at most 1 child which has
positive deficiency, at which point the the first property is satisfied. This ensures that
the induction step is satisfied.

Notice that each removed subtree has deficiency one. Since we keep the root, the deficiency
decreases by two for each removed subtree. When r ∈ A as assumed in the lemma, then
df(T ) is decreased to at most zero. Thus, at least ddf(T )/2e subtrees are removed. J

For a forest F consisting of trees F1, . . . , Fx, set df(F ) :=
∑x
j=1 df(Fj). We can find

ddf(Fj)/2e subtrees satisfying the properties of Lemma 8 for every every Fj . Thus, we get

x∑
j=1

⌈
df(Fi)

2

⌉
≥

1
2

x∑
j=1

df(Fi)

 = ddf(F )/2e

subtrees, giving the following corollary.

I Corollary 9. Given any forest F with ddf(F )/2e = l, we can find l subtrees T1, . . . , Tl of
F satisfying the properties from Lemma 8.

We now show Theorem 2. We are given an instance of the local k-median problem that
arises from the aversion k-clustering problem. We know that the solutions for the local
k-median problem that are induced by the aversion k-clustering instance are feasible for
LP-F3

P . Thus, we set γ := 3. Then we use Lemma 5 and Lemma 6 to get two solutions
(x1, y1) and (x2, y2) so that the graph G(x1, y1, x2, y2) is a forest, (x1, y1) opens k1 facilities
and (x2, y2) opens k2 ≥ k1 facilities. Both Lemma 5 and Lemma 6 induce a factor of 3
in the radius violation, so (x1, y1) and (x2, y2) are feasible for LP-F9γ

P . Furthermore, the
intermediate solutions (x̂1, ŷ1) and (x̂2, ŷ2) coming from Lemma 5 have the property that for
ρ = (k2 − k)/(k2 − k1), it holds that ρ · c(x̂1, ŷ1) + (1− ρ) · (x̂2, ŷ2) ≤ (3 + ε) · optγl . Applying
Lemma 6 increases the cost bound by a factor of 3γ. Thus, we know that

ρ · c(x1, y1) + (1− ρ) · c(x2, y2) ≤ (3 + ε) · 3γ · optγl := cmix

for ρ = (k2 − k)/(k2 − k1). If (x1, y1) or (x2, y2) opens exactly k facilities, we are done.
Otherwise, k1 < k < k2. If ρ ≥ 1/2, simply output (x1, y1) which then costs c(x1, y1) ≤
2ρ · c(x1, y1) ≤ 2cmix. We assume that this is not the case, i.e., ρ < 1/2.

We build a solution C and start with C = B. Using Corollary 9, we find 1
2 (k2 − k1)

subtrees T1, . . . , T` of G(x1, y1, x2, y2). For each subtree Ti, we can reassign the clients from
the facilities in B(Ti) to the facilities in A(Ti). We denote the connection cost for assigning
the clients to A(Ti) by c(Ti). Notice that c(x1, y1) ≥

∑`
s=1 c(Ti) because every edge of T

can only appear in one subtree (since the B(Ti) are pairwise disjoint). Thus, if we choose
the t = k2 − k subtrees Ti1 , . . . , Tit with the cheapest c(Ti), then

t∑
z=1

c(Tiz ) ≤
t

`

∑̀
s=1

c(Ti) ≤
t

`
c(x1, y1) = k2 − k

1
2 (k2 − k1)

c(x1, y1) = 2ρ · c(x1, y1).
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The cost of C starts at c(x2, y2) and is increased by at most 2ρ · c(x1, y1). Thus, the solution
costs at most 2ρ · c(x2, y2) + c(x2, y2) ≤ 2ρ · c(x2, y2) + 2(1− ρ) · c(x2, y2) ≤ 2 · cmix where
we recall that ρ < 1/2. Thus, we get an integer solution of cost 2 · (3 + ε) · 3γ · optγl that is
feasible for LP9γ

P . That induces a solution for the aversion k-clustering instance that is a
constant factor approximation as we described below Lemma 4.

3.3 Improving the Approximation Factor
To improve the final approximation ratio for the aversion k-clustering problem, we observe
that the dual variables computed by the primal-dual algorithm can be directly related to
the objective of the aversion k-clustering problem. We split each such dual: Let αO(j)
denote the amount that client j pays to open a facility (the subscript O stands for “open”).
Using the terminology of Jain and Vazirani, we say a client j is directly connected to facility
i if βi,j > 0 and facility i is open. In this case, αO(j) := βi,j . Otherwise, αO(j) = 0.
Define αC(j) := α(j)− αO(j) (intuitively, this is the connection cost—the subscript C is for
connection—that the client has paid for, but for indirectly connected clients we only know
that D(i, j) ≥ αC(j) ≥ (1/3)D(i, j) is true. For directly connected clients, αC(j) = D(i, j).).

I Lemma 10. At the end of the primal-dual algorithm, if client j connects to facility i, then
αC(j) ≥ Ri.

Proof. If j is directly connected to i, then it is immediate that αC(j) = D(i, j) ≥ Ri.
Suppose that j is indirectly connected to facility i′. In this case, let i be the facility that

j was first connected to. Since j is indirectly connected, there has to be a client j′ that has
special edges to both i and i′. We use t(i) and t(i′) to denote the times at which facilities i
and i′ were respectively opened. Notice that αC(j) = α(j) by definition of αC for indirectly
connected clients and that α(j) = t(i) because j was connected to i before.

Case t(i) ≥ t(i′): In this case we know that αC(j) = t(i) ≥ t(i′) ≥ D(i′, j′) ≥ Ri′ .
Case t(i) < t(i′): Since j′ has special edges to i and i′, it had tight edges to both before

either was opened, i.e., D(i′, j′) ≤ t(i). Thus we can say αC(j) = t(i) ≥ D(i′, j′) ≥
Ri′ . J

Once again, we may assume that the Jain-Vazirani algorithm returns two solutions
(x1, y1), (x2, y2) and their duals (α1, Z+) and (α2, Z−). It follows from Jain and Vazirani’s
analysis that the solutions have the following properties.
1.
∑
i y

1
i = k1 and

∑
i y

2
i = k2.

2.
∑
j α

1
C(j) =

∑
j α

1
j − k1 · Z+ and

∑
j α

2
C(j) =

∑
j α

2
j − k2 · Z−

3. x1
i,j = 1 or x2

i,j = 1 =⇒ D(i, j) ≤ 3γRi
4. |Z+ − Z−| ≤ ε
5. For ρ = k2−k

k2−k1
, ρ(α1, Z+) + (1− ρ)(α2, Z−) is feasible for LPγD.

For property 2, notice that α1
C(j) = α1

j for indirectly connected clients, that α1C(j) =
α1
j −βφ(j)j for directly connected clients (where φ(j) is the center j is connected to) and that

the sum of βφ(j)j over all directly connected clients is just k1Z
+. The same holds for the

second solution. Using property 5, we get that ρ(
∑
j α

1
j −k ·Z+)+(1−ρ)(

∑
j α

2
j −k2 ·Z−) is

a lower bound for the optimal value of LPγD and thus also for the optimal value of LPγP . Using
property 2 and 4, this implies that ρ(

∑
j α

1
C(j)) + (1− ρ)(

∑
j α

2
C(j)) ≤ opt(LPγP) + ε. We

apply Lemma 6 to replace x1 and x2 to ensure that the resulting graph G(x1, y1, x2, y2) is a
forest. Note that the procedure only reassigns the clients to facilities with smaller radius than
their currently connected facility. Hence, we can still assume that x1

i,j = 1 =⇒ α1
C(j) ≥ Ri
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(similarly x2
i,j = 1 =⇒ α2

C(j) ≥ Ri). However, we may now have solutions that violate the
locality constraints by a factor of 9γ.

Now we use the procedure described in Lemma 8 to partition the graph G(x1, y1, x2, y2)
into subtrees T1, . . . T` with df(Tp) = 1 for p ∈ {1, . . . , `} and ` = k2−k1

2 . Each tree has
the property that A(δ(B(Tp))) ⊆ A(Tp) for all p ∈ {1, . . . , `}. Since each edge in this tree
represents some set of clients, we use the notation j ∈ Tp to denote that j is associated with
an edge in Tp. Define the cost of the subtree Tp as

∑
j∈Tp α

1
C(j). We choose the k2 − k

cheapest such trees. Since choosing all ` subtrees will result in a cost of
∑
j α

1
C(j), we can

say that the cost of these chosen subtrees is at most 2(k2−k)
k2−k1

∑
j α

1
C(j) = 2ρ

∑
j α

1
C(j).

Our rounded solution (x̂, ŷ) opens all facilities from A that are part of the chosen subtrees
and all facilities from B that are not part of any chosen subtree. Notice that since we open
k2 − k subtrees and these satisfy df(Tp) = 1, ŷ opens exactly k facilities. The assignments of
clients to facilities follow x1 and x2, respectively.

Analogously to Lemma 3, we construct a solution to the aversion k-clustering problem
based on x̂, ŷ. In this solution, each client assigned to a facility pi ∈ A pays at most

D(j, j′) ≤ D(pi, j) +D(pj , j′) ≤ 9γRi + 9γRi ≤ (2 · 9γ)α1
C(j)

where j′ is the furthest away client among all that are assigned to pi. Thus, by our choice of
subtrees, all clients assigned to A pay at most (2 · 9γ)2ρ

∑
j α

1
C(j) in total. The remaining

clients pay at most (2 · 9γ)(
∑
j α

2
C(j)). As before, we can assume that ρ ≤ 1/2. We conclude

that the cost of (x̂, ŷ) is bounded by

(2 · 9γ)
(
2ρ
∑
j

α1
C(j) +

∑
j

α2
C(j)

)
≤ 2(2 · 9γ)(1 + ε)

(
ρ
∑
j

α1
C(j) + (1− ρ)

∑
j

α2
C(j)

)
≤ 2(2 · 9γ)(1 + ε)opt(LPγP)
≤ 2(2 · 9γ)2(1 + ε)opta

where opta is the optimal value for the aversion k-clustering instance and the last inequality
follows by Lemma 4. Since γ = 3, the approximation factor is bounded by 216 + ε.

4 Final Thoughts and Conclusions

This paper shows a (216 + ε)-approximation to the aversion k-clustering problem. Our results
rely on achieving a constant factor bicriteria approximation for local k-median instances
arising from aversion k-clustering problem. Lemma 6 is the only place in our proof where
we use that the local k-median instances are generated from aversion k-clustering instances.
It remains an open question if we can get a constant factor bicriteria approximation for
arbitrary instances of local k-median.

Acknowledgments. We thank Christian Kroer for introducing us to the aversion k-clustering
problem, and for enlightening discussions. We thank anonymous reviewers for constructive
feedback, in particular for pointing out an oversight in Lemma 6 in an earlier draft.

References
1 Hyung-Chan An, Aditya Bhaskara, Chandra Chekuri, Shalmoli Gupta, Vivek Madan, and

Ola Svensson. Centrality of trees for capacitated k-center. Mathematical Programming,
154(1-2):29–53, 2015.



A. Gupta, G. Guruganesh, and M. Schmidt 66:13

2 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
Journal on Computing, 33(3):544–562, 2004.

3 Michel Louis Balinski. On finding integer solutions to linear programs. Technical report,
DTIC Document, 1964.

4 Yair Bartal, Moses Charikar, and Danny Raz. Approximating min-sum k-clustering in
metric spaces. In Proceedings of the 33rd STOC, pages 11–20, 2001.

5 Babak Behsaz, Zachary Friggstad, Mohammad R. Salavatipour, and Rohit Sivakumar. Ap-
proximation algorithms for min-sum k-clustering and balanced k-median. In Proceedings
of the 42nd ICALP, pages 116–128, 2015.

6 Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median, and positive correlation in budgeted optimization.
In Proceedings of the 26th SODA, pages 737–756, 2015.

7 Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for facility location
problems. SIAM Journal on Computing, 34(4):803–824, 2005.

8 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. Journal of Computer and System
Sciences, 65(1):129–149, 2002.

9 Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diameters.
Journal of Computer and System Sciences, 68(2):417–441, 2004.

10 Julia Chuzhoy and Yuval Rabani. Approximating k-median with non-uniform capacities.
In Proceedings of the 16th SODA, pages 952–958, 2005.

11 Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller. LP rounding for k-centers
with non-uniform hard capacities. In Proceedings of the 53rd FOCS, pages 273–282, 2012.

12 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

13 Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algo-
rithms. Journal of Algorithms, 31(1):228–248, 1999.

14 Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem.
Mathematics of Operations Research, 10:180–184, 1985.

15 Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems.
Discrete Applied Mathematics, 1:209–215, 1979.

16 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In Proceedings of the 34th STOC, pages 731–740, 2002.

17 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. Journal
of the ACM, 48(2):274–296, 2001.

18 Richard M. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, pages 85–103, 1972.

19 Christian Kroer and Tuomas Sandholm. Extensive-Form Game Imperfect-Recall Abstrac-
tions With Bounds. CoRR, abs/1409.3302, 2014. also published at the Algorithmic Game
Theory workshop at IJCAI, 2015.

20 Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem.
Information and Computation, 222:45–58, 2013.

21 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In Proceed-
ings of the 45th STOC, pages 901–910, 2013.

22 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011. Available at http://www.designofapproxalgs.com.

ICALP 2016

http://www.designofapproxalgs.com

	Introduction
	Our Techniques

	Preliminaries
	Solving the aversion k-clustering problem via the local k-median problem
	Good fractional solutions for the local k-median problem
	Rounding
	Improving the Approximation Factor

	Final Thoughts and Conclusions

