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Abstract
The behavior of games repeated in parallel, when played with quantumly entangled players, has
received much attention in recent years. Quantum analogues of Raz’s classical parallel repetition
theorem have been proved for many special classes of games. However, for general entangled
games no parallel repetition theorem was known.

We prove that the entangled value of a two-player game G repeated n times in parallel is at
most cGn−1/4 logn for a constant cG depending on G, provided that the entangled value of G is
less than 1. In particular, this gives the first proof that the entangled value of a parallel repeated
game must converge to 0 for all games whose entangled value is less than 1. Central to our proof
is a combination of both classical and quantum correlated sampling.
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1 Introduction

A two-player one-round game G is played between a referee and two isolated players (who we
will call Alice and Bob), who communicate only with the referee and not between themselves.
The referee first samples a question pair (x, y) from some distribution µ and sends x to Alice
and y to Bob. Alice and Bob respond with answers a and b respectively, and they win if
V (x, y, a, b) = 1 for some predicate V .

The maximum winning probability of Alice and Bob in a game G is a quantity that
depends on what resources they are allowed to use. If their answers are a deterministic
function of their received question (and perhaps some public random string), then we call
their maximum winning probability the classical value of G, denoted by val(G). However
quantum mechanics allows Alice and Bob to share a resource called entanglement, which
gives rise to correlations that cannot be reproduced with public randomness only. When
Alice and Bob make use of entanglement to play a game G, we call their maximum winning
probability the entangled value of G, denoted by val∗(G). For all games, the classical value
is at most the entangled value. Cast in the language of games, the famous Bell’s Theorem
states that there exist games G where those values are different: val∗(G) > val(G) [3].

The Parallel Repetition Question is the following natural and basic question: given a
game G with value less than 1, what is the value of the game Gn, wherein Alice and Bob
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77:2 A Parallel Repetition Theorem for All Entangled Games

play n independent instances of G played in parallel? More formally, in the game Gn,
the referee samples n independent question pairs (x1, y1), . . . , (xn, yn) from µ, and sends
(x1, . . . , xn) to Alice, and sends (y1, . . . , yn) to Bob. Alice responds with answer tuple
(a1, . . . , an), Bob responds with (b1, . . . , bn), and the players win if for all coordinates i ∈ [n],
V (xi, yi, ai, bi) = 1.

The difficulty in relating val(Gn) with val(G) and n is that even though each of the n
instances ofG inGn are independent, Alice and Bob need not play each instance independently.
For example, since Alice receives (x1, . . . , xn) all at once, she can use some question xj to
answer the i’th game, and Bob can do something similar. Because of such strategies, for
every k there are games G such that val(Gk) = val(G) < 1. This shows that the naive
expectation that val(Gn) = val(G)n is false.

The naive expectation is not too far from the truth, however: Raz’s Parallel Repetition
Theorem [19] states that

val(Gn) ≤ (1− (1− val(G))3)cGn,

where cG is a constant depending on G. In particular, as n goes to infinity, the classical
success probability goes to 0 exponentially fast in n (provided that val(G) < 1). The proof is
highly nontrivial, although it has been simplified and improved upon in recent years [12, 4].
Raz’s Parallel Repetition Theorem has heavily influenced complexity theory, most notably in
the areas of hardness of approximation [11] and communication complexity [13, 5].

One open question, which we call the Quantum Parallel Repetition Conjecture, asks
whether an analogue of Raz’s Parallel Repetition Theorem holds in the setting of entangled
players. The Quantum Parallel Repetition Conjecture has been resolved for many special
cases of games, including free games [6, 14, 7], projection games [9], XOR games [8], unique
games [15], anchored games [1], and fortified games [2]. However, the general case has
remained elusive. Not only do we not know of a quantum analogue of Raz’s Parallel
Repetition Theorem, it hasn’t even been shown that if val∗(G) < 1, then val∗(Gn) goes
to 0 as n goes to infinity! Could quantum entanglement allow players to counteract the
value-decreasing effect of parallel repetition?

In this paper we prove that for all nontrivial entangled games G (i.e. val∗(G) < 1), the
entangled value of Gn must converge to 0. This resolves a weaker version of the Quantum
Parallel Repetition Conjecture for general games. Quantitatively, our result is the following:

I Theorem 1 (Main Theorem). Let G be a game involving two entangled players with
val∗(G) = 1− ε. Then for all integer n > 0,

val∗(Gn) ≤ c · sG logn
ε17n1/4

where c is a universal constant and sG is the bit-length of the players’ answers in G.

This shows that the entangled value of Gn must decay at a polynomial rate with n. The full
Quantum Parallel Repetition Conjecture states that the rate of decay is in fact exponential,
and this remains an important open problem.

1.1 Previous work
There has been extensive work on the parallel repetition of entangled games. As stated
earlier, past results have applied to various special classes of games, but there was no result
that covered all games.
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The results coming closest to the Quantum Parallel Repetition Conjecture are the work of
Kempe and Vidick [16] and Bavarian, Vidick, and Yuen [1, 2]. Rather than proving parallel
repetition theorems for general games, these works prove general gap amplification theorems,
which are closely related. Instead of showing that for games G where val∗(G) < 1 that
val∗(Gn) goes to 0 with n, the game G is first converted to another game H where analyzing
val∗(Hn) is much more tractable. Gap amplification is a technique used in complexity theory
and cryptography to amplify the difference between two cases of a problem (usually called
the completeness and soundness cases).

Kempe and Vidick showed that given an arbitrary game G, one can efficiently transform
it to another game H with the following properties: if the classical value of G is 1 (meaning
that there is a perfect deterministic strategy), then val(Hn) = 1 (and thus val∗(Hn) = 1). If
the entangled value of G is less than 1, then the entangled value of Hn decays at a polynomial
rate n−Ω(1). In this tranformed game H, in addition to playing the game G, the referee
will randomly choose to ask “consistency” questions to check that the players give the same
answers on the same questions1. Thus [16] prove gap amplification for general games – with a
caveat. Because of the random consistency checks in the game H, the “quantum completeness”
is not preserved: even if val∗(G) = 1, it is not necessarily the case that val∗(H) = 1.

More recently, Bavarian, Vidick, and Yuen [1, 2] gave better gap amplification results
for entangled games2. They showed that for general games G, one can apply a simple
transformation to obtain another game H with the following properties:
1. If val∗(G) = 1, then val∗(Hn) = 1.
2. If val∗(G) < 1, then val∗(Hn) ≤ exp(−Ω(n)).

Note that the transformation from G to H preserves quantum completeness, and that
when val∗(G) < 1, the entangled value of the repeated game decays exponentially. Like [16],
the transformations of [1, 2] construct H by adding auxiliary questions to the game G.
The transformation given in [1] is called anchoring, and the trasformation in [2] is called
fortification. The latter transformation gives a quantum generalization of the fortification
technique of [17] for classical games. The quantitative aspects of repeated anchored games
are different from those of fortified games, but both yield general gap amplification theorems
for entangled games.

The results of Bavarian, Vidick and Yuen show that, while we do not know if the Quantum
Parallel Repetition Conjecture holds for all games G, we do know that it holds for a class of
games that effectively captures the general case, in fact with exponential decay similar to
Raz’s theorem. Since the main application of parallel repetition in complexity theory and
quantum information is gap amplification, the results of [1, 2] effectively settle the Quantum
Parallel Repetition Conjecture – as far as applications are concerned.

But as a scientific question, the original Quantum Parallel Repetition Conjecture is a
fundamental and basic problem about the power of entanglement in games. Prior to this
work, one might have wondered whether there exists a game G such that val∗(G) < 1, but
there is some constant δ such that for infinitely many n there is a nefarious entangled strategy
for Gn with success probability at least δ? Here we prove that this cannot happen.

1.2 Proof overview
Theorem 1 is proved via reduction: if val∗(Gn) is too large, then from an optimal entangled
strategy for Gn we can construct an entangled strategy for the single-shot game G that wins

1 This transformation is to due to Feige and Kilian [10], who proved a similar result for classical games.
2 They also obtain general gap amplification results for games with more than two players.
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with probability strictly greater than val∗(G), which would be a contradiction.
In more detail, suppose that val∗(G) = 1− ε. If the success probability of the players in

Gn is dramatically larger than our target bound (which in our case is ∼ n−O(1)), then we
can identify a set of coordinates C ⊆ [n] that is not too large, but has the property that for
a uniformly random coordinate i ∈ [n]− C,

Pr(Win game i |Win games in C) > 1− ε/2 (1)

where here the probability is both over the randomness of the questions in Gn, the randomness
of the players’ entangled strategy, and the randomly chosen index i. Thus it would be
advantageous if Alice and Bob could play the single-shot game G by “embedding” it in a
randomly chosen ith coordinate of Gn, and playing Gn conditioned on the event that the
games indexed by C have been won. If they could do this, then by (1), the probability they
win the ith coordinate of Gn, and hence the original game G, is at least 1− ε/2 > val∗(G),
which would be a contradiction.

If the players are classical (i.e. use deterministic strategies), this embedding is performed
in the following way. Alice and Bob are first given questions (Xi, Yi) for the i’th game. Based
on their received question, Alice and Bob jointly sample a dependency-breaking variable R.
The essential features of this dependency-breaking variable are:
1. Usefulness:3 PAiBi|RXiYiWC

= PAi|RXiWC
· PBi|RYiWC

2. Sampleability: PR|XiYiW ≈ PR|XiWC
≈ PR|YiWC

where “≈” means closeness in statistical distance. Here, WC denotes the event that the
players win all the games in C. PAiBi|RXiYiWC

denotes the probability distribution of Alice’s
and Bob’s answers in the ith coordinate when playing Gn, conditioned on the dependency-
breaking variable R, their received questions for the ith game (Xi, Yi), and the event WC .
The “Usefulness property” states that, the players’ answers in the ith round are independent
of each other, conditioned on R, their own questions, and WC . Thus, given R distributed
according to PR|XiYiWC

, Alice can sample Ai on her own, because she possesses R and Xi,
and similarly Bob can sample Bi on his own, because he possesses knowledge of R and
Yi. By (1), the probability that V (Xi, Yi, Ai, Bi) = 1 will be strictly greater than val∗(G),
wherein we would arrive at a contradiction.

As the name suggests, the “sampleability property” implies that Alice and Bob can
(approximately) jointly sample the variable R. Even though the distribution PR|XiYiWC

may
depend on both players’ questions, the sampleability property shows R, up to some error,
only depends on Xi or Yi, but not both. Using the correlated sampling procedure of [12],
Alice and Bob can jointly sample R from PR|XiYiW with high probability.

At a high level, the proof of our quantum parallel repetition theorem is similar. However
instead of sampling a dependency-breaking variable R, the players will need to sample a
dependency-breaking state. It is an entangled state |Ψxiyi

〉 that depends on both Alice’s and
Bob’s questions (xi, yi), and satisfies similar Usefulness and Sampleability properties:
1. Usefulness: The distribution of measurement outcomes by making local measurements

on |ΨXiYi
〉 is equal to PAiBi|XiYiWC

.
2. Sampleability: There exist states |ΦXi

〉 and |ΓYi
〉 such that |ΨXiYi

〉 ≈ |ΦXi
〉 ≈ |ΓYi

〉
where “≈” means closeness in `2 distance, and the statements hold on average over XiYi.

3 We will let P denote the probability distribution that describes the joint distribution of the ran-
dom variables relevant in an execution of the strategy for Gn, including the players’ questions
X1, . . . , Xn, Y1, . . . , Yn, the players’ answers A1, . . . , An, B1, . . . , Bn, and the dependency-breaking
variable R.
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The Usefulness property states that if on input (xi, yi), Alice and Bob were to share
the entangled state |Ψxiyi

〉, then they could make local measurements to obtain outcomes
distributed according to PAiBi|XiYiWC

, which would mean that their success probability
would be Pr(Win i |Win C), which is greater than val∗(G), an impossibility.

The Sampleability property implies that on input (xi, yi) Alice and Bob are actually
able to approximately prepare the state |Ψxiyi

〉. This is because of the quantum correlated
sampling procedure of Dinur, Steurer, and Vidick, who used it to prove a parallel repetition
theorem for entangled projection games [9]. It is entirely analogous to Holenstein’s correlated
sampling procedure: Alice has a description of a state |ΦXi

〉 that’s close to |ΨXiYi
〉, and Bob

has a description of a state |ΓYi〉 that is also close to |ΨXiYi〉. Via local transformations on
preshared quantum entanglement, Alice and Bob can generate an approximation of |ΨXiYi

〉.
Combined with the Usefulness property, Alice and Bob are then able to win the ith game
with too high probability.

It is not difficult to define states that satisfy the Usefulness property. Consider an execution
of the entangled strategy for Gn. In the beginning, the players share some entangled state
|ψ〉, and upon obtaining questions (x1, . . . , xn) and (y1, . . . , yn), the players apply local
measurements depending on these questions to |ψ〉 to obtain answer tuples (a1, . . . , an) and
(b1, . . . , bn). One can define an ensemble of states {|Ψxi,yi〉} that are, roughly speaking,
derived from the post-measurement state of the players conditioned on the players having
won all the games in C (that is, conditioned on the event WC), and having received a specific
question pair (xi, yi) in the i’th coordinate. Such an ensemble of states would satisfy the
Usefulness property.

However, the primary challenge is achieving Sampleability property, that is, to show the
states |Ψxi,yi

〉 only depend on one player’s question, but not both. One major obstacle to
proving the Sampleability property is the following: in the players’ strategy for Gn, Bob
(say) may elect to “print” his entire vector of questions (y1, . . . , yn) into the entangled state
|ψ〉. He can do this by applying a local unitary operation controlled on his questions on some
ancilla qubits in |ψ〉. We cannot say he does not do this, because the shared entangled state
|ψ〉 and the players’ measurements are completely arbitrary. But this implies that we cannot
hope to prove that the post-measurement state is independent of yi, conditioned on xi.

Despite such barriers, we are able to define the |Ψxi,yi〉 in such a way that removes
such adversarial dependencies on the players’ questions. Assuming (for contradiction) that
the players’ probability of success is at least n−O(1), then we are able to prove that these
states satisfy the Sampleability property. We build upon many previous works: we use the
information theoretic framework of [6, 14], carefully combined with the operator analysis
techniques from [9]. The definition of the dependency-breaking states |Ψxi,yi

〉 includes the
classical dependency-breaking variables of [12] used to prove Raz’s parallel repetition theorem.
Our final constructed strategy for the single-shot game G uses both classical and quantum
correlated sampling procedures.

2 Preliminaries

2.1 Probability distributions
We largely adopt the notational conventions from [12] for probability distributions. We let
capital letters denote random variables and lower case letters denote specific samples. We
will use subscripted sets to denote tuples, e.g., X[n] := (X1, . . . , Xn), x[n] = (x1, . . . , xn),
and if C ⊂ [n] is some subset then XC will denote the sub-tuple of X[n] indexed by C.
We use PX to denote the probability distribution of random variable X, and PX(x) to

ICALP 2016
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denote the probability that X = x for some value x. For multiple random variables, e.g.,
X,Y, Z, PXY Z(x, y, z) denotes their joint distribution with respect to some probability space
understood from context.

We use PY |X=x(y) to denote the conditional distribution PY X(y, x)/PX(x), which is
defined when PX(x) > 0. When conditioning on many variables, we usually use the shorthand
PX|y,z to denote the distribution PX|Y=y,Z=z. For example, we write PV |ω−i,xi,yi

to denote
PV |Ω−i=ω−i,Xi=xi,Yi=yi

. For an event W we let PXY |W denote the distribution conditioned
on W . We use the notation EX f(x) and EPX

f(x) to denote the expectation
∑
x PX(x)f(x).

Let PX0 be a distribution of X , and for every x in the support of PX0 , let PY |X1=x be a
conditional distribution defined over Y . We define the distribution PX0PY |X1 over X × Y as

(PX0PY |X1)(x, y) := PX0(x) · PY |X1=x(y).

Additionally, we write PX0ZPY |X1 to denote the distribution
(PX0ZPY |X1)(x, z, y) := PX0Z(x, z) · PY |X1=x(y).

For two random variables X0 and X1 over the same set X , we use

‖PX0 − PX1‖ := 1
2
∑
x∈X
|PX0(x)− PX1(x)|,

to denote the total variation distance between PX0 and PX1 .

2.2 Quantum information theory
For comprehensive references on quantum information we refer the reader to [18, 21].

For a vector |ψ〉, we use ‖|ψ〉‖ to denote its Euclidean length. For a matrix A, we will use
‖A‖1 to denote its trace norm Tr(

√
AA†), and ‖A‖F to denote its Frobenius norm

√
Tr(AA†).

A density matrix is a positive semidefinite matrix with trace 1. The fidelity between two
density matrices ρ and σ is defined as F (ρ, σ) = ‖√ρ

√
σ‖1. For Hermitian matrices A,B we

write A � B to indicate that A−B is positive semidefinite. We use I to denote the identity
matrix. A positive operator valued measurement (POVM) with outcome set A is a set of
positive semidefinite matrices {Ea} labeled by a ∈ A that sum to the identity.

We will use the convention that, when |ψ〉 is a pure state, ψ refers to the rank-1 density
matrix |ψ〉〈ψ|. We use subscripts to denote system labels; so ρAB will denote the density
matrix on the systems A and B. A classical-quantum state ρXE is classical on X and
quantum on E if it can be written as ρXE =

∑
x p(x)|x〉〈x|X ⊗ ρE|X=x for some probability

measure p(·). The state ρE|X=x is by definition the E part of the state ρXE , conditioned on
the classical register X = x. We write ρXE|X=x to denote the state |x〉〈x|X ⊗ ρE|X=x. We
often write expressions such as ρE|x as shorthand for ρE|X=x when it is clear from context
which registers are being conditioned on. This will be useful when there are many classical
variables to be conditioned on.

2.3 Classical and quantum correlated sampling
Correlated sampling is a key component of Holenstein’s proof of the classical parallel repetition
theorem.

I Lemma 2 (Classical correlated sampling [12]). Let P and Q be two probability distributions
over a universe U such that ‖P − Q‖1 ≤ ε < 1. Then there exists a zero communication
two-player protocol using shared randomness where the first player outputs an element p ∈ U
distributed according to P, the second player samples an element q ∈ U distributed according
to Q, and with probability at least 1−O(ε), the two elements are identical (i.e. p = q).
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We call the protocol in the Lemma above the classical correlated sampling procedure. The
next lemma is the quantum extension of the correlated sampling lemma, proved by [9] in
order to obtain a parallel repetition theorem for entangled projection games, a class of
two-player games. Their lemma is a robust version of the quantum state embezzlement
procedure of [20].

I Lemma 3 (Quantum correlated sampling [9]). Let d be an integer. Then there exists an
integer d′ and a collection of unitaries Vψ, Wψ acting on Cdd′ for every state |ψ〉 ∈ Cd ⊗Cd,
such that the following holds: for any two states |ϕ〉, |θ〉 ∈ Cd ⊗ Cd,

‖V ϕ ⊗Wθ|Edd′〉 − |ϕ〉|Ed′〉‖ ≤ O(‖ |ϕ〉 − |θ〉 ‖1/6)

where |Ed〉 ∝
∑d
j=1

1√
j
|j〉|j〉 is the d-dimensional embezzlement state.

We shall call the protocol in the Lemma above the quantum correlated sampling procedure.

3 Proof of the Main Theorem

Let G be a two-player one-round game with question distribution µ and referee predicate
V (x, y, a, b). Let A and B denote the alphabets of Alice’s and Bob’s answers, respectively.
Let val∗(G) = 1− ε.

Consider an optimal entangled strategy for Gn, which consists of a shared entangled
state |ψ〉EAEB ∈ Cd ⊗ Cd and measurement POVMs for Alice and Bob, {Aa[n]

x[n]} and {B
b[n]
y[n]}

respectively. We will assume that |ψ〉 is symmetric; i.e., |ψ〉 =
∑
i

√
λi|vi〉|vi〉 for some

orthonormal basis {|vi〉}. This is without loss of generality, as we can always rotate (say)
Bob’s basis vectors to match Alice’s basis vectors, and fold the unitary rotation into Bob’s
measurements. For i ∈ [n], let Wi denote the event that the players win coordinate i using
this optimal strategy. Let W = W1 ∧ · · · ∧Wn denote the event that the players win all
coordinates. For a set C ⊆ [n], let WC = ∧i∈CWi.

I Proposition 4. Suppose that log 1/Pr(W ) ≤ εn/16 − log 4/ε. Then there exists a set
C ⊆ [n] of size at most t = 8

ε (log 4/ε+ log 1/Pr(W )) such that

Pr
i/∈C

(Wi|WC) ≥ 1− ε/2.

where i is chosen uniformly from [n]− C.

Proof. Set δ = ε/8. Let W>1−δ denote the event that the players won more than (1− δ)n
rounds. To show existence of such a set C, we will show that EC Pr(¬Wi|WC) ≤ ε/2, where
C is a (multi)set of t independently chosen indices in [n]. This implies that there exists a
particular set C such that Pr(¬Wi|WC) ≤ ε/2, which concludes the claim.

First we write, for a fixed C, Pr(¬Wi|WC) = Pr(¬Wi|WC ,W>1−δ) Pr(W>1−δ|WC) +
Pr(¬Wi|WC ,¬W>1−δ) Pr(¬W>1−δ|WC). Observe that Pr(¬Wi|WC ∧W>1−δ) is the probab-
ility that, conditioned on winning all rounds in C, the randomly selected coordinate i ∈ [n]−C
happens to be one of the (at most) δn lost rounds. This is at most δn/(n− t) ≤ ε/4, where
we use our assumption on t from the Proposition statement. Now observe that

E
C

Pr(¬W>1−δ|WC) ≤ E
C

Pr(WC |¬W>1−δ)
Pr(WC) ≤ 1

Pr(W ) (1− δ)t ≤ ε/4

where in the second line we used the fact that Pr(WC) ≥ Pr(W ). J

For the rest of the proof we will fix a set C given by Proposition 4.

ICALP 2016
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3.1 Dependency-breaking variables
We introduce the random variables that play an important role in the proof of Theorem 1. Let
C ⊆ [n] be as given by Proposition 4. We fix C = {m+ 1,m+ 2, . . . , n}, where m = n− |C|,
as this will easily be seen to hold without loss of generality. Let (X[n], Y[n]) be distributed
according to µ[n] and (A[n], B[n]) be defined from X[n] and Y[n] as follows:

PA[n]B[n]|x[n],y[n](a[n], b[n]) = 〈ψ|Aa[n]
x[n] ⊗B

b[n]
y[n] |ψ〉.

Let (XC , YC) and Z = (AC , BC) be random variables that denote the players’ questions and
answers respectively associated with the coordinates indexed by C.

We use the random variables Ω and R that are crucially used in Holenstein’s proof of
Raz’s parallel repetition theorem. Let D1, . . . , Dm be independent and uniformly distributed
in {Alice,Bob}. Let M1, . . . ,Mm be independent random variables defined in the following
way: for each i ∈ [m],

Mi =
{
Xi if Di = Alice

Yi if Di = Bob

Now for i ∈ [m], we define Ωi := (Di,Mi). We say that Ωi fixes Alice’s input if Di =
Alice, and otherwise Ωi fixes Bob’s input. We write Ω to denote the random variable
(Ω1, . . . ,Ωm, XC , YC), where XCYC are Alice and Bob’s questions in the coordinates indexed
by C. For i ∈ [m] we write Ω−i to denote the random variable Ω with Ωi omitted.

I Proposition 5. Conditioned on Ω, X[n] and Y[n] are independent.

Finally, we will define a dependency-breaking variable R := (Ω, AC , BC), where AC and
BC are the players’ answers in the coordinates indexed by C. For i /∈ C, we let R−i :=
(Ω−i, AC , BC). Ri will refer to Ωi. We will use lowercase letters to denote instantiations of
these random variables: e.g., r−i, xi, and yi refer to specific values of R−i, Xi, and Yi.

Throughout our proofs, all expectations are implicitly over the measure defined by P.
For example, the expectation EΩ−iZ|xi,yi

indicates
∑
ω−i,aC ,bC

PΩ−iACBC |xi,yi
(ω−i, aC , bC).

Given an event such as W (winning all the coordinates) or WC (winning all the coordinates
in C), P(W ) and P(WC) will mean the probability of these events with respect to the
distribution P.

The following Lemma expresses the idea that, because WC is an event that occurs
with not-too-small probability, conditioning on it cannot skew the distribution of variables
corresponding to an average coordinate by too much. This Lemma follows in a straightforward
manner from the [12].

I Lemma 6. The following statements hold on, average over i chosen uniformly in [m]:
1. Ei ‖PRiXiYi|WC

− PRiXiYi
‖1 ≤ O(

√
δ)

2. Ei
∥∥PXiYiR−i|WC

− PXiYi · PR−i|XiWC

∥∥
1 ≤ O(

√
δ)

3. Ei
∥∥PXiYiR−i|WC

− PXiYi · PR−i|YiWC

∥∥
1 ≤ O(

√
δ)

where δ := 1
m (log 1/P(WC) + |C| log |A||B|).

3.2 Two key Lemmas, and proof of the Main Theorem
For every i ∈ [n]−C, we will construct a collection of bipartite states {|Ψr−i,xi,yi

〉} ⊆ Cd⊗Cd,
which we call dependency-breaking states, that are indexed by the dependency-breaking
variable r−i defined above, and questions (xi, yi). The following lemmas state the important
properties of this collection of states:
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I Lemma 7 (Usefulness Lemma). For all r−i, xi, yi, there exist POVMs {Âai
r−i,xi

} and
{B̂bi

r−i,yi
} acting on Cd such that

PAiBi|r−i,xi,yi
(ai, bi) = Tr

(
Âai
r−i,xi

⊗ B̂bi
r−i,yi

Ψr−i,xi,yi

)
.

I Lemma 8 (Sampleability Lemma). There exists an integer d′ ≥ d such that for every
i, r−i, xi, yi, there exist local unitaries Ur−i,xi

, Vr−i,yi
acting on Cd′ such that

E
i

E
XiYi

[
E

R−i|xi,yi,WC

∥∥Ur−i,xi ⊗ Vr−i,yi |Edd′〉 − |Ψr−i,xi,yi〉|Ed′〉
∥∥] ≤ O((δ1/4/P(WC))1/12)

where |Edd′〉 and |Ed′〉 are dd′ and d′-dimensional embezzlement states, respectively, and δ is
defined to be 1

m (log 1/P(WC) + |C| log |A||B|).

Lemma 7 shows that the states |Ψr−i,xi,yi
〉 are useful to have; they allow Alice and

Bob to produce answers in the i’th coordinate whose statistics are consistent with the
dependency-breaking variable r−i and their inputs (xi, yi). Lemma 8 shows that these states
are locally generatable by Alice and Bob, when given joint access to preshared entanglement,
the dependency-breaking variable r−i and their own inputs xi and yi respectively.

Using these two Lemmas we can prove the Main Theorem.

Proof of the Main Theorem. Consider the following strategy for the game G. Alice and
Bob share beforehand the embezzlement state |Edd′〉 of dimension dd′ given by Lemma 8,
and they also have access to shared randomness. Given inputs (xi, yi) distributed according
to PXiYi

= µ:
1. Alice and Bob jointly sample a uniformly random i ∈ [n]− C.
2. Alice and Bob jointly, approximately sample R−i from PR−i|xi,yi,WC

using the classical
correlated sampling procedure.

3. Alice applies Ur−i,xi to her side of |Edd′〉
4. Bob applies Vr−i,yi to his side of |Edd′〉
5. Alice measures her side of the entanglement using {Âai

r−i,xi
} and outputs the outcome ai

6. Bob measures his side of the entanglement using {B̂bi
r−i,yi

} and outputs the outcome bi

We now analyze the success probability of this strategy. We will use P̃ to denote
the distribution of variables in the probability space associated with an execution of this
strategy. For example, we will write P̃R−i|XiYi

to denote the distribution of R−i conditioned
on XiYi that is sampled in Step 1. From Lemma 6 we have that on average over i,
PXiYiR−i|WC

≈ PXiYi · PR−i|XiWC
≈ PXiYi · PR−i|YiWC

, where “≈” means closeness in
statistical distance. By invoking the classical correlated sampling procedure of Lemma 2, we
get

E
i
‖PXiYi

· P̃R−i|XiYi
− PXiYiR−i|WC

‖1 ≤ O(
√
δ).

After Step 3, Alice and Bob will possess a state |Λr−i,xi,yi〉 such that

E
i

E
XiYi

[
E

R−i|xi,yi,WC

‖Λr−i,xi,yi
−Ψr−i,xi,yi

‖1
]
≤ η

where η = O((δ1/4/P(WC))1/12). Consider the measurement process in Steps 4 and 5. Let
P̃AiBi|r−i,xi,yi

denote the distribution of measurement outcomes in this strategy, conditioned
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on their inputs and a sampled value of r−i. By Lemma 7 and the fact that the trace norm is
nonincreasing under quantum operations, we have that

E
i

E
XiYi

[
E

R−i|xi,yi,WC

‖P̃AiBi|xi,yi,r−i
− PAiBi|xi,yi,r−i

‖1
]
≤ η

or equivalently

E
i
‖PXiYi

· P̃R−i|XiYiWC
· P̃AiBi|xi,yi,r−i

− PXiYi
· PR−i|XiYiWC

· PAiBiR−i|XiYiWC
‖1 ≤ η.

By Lemma 6 we have Ei ‖PXiYi|WC
− PXiYi

‖ ≤
√
δ. By triangle inequality and that P̃XiYi

=
PXiYi , we have

E
i
‖P̃XiYiR−iAiBi

− PXiYiR−iAiBi|WC
‖1 ≤ O(η).

Note that P̃XiYiR−iAiBi
represents the probability distribution of all the variables present in

the strategy above. Let Wi denote the probability the players win the ith coordinate. Thus
we get

E
i
|P̃(Wi)− P(Wi|WC)| ≤ O(η). (2)

Assume that

P(W ) ≥ cs logn
ε17n1/4

where c > 0 is a universal constant, and s is the bit-length of the players’ answers. Since
P(WC) ≥ P(W ), and using our bound on |C| (from Proposition 4) and our bound on δ (from
Lemma 6), this implies that the right hand side of (2) is at most ε/4 (for an appropriate
choice of c). This implies that

E
i

P̃(Wi) ≥ E
i

P(Wi|WC)− ε/4 ≥ 1− ε/2− ε/4 > val∗(G)

where in the second line we used the bound from Proposition 4. However, this implies
that there exists an i such that P̃(Wi) > val∗(G), which is a contradiction. Therefore
P(W ) ≤ cs logn

ε17n1/4 . J

Now we turn to defining the states and operators promised in the two key lemmas above,
as well as giving an intuition for them.

3.3 Quantum states and operators
In this subsection we define the states |Ψr−i,xi,yi〉 and measurement operators {Âai

r−i,xi
}

and {B̂bi
r−i,yi

}. Recall that the dependency-breaking variable R consists of the set of fixed
questions Ω = (XC , YC ,Ω1, . . . ,Ωm) and fixed answers Z = (AC , BC) for the coordinates
in C.

Coarse-grained measurements. We first coarsen the measurement POVMs {Aa[n]
x[n]} and

{Bb[n]
y[n]} that constitute Alice and Bob’s strategy in Gn to construct a set of intermediate

measurements, which essentially produce answers for the games in set C, conditioned on a
setting of Ω.
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Fix i, ω, aC , bC , xi, yi. Define AaC
ω−i,xi

=
∑
a[n]|aC

EX[n]|ω−i,xi
A
a[n]
x[n] , and BbC

ω−i,yi
=∑

b[n]|bC
EY[n]|ω−i,yi

B
b[n]
y[n] where a[n]|aC (resp. b[n]|bC) indicates summing over all tuples a[n]

consistent with the suffix aC (resp. b[n] consistent with suffix bC) and recall that EX[n]|ω−i,xi

is shorthand for
∑
x[n]

PX[n]|Ω−i=ω−i,Xi=xi
(x[n]). We also define AaC

ω = EX[n]|ω A
aC
x[n]

and
BbC
ω = EY[n]|ω B

bC
y[n]

.
Let ρ denote the reduced density matrix of |ψ〉 on Alice’s side. Since we have assumed

that |ψ〉 is symmetric, ρ is also the reduced density matrix on Bob’s side. For all i, ω,
xi, yi, aC , bC , let Uω−i,xi,aC

, Uω,aC
, Vω−i,yi,bC

, and Vω,bC
be unitaries such that

Uω−i,xi,aC
(AaC

ω−i,xi
)1/2√ρ Vω−i,yi,bC

(BbC
ω−i,yi

)1/2√ρ

Uω,aC
(AaC

ω )1/2√ρ Vω,bC
(BbC

ω )1/2√ρ

are positive semidefinite. Such unitaries can be found via singular value decompositions. For
notational convenience, let

Sω−i,xi,aC
= Uω−i,xi,aC

(AaC
ω−i,xi

)1/2 Tω−i,yi,bC
= Vω−i,yi,bC

(BbC
ω−i,yi

)1/2

Sω,aC
= Uω,aC

(AaC
ω )1/2 Tω,bC

= Vω,bC
(BbC

ω )1/2

Fine-grained measurements. Now we can define the fine-grained measurements that Alice
and Bob can apply to obtain answers for the i’th game. Define

Âai
r−i,xi

= S−1
ω−i,xi,aC

AaC ,ai
ω−i,xi

S−1
ω−i,xi,aC

B̂bi
r−i,yi

= T−1
ω−i,yi,bC

BbC ,bi
ω−i,yi

T−1
ω−i,yi,bC

where

AaC ,ai
ω−i,xi

=
∑

a[n]|aC ,ai

E
X[n]|ω−i,xi

A
a[n]
x[n] BbC ,bi

ω−i,yi
=

∑
b[n]|bC ,bi

E
Y[n]|ω−i,yi

B
b[n]
y[n]

and a[n]|aC , ai (resp. b[n]|bC , bi) denotes summing over all a[n] consistent with aC and ai
(resp. all b[n] consistent with bC and bi). It is easy to verify that the sets {Âai

r−i,xi
}ai∈A

and {B̂bi
r−i,yi

}bi∈B form POVMs. Here, for a square matrix A, A−1 denotes its generalized
inverse.

States. Now we are ready to define the states. Fix i, r−i = (ω−i, aC , bC), and xi, yi. Then
let

|Ψr−i,xi,yi
〉 =

Sω−i,aC ,xi ⊗ Tω−i,bC ,yi |ψ〉∥∥Sω−i,aC ,xi
⊗ Tω−i,bC ,yi

|ψ〉
∥∥ .

Observe that the normalization
∥∥Sω−i,aC ,xi ⊗ Tω−i,bC ,yi |ψ〉

∥∥2 is equal to
PACBC |ω−i,xi,yi

(aC , bC).
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3.4 Proof of Usefulness Lemma (Lemma 7)

This Lemma follows from a simple calculation: for every xi, yi, ai, bi, r−i:

Tr
(
Âai
r−i,xi

⊗ B̂bi
r−i,yi

Ψr−i,xi,yi

)
= 1∥∥Sω−i,aC ,xi

⊗ Tω−i,bC ,yi
|ψ〉
∥∥2Tr

(
AaC ,ai
ω−i,xi

⊗BbC ,bi
ω−i,yi

|ψ〉〈ψ|
)

= 1
PACBC |ω−i,xi,yi

(aC , bC)
∑

a[n]|aC ,ai

∑
b[n]|bC ,bi

E
X[n]Y[n]|ω−i,xi,yi

Tr
(
A
a[n]
x[n] ⊗B

b[n]
y[n] |ψ〉〈ψ|

)
=

PAiBiACBC |ω−i,xi,yi
(ai, bi, aC , bC)

PACBC |ω−i,xi,yi
(aC , bC)

= PAiBi|r−i,xi,yi
(ai, bi).

In the second equality we used that conditioned on Ω, X[n] and Y[n] are independent,
so therefore EX[n]|ω−i,xi

EY[n]|ω−i,yi
= EX[n]Y[n]|ω−i,xi,yi

. In the last equality we used that
r−i = (ω−i, aC , bC). This concludes the Usefulness Lemma.

3.5 Proof of the Sampleability Lemma (Lemma 8)

Overview. Here we give some intuition. We first analyze an ensemble of states {|Γxi,xC ,aC
〉}

(for now we omit mention of the dependency-breaking variable R for simplicity). These are
indexed by Alice’s questions in the i’th coordinate, her questions in the C coordinates, as
well as her answers in the C coordinates. The state |Γxi,xC ,aC

〉 roughly represents the state
of the players where only Alice has applied her measurements – Bob hasn’t done anything
yet.

Fix a yi, xC , aC . For average xi, x′i that are independently sampled from the marginal
distribution PXi|Yi=yi

, we will show that ‖|Γxi,xC ,aC
〉 − |Γx′

i
,xC ,aC

〉‖ ∼ 1
n . To handle issues

such as Alice “printing” her input onto the state |ψ〉 (as discussed in the introduction), the
definition of |Γxi,xC ,aC

〉 requires local unitaries that “undo” such overt actions of Alice and
Bob – this is accomplished by the unitaries U and V defined in Section 3.3.

Then, we consider what happens when we apply Bob’s measurement to both states
|Γxi,xC ,aC

〉 and |Γx′
i
,xC ,aC

〉, and condition on obtaining answers bC for the C coordinates.
His measurement will depend on the questions yi and yC . The post-measurement states
will be precisely |Ψxi,yi,xC ,yC ,aC ,bC

〉 and |Ψx′
i
,yi,xC ,yC ,aC ,bC

〉. The distance between these
states will be, roughly speaking, the distance between |Γxi,xC ,aC

〉 and |Γx′
i
,xC ,aC

〉 divided
by the probability of Bob obtaining outcome bC conditioned on Alice obtaining aC . If we
average this distance over all choices of xC , yC , aC , bC that imply the event WC , we get that
the average distance between |Ψxi,yi,xC ,yC ,aC ,bC

〉 and |Ψx′
i
,yi,xC ,yC ,aC ,bC

〉 is approximately
1

nP(WC) . If P(W ) is much greater than 1/n, then this distance is small. We then invoke
quantum correlated sampling (Lemma 3), and that proves the Sampleability Lemma.

Because of space constraints, we omit the proof and refer the reader to the full version at
http://arxiv.org/abs/1604.04340.
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