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—— Abstract

The edge-percolation and vertex-percolation random graph models start with an arbitrary graph

G, and randomly delete edges or vertices of G with some fixed probability. We study the compu-
tational hardness of problems whose inputs are obtained by applying percolation to worst-case
instances. Specifically, we show that a number of classical NP-hard graph problems remain essen-
tially as hard on percolated instances as they are in the worst-case (assuming NP ¢ BPP). We
also prove hardness results for other A/P-hard problems such as Constraint Satisfaction Problems,
where random deletions are applied to clauses or variables.

We focus on proving the hardness of the Maximum Independent Set problem and the Graph
Coloring problem on percolated instances. To show this we establish the robustness of the
corresponding parameters «(-) and x(-) to percolation, which may be of independent interest.
Given a graph G, let G’ be the graph obtained by randomly deleting edges of G. We show that
if a(G) is small, then a(G’) remains small with probability at least 0.99. Similarly, we show that
if x(G) is large, then x(G’) remains large with probability at least 0.99.
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1 Introduction

The theory of AP-hardness suggests that we are unlikely to find optimal solutions to N/P-
hard problems in polynomial time. This theory applies to the worst-case setting where one
considers the worst running-time over all inputs of a given length. It is less clear whether
these hardness results apply to “real-life” instances. One way to address this question is to
examine to what extent known A/P-hardness results are stable under random perturbations,
as it seems reasonable to assume that a given instance of a problem may be subjected to
noise originating from multiple sources.

Recent work has studied the effect of random perturbations of the input on the runtime of
algorithms. In their seminal paper Spielman and Teng [28] introduced the idea of smoothed
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analysis to explain the superior performance of algorithms in practice compared with formal
worst-case bounds. Roughly speaking, smoothed analysis studies the running time of an
algorithm on a perturbed worst-case instance. In particular, they showed that subjecting
the weights of an arbitrary linear program to Gaussian noise yields instances on which
the simplex algorithm runs in expected polynomial time, despite the fact that there are
pathological linear programs for which the simplex algorithm requires exponential time. Since
then smoothed analysis has been applied to a number of other problems [10, 29].

In contrast to smoothed analysis, we study when worst-case instances of problems remain
hard under random perturbations. Specifically, we study to what extent A'P-hardness results
are robust when instances are subjected to random deletions. Previous work is mainly
concerned with Gaussian perturbations of weighted instances. Less work has examined the
robustness of hardness results of unweighted instances with respect to discrete noise.

We focus on two forms of percolation on graphs. Given a graph G = (V,E) and a
parameter p € (0,1), we define Gp, . = (V, E’) as the probability space of graphs on the same
set of vertices, where each edge e € F is contained in E’ independently with probability p.
We say that G, . is obtained from G by edge percolation. We define G, = (V', E') as the
probability space of graphs, in which every vertex v € V' is contained in V' independently
with probability p, and G,, , is the subgraph of G induced by the vertices V’. We say that
G, is obtained from G by vertex percolation. We also study appropriately defined random
deletions applied to instances of other N"P-hard problems, such as 3-SAT and Subset-Sum.

Throughout we refer to instances that are subjected to random deletions as percolated
instances. Our main question is whether such percolated instances remain hard to solve by
polynomial-time algorithms assuming NP ¢ BPP.

1.1 A first example — 3-Coloring

Consider the 3-Coloring problem, where given a graph G = (V, E') we need to decide whether
G is 3-colorable. Suppose that given a graph G we sample a random subgraph G’ of G,
by deleting each edge of G independently with probability p = %, and ask whether the
resulting graph is 3-colorable. Is there a polynomial time algorithm that can decide with
high probability whether G’ is 3-colorable?

We demonstrate that a polynomial-time algorithm for deciding whether G’ is 3-colorable
is impossible assuming NP ¢ BPP. We show this by considering the following polynomial
time reduction from the 3-Coloring problem to itself.

Given an n-vertex graph H the reduction outputs a graph G that is an R-blow-up of
H for R = C+/log(n), where C' > 0 is large enough. That is, replace each vertex of H by
a cloud of R vertices that form an independent set in GG, and for each edge in H place a
complete R x R bipartite graph in G between the corresponding clouds in . It is easy to
see that H is 3-colorable if and only if GG is 3-colorable.

In fact, the foregoing reduction satisfies a stronger robustness property for random
subgraphs G’ of G. Namely, if H is 3-colorable, then G is 3-colorable, and hence G’ is also
3-colorable with probability 1. On the other hand, if H is not 3-colorable, then G is not
3-colorable, and with high probability G’ is not 3-colorable either.

Indeed, for any edge (vi,v2) in H let Uy, Us be two clouds in G corresponding to v; and
ve. Fixing two arbitrary sets U] C Uy and Uj C U, each of size R/3, the probability that
there is no edge connecting a vertex from U; to a vertex in Uy is 2-R*/9, By union bounding
over the |E| - (RP/‘)’3)2 < 21°/9 choices of U, U} we get that there is at least one edge between
U] and Uj with high probability. When this holds we can decode any 3-coloring of G’ to a
3-coloring of H by coloring each vertex v of H with the color that appears the largest number
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of times in the coloring of the corresponding cloud in G’, breaking ties arbitrarily. Therefore
a polynomial time algorithm for deciding the 3-colorability of G implies a polynomial time
algorithm for determining the 3-colorability of H with high probability. It follows that unless
NP C coRP there is no polynomial time algorithm that given a 3-colorable graph G finds a
3-coloring of a random subgraph of G.!

Toward a stronger notion of robustness

The example above raises the question of whether the blow-up described above is really
necessary. Naively, one could hope for stronger hardness of the 3-Coloring problem, namely,
that for any graph H if H is not 3-colorable, then with high probability a random subgraph
H' of H is not 3-colorable either. However, this is not true in general, as H can be a 3-critical
graph, i.e., a 3-colorable graph such that deletion of any edge of H decreases its chromatic
number (consider for example the case of an odd cycle).

Nonetheless, if random deletions do not decrease the chromatic number of a graph by
much, then one could use hardness of approximation results for chromatic number to deduce
hardness results for coloring percolated graphs. In this paper we show that the chromatic
number of a graph is indeed robust to random deletions. We show that if we delete each
edge of a graph with probability %, then (with probability 0.99) the chromatic number does
not drop by much.

We also consider the question of robustness for other graph parameters. For independent
sets we demonstrate that if the independence number of G is small, then with high probability
the independence number of a random subgraph of G is small as well. Similarly, we show that
for a k-SAT formula that is sufficiently dense, randomly deleting its clauses does not change
the maximum possible fraction of clauses that can be satisfied simultaneously. In particular,
this implies that these problems remain essentially as hard on percolated instances as they
are on worst-case instances.

» Remark. It is worth noting that there are graph parameters for which percolated instances
differ significantly from the original instance. For example, standard results in random graph
theory imply that for every n-vertex graph G, with high probability the size of the largest
clique in the graph G’ obtained by edge percolation with p = % is O(logn). In particular, a
maximum clique in G’ can be found in time n®1°8") which is significantly faster than the
fastest known algorithm for finding a maximum clique in the worst-case.

1.2 Robustness of AP-hard problems under percolation

In proving hardness results for percolated instances we use the concept of robust reductions
which we explain below. It will be convenient to consider promise problems?. We start by
introducing the following definition.

» Definition 1. Let A = (Aygs, Ayo) and B = (Bygs, Byo) be two promise problems. For
each y € {0,1}* (an instance of the problem B) let noise(y) be a distribution on {0, 1}*, that
is samplable in time poly(|y]).

! Note that in the foregoing example, if we start with a bounded degree graph H, we can reduce it to a
bounded degree graph G by using an R x R bipartite expander instead of the complete bipartite graph.

2 Recall, that a promise problem is a generalization of a decision problem, where for the problem L
there are two disjoint subsets Lygs and Lyo, such that an algorithm that solves L must accept all the
inputs in Lygg and reject all inputs in Lyo. If the input does not belong to Lygs U Lyo, there is no
requirement on the output of the algorithm.
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A polynomial time reduction R from A to B is said to be noise-robust if

1. For all € Aygg it holds that R(z) € Bygs, and Pr[noise(R(z)) € Bygs] > 0.99.

2. For all x € Ano it holds that R(z) € Byo, and Pr[noise(R(z)) € Byo] > 0.99.

If in the first item we have Pr[noise(R(z)) € Bygs| = 1, then we say that R is a noise-robust
coRP-reduction. Similarly, if in the second item we have Pr[noise(R(z)) € Byo] = 1,
then we say that R is a noise-robust RP-reduction.

The problem B = (Bygs, Byo) is said to be N'P-hard under a noise-robust reduction if
there exists a noise-robust reduction from an NP-hard problem to B.

We say that the problem A is strongly-noise-robust to B if

1. For all z € Aygg it holds that € Bygg, and Pr[noise(z) € Bygs| > 0.99.

2. For all x € Ay it holds that « € Byo, and Pr[noise(z) € Byo] > 0.99.

Note that in the last item of Definition 1 there is no reduction involved. Instead, we think
of the problem A as a relaxation of B with Aygs C Bygs and Ayo € Byo, and hence any
algorithm that solves B in particular solves A. However, it is a relaxed problem in a stronger
sense, namely, after applying noise to a YES-instance (resp. NO-instance) of A, it stays a
YES-instance (resp. NO-instance) of B with high probability.

We use the term noise-robust to avoid confusion with other notions of robust reductions
that have appeared in the literature. In order to ease readability, we will often write robust
reductions instead, always referring to noise-robust reductions as defined above.

» Proposition 2. Let L = (Lygs, Lyo) be a promise problem, and for each y instance of L,
let noise(y) be a distribution on instances of L that is samplable in time poly(|y|).

If L is N'P-hard under a noise-robust reduction, then there is no polynomial time algorithm
that when given an inputy decides with high probability whether noise(y) € Lygs or noise(y) €
Lo, unless NP C BPP.

Indeed, the example given in Section 1.1 gives a noise-robust reduction from the 3-
Coloring problem to itself, where noise refers to random deletions of the edges in a given
graph. Therefore, the 3-Coloring problem is NP-hard under a noise-robust reduction.

1.3 Our results

In this paper we show that a number of NP-hard problems remain hard to solve even
after random deletions, i.e., they are NP-hard under noise-robust reductions. Furthermore,
we show that some gap N'P-hard problems are, in fact, strongly-noise-robust to the same
problems with a smaller gap. Specifically, we focus on showing these results for the gap
versions of the maximum independent set and chromatic number problems. As technical
tools, we prove a number of combinatorial results about the independence number and the
chromatic number of percolated graphs that might be of independent interest.

Maximum Independent Set and Percolation

» Theorem 3. Let G = (V, E) be an n-vertex graph. Then, with high probability a(G,.e) <
0 (a(I)G) log(np)).

We observe that in general, the upper bound above cannot be improved, as it is well

known that the independence number of G(n,p) is (M) with high probability (see,

P
e.g., [4]).

In the Coloring-vs-MIS(q, a) problem, given an n-vertex graph G such that ¢-a > n,
the goal is to distinguish between the YES-case where x(G) < ¢ and the NO-case where
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a(G) < a. By using Theorem 3 together with the inapproximability results of Feige and
Kilian [11] saying that for every € > 0 it is A"P-hard to decide whether a given n-vertex
graph G satisfies x(G) < n® or a(G) < n® we obtain the following hardness result.

» Theorem 4. For any q,a the Coloring-vs-MIS(q,a) problem is strongly-noise-robust to
Coloring-vs-MIS(q, O (% log(np)> ), where n denotes the number of vertices in the given graph,
and noise is the p-edge-percolation of this graph.

In particular, for any constant € > 0, unless NP C BPP there is no polynomial time
algorithm that given an n-vertex graph G approximates either a(Gp.) or x(Gp ) within a

pn%% (resp. pnt=2¢) factor for any p > ﬁ

We also prove analogous theorems for vertex percolation.

Graph Coloring and Percolation

Theorem 3 says that it is hard to approximate the chromatic number of a percolated graph
within a n'~¢ factor, but says nothing about hardness of coloring percolated graphs with
small (constant) chromatic number. We address this question below by proving lower bounds®
on the chromatic number of percolated graphs. To do this we use results from additive
combinatorics and discrete Fourier analysis.

» Theorem 5. Let G = (V, E) be an n-vertex graph. Then, for every a € (0,1) it holds that
Prix(G1 ) = max{x(G)/3 = Oa(1),X(G)/2 = Oa(vn)}] > 1 — .

» Theorem 6. Let G = (V, E) be an n-vertex graph with m edges. Then, for every o € (0,1)
it holds that Pr[x(G1 .) = max{Q,(x\(G)'/?), (X (G)/mY")}] > 1 — a.

For Gy, the x(G)/2 — Oa(y/n) lower bound is better when x(G) = w(y/n), and the
X(G)/3 — O4(1) lower bound is better when x(G) = o(y/n). For G . the Qo (x(G)/m*/*)
lower bound is better when x(G) = w(m?3/®), and the Q,(x(G)'/?) lower bound is better
when x(G) = o(m?3/®).

Note that this result also gives lower bounds on the chromatic number of G, ,,, Gp.. where
p # % by composing the bounds in Theorems 5 and 6 [logy(1/p)] times.

» Remark. Bukh [7] has considered coloring edge-percolated graphs, and states the question
of whether E[x(G1 )] = Q(x(G)/log(x(G))) as an “interesting problem.” Bukh observed
that the chromatic number of Géye has the same distribution as the chromatic number of
the complement of G1 ., and therefore E[x(G1 )] > /x(G). However, it is not clear how
o) with
high probability, which is required for our noise robust reductions. Moreover, for k < /n
standard martingale methods do not seem to work for showing high probability estimates.

to leverage the lower bound on the expectation to obtain a lower bound on x(G 1,

In the Gap-Coloring(q, @) problem we are given an n-vertex graph G and the goal is
to distinguish between the YES-case where G is g-colorable, and the NO-case where the
chromatic number of G is at least (). There is a large body of work proving hardness results
for this problem [14, 20, 18] including stronger results assuming variants of the Unique Games
Conjecture [8, 9]. Using the N'P-hardness of the Gap-Coloring(q, exp(Q(q'/?))) problem of
Huang [18] we obtain an analogous hardness result under noise-robust reductions for this
problem.

3 The notation Oq(f(n)) means that O(f(n)) holds for fixed a.
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» Theorem 7. For all ¢ < Q the Gap-Coloring(q, Q) problem is strongly-noise-robust to the

Gap-Coloring(q, 2Q/?)) problem, where noise is %-edge-percolation applied to the graph.
In particular, for alr/lgy sufficiently large constant q given a q-colorable graph G it is

NP-hard to find a 2(¢"") _coloring of G%

76.

Satisfiability and Other Problems

We also state a hardness result for approximating the value of a clause-percolated instance
of k-SAT. A k-SAT formula ® is a collection of m clauses on n Boolean variables, where
each clause is an OR of k-literals. Given a formula ®, and an assignment o to its variables,
denote by val,(®) the fraction of constraints of ® satisfied by . The value of ® is defined
as val(®) = max, val, (P). If val(P) = 1 we say that ® is satisfiable.

Given an instance ® of k-SAT its clause percolation is a random formula ®7 over the same
set of variables, obtained from ® by keeping each clause of ® independently with probability
.

» Theorem 8. Let ¢,d € (0,1) be fized constants. Then, unless NP C coRP, there is no
polynomial time algorithm that when given a satisfiable instance ® over n-variables of 3-SAT,
finds an assignment o to ®, such that val,(®5) > 7/8 4 ¢ for all p > ﬁ

One ingredient of the proof of Theorem &8, that may be of independent interest, is
establishing that k-SAT does not admit a non-trivial approximation on dense formulas that
contain n*~" clauses, where 7 > 0 is an arbitrary small positive constant.

We prove analogous theorems also for other CSP’s as well as other graph theoretic
problems such as Vertex Cover and Directed Hamiltonian Cycle. We also prove hardness
results for the percolated Subset Sum problem. The exact statements and complete proofs,
including of Theorem 8, appear in the full version of the paper.

1.4 Preliminaries

An independent set in a graph G = (V, E) is a set of vertices that spans no edges. The
independence number o(G) denotes the maximum size of an independent set in G. A legal
coloring of a graph G is an assignment of colors to vertices such that no two adjacent vertices
share the same color. The chromatic number x(G) denotes the minimum number of colors
needed for a legal coloring of G. Note that in a legal coloring of G each color class forms an
independent set, and hence x(G) - a(G) > n.

We will always measure the running time of algorithms in terms of the size of the
percolated instance. Since G and G, . have the same number of vertices, this generally does
not affect the size of the instance by more than a polynomial factor. On the other hand,
G,,» may be much smaller than G for very small values of p. However, in this work we will
be only dealing with the case where p = ﬁ, hence with high probability the size of the
vertex percolated and original graphs are polynomially related as well.

We will use the following version of the Chernoff bound.

» Lemma 9 (Chernoff bound, Theorem 7.3.2 in [17]). Let x1,...,%, be independent Bernoulli
trials with Pr(z; = 1] = p, and let p = B[Y_;—, x;] = pn. Let r > . Then
PHS I, a5 > (1 -+ 7)) < exp(—(ur/2) 7).

1.5 Related Work

There is a wide body of work on random discrete structures that has produced a wide range
of mathematical tools [4, 13, 15, 23]. Randomly subsampling subgraphs by including each
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edge independently in the sample with probability p has been studied extensively in works
concerned with cuts and flows (e.g., [19]). More recently, sampling subgraphs has been used
to find independent sets [12]. The effect of subsampling variables in mathematical relaxations
of constraint satisfaction problems on the value of these relaxations was studied in [2].

Edge-percolated graphs have been also used to construct hard instances for specific
algorithms. For example, Kucera [21] proved that the well known greedy coloring algorithm
performs poorly on the complete r-partite graph in which every edge is removed independently
with probability 1/2 and r = n® for € > 0. Namely, for this graph G, even if vertices are
considered in a random order by the greedy algorithm, with high probability (10 —) colors
are used to color the percolated graph whereas x(G) < n®.

Misra [24] studies edge percolated instances of the Max-Cut problem. He proves that in
graphs of fixed maximal degree d it is impossible (assuming NP # BPP) to compute the
F£. The techniques used
in [24] differ from ours and rely on the recent hardness result for countlng independent sets

size of the maximum cut in G . in polynomial time whenever p =

in sparse graphs [27].

The chromatic number of Erdds-Rényi random graphs G(n, p) has been studied extensively.

Grimmett and McDiarmid [16] showed that for a fixed p with high probability it holds that
x(G(n,p)) = O(log(1/1 — p) 557 )- Bollobds [3] later determined the right constant, proving
that x(G(n,p)) ~ log(1/(1 — ))QIOg(n) for every p € (0,1). Luczak [22] further improved the
previous result by showing that it holds for subconstant values of p. In this paper we study
the independence number and chromatic number of general percolated graphs. A recent
paper by Bollobds et al. [5] studied a special case of this, namely the independence number
of edge percolated Kneser graphs.

2 Maximum Independent Set and Percolation

In this section we demonstrate the hardness of approximating «(G) and x(G) in both edge
percolated and vertex percolated graphs. We base our results on a theorem of Feige and
Kilian, saying that for every fixed € > 0 the problem Coloring-vs-MIS(n¢,n¢) is N'P-hard.

» Theorem 10 ([11]). For every ¢ > 0 it is N'P-hard to decide whether a given n-vertex
graph G satisfies x(G) < n® or a(G) < n®.

Edge percolation
Below we prove Theorem 3. We will use the following lemma, due to Turan (see, e.g. [1]).

> Lemma 11. Ewvery graph H with | vertices and e edges contains an independent set of size

at least 2e+l

As a corollary we observe that if a graph contains no large independent sets, then it can
also cannot contain large subsets of the vertices that span a small number of edges.

» Corollary 12. Let G = (V, E) be an n-vertex graph satisfying a(G) < k. Then every set
of vertices of size | > k spans at least (I — k)/2k edges.

Proof. Let H be a subgraph of G induced by [ vertices, and suppose that H spans e edges.

Then by Lemma 11 we have o(H) > 5 +l On the other hand, a(H) < a(G) < k, and hence

26 +l < k, as required. |

We are now ready to prove Theorem 3 saying that for any n-vertex graph G = (V, E) it
holds that with high probability a(Gp.) < O ( i) log(np))

80:7
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Proof of Theorem 3. For a given graph G, let k = «(G)+1 and let C' > 0 be a large enough
constant. By Corollary 12, every subset of size [ = C' @ log(np) spans at least l(lz_kk) edges
in G. Hence, by taking union bound over all subsets of size [, the probability there exists a

set of size [ in G), . that spans no edge is at most

(7) (1—p) = < (?)l - exp (—p~ l(l2—kk)> < (np)~?0,

where the last inequality uses the choices of [ and k, implying that (%)l < (np)! and

exp(fpl(l;kk)) < exp(—Q(I-log(np))) = (np)~*D. Therefore, with high probability (G, ) <

C’@ log(np). <

Theorem 4 follows immediately from Theorem 3.

Proof of Theorem 4. Let G be an instance G of the Coloring-vs-MIS(g, a) problem. Note
that for the YES-case if x(G) < g, then clearly x(Gp.) < ¢q. For the NO-case by Theorem 3

if a(G) < a, then with high probability a(Gp..) < O (% log(np)) which implies the strongly-
noise-robust hardness.
The “in particular” part follows immediately from Theorem 10. |

» Remark. Note that for constant p > 0 (e.g., p = 1/2) this theorem establishes inapprox-
imability for the independence number of G, . that matches the inapproximability for the
worst case.

» Remark. Note also that for p > (in fact, for p > @

graphs have maximal degree at most O(pn) with high probability. Therefore, such graphs
Gp,e can be colored efficiently using O(pn) colors. In particular, with high probability G .
contains an independent set of size Q(1/p) and hence, the independence number can be
approximated within a factor of 1/pn on p-percolated instances.

1

nl—e

) such random percolated

Vertex percolation

Next we handle vertex percolation. We show that approximating «(G) and x(G) on percolated
instances is essentially as hard as worst-case instances, where the vertices remain with
probability p > nl—l,é, where n is the number of vertices in the graph for any constant
d € (0,1). We do it again by relying on the hardness of the gap problem Coloring-vs-MIS
for percolated instances.

Note that in the case of vertex percolation, the (in)approximability guarantee should
depend on the number of vertices in the percolated graph G ,, and not on the number in
the original graph.

» Theorem 13. The Coloring-vs-MIS(q, a) problem is strongly-noise-robust to itself, where
noise is the vertex percolation with parameter any p > 0.

In particular, for any 6, > 0 unless N'P C BPP there is no polynomial time algorithm
that approzimates either a(Gp,) or x(Gp,) within a factor m'~¢ for constant any € > 0,
where m denotes the number of vertices in Gy, and any p > —.

Proof. The strong robustness of Coloring-vs-MIS(g, a) is clear, since for any graph G if G’
is a vertex induced subgraph of G, then x(G’) < x(G), and a(G’) < a(G), which is, in
particular, true for G' = G, ,.

For the “in particular” part, for a given p > — let ¢ = lfogégg) € (6,1) so that p = ——,

and let n=¢-c.
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Let G be an n-vertex graph, let G, , be it vertex-percolated subgraph, and let m be the
number of vertices in G, ,. By the Chernoff bound in Lemma [17], with high probability we
have |m — pn| < 0.1pn, and so, we assume from now on that n” < 2me.

By Theorem 10 it is N"P-hard to decide whether a given n-vertex graph G satisfies
X(G) < n"or a(G) < n". By the choice of parameters, if x(G) < n” then x(Gp,) < n" <
2m?, and similarly, if o(G) < n” then a(G, ) < n" < 2mc. This completes the proof of the
theorem. <

3 Graph Coloring and Percolation

We present our results in terms of the mazimum coverage problem [30], which is a variant of
the set cover problem, and show later how graph coloring is related to maximum coverage.

3.1 Maximum Coverage

In the maximum coverage problem we are given a family of sets F = {S1,...,5,,} with
S; C [n] and a number ¢. The goal is to find ¢ sets in F such the cardinality of the union
of these c sets is as large as possible. We will make use of the representation of a set S in
terms of its incidence vector z(S) € {0,1}". In this way, we can reformulate the maximum
coverage problem as follows. Given A C FZ, find elements y1,...,y. € A that maximize
[IVS_ivill1, the Hamming weight of the bitwise-OR of the vectors.

We will prove two existential results saying that if A is of constant density o > 0, then
there exists a good cover using only 2 or 3 vectors.

» Lemma 14. Let A C F% with |A] > a2™. Then there exist y1,y2,ys € A such that
lyr Vya Vsl >n—4/a.

» Lemma 15. Let A C FY with |A| > a2™. Then there exist y1,y2 € A such that ||[y1 Vyz|1 >
n — (14 7)y/n, where r = max{e?,2In1/a}.
3.2 Proof of Lemma 14 using additive combinatorics

Lemma 14 follows almost immediately from a result about sumsets. Recall that the Minkowski
sum of two sets A, B is defined as A+ B={z+y:z € A,y € B}.

» Lemma 16 (Corollary 3.5 in [26]). Let A C Fy with |A| > a2™. Then A+ A+ A contains
an affine subspace of dimension at least n — 4/a3.

Because an affine subspace of dimension at least n — 4/a® must contain an element of
Hamming weight at least n — 4/a®, Lemma 14 follows from Lemma 16 and the observation

that 1375 vl < 1Vizy gilla-

3.3 Proof of Lemma 15 using Fourier analysis

We use an inequality from Fourier analysis to give a proof of Lemma 15 via the probabilistic
method.

» Definition 17. Given = € F3, define y ~ N,(x) by letting each y; be equal to z; with

probability %, and be equal to 1 — x; with probability 15—”.

Let Uni(S) denote the uniform distribution on a set S, and let U,, denote Uni(F%). The
following lemma is a corollary of the reverse Bonami-Beckner inequality.
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» Lemma 18 (Corollary 3.5 in [25]). Let A, B C F} with |A| = |B| = a2™. Then

Pr [y e B] > a1+n/0=p),
x <+ Uni(A) -
y«Np(x)

Proof of Lemma 15. Let A C F% with |[A] > a2", and let B = A+ 1= {z+1:zc A},
where T is the n-dimensional all 1s vector. Note that to prove Lemma 15 it suffices to show
that there exist z € A,y € B such that ||z +y||1 = (14 7) - v/n, since then y + I € A and

lz+ (y+ Dl =n—(1+r) V.
Let e =1/4/n and let p =1 — 2¢. By Lemma 18,

Pr [reAyeB]= Pr [yeB]- Pr [zeA>a?0P =qV" (1)
xz+Unp xz+Uni(A) U,
Yy« Np(x) Yy Np(x)

Set 7 = max{e?,2In(1/a)}. Note that by definition of y ~ N,(x) we have that Prlz; #
yi] = 1/+/n for each i independently. Therefore, by the Chernoff bound in Lemma 9,

Pr (o +ylly < (1+r)va] > 1— e (/2m0Vi > 1 _ g2V, (2)

?H—Np?a‘)
Since the sum of the probabilities in Equations (1) and (2) is strictly greater than 1,
the corresponding events cannot be disjoint. Hence there exist z € A,y € B such that
[z +yl < (147)v/n. <

3.4 Coloring Using Subgraphs

We now show how to apply the results in the previous subsection to the graph coloring
problem. Throughout this section we let G = (V, E) with n = |V|, m = |E|. We will identify
the elements of [n] with vertices V' in the vertex percolation case and the elements of [m]
with edges F' in the edge percolation case. Let Gy denote the subgraph of G' induced by
UcCvV.

» Lemma 19. Let G = (V,E) and let V1,Vo CV with ViU Vo = V. If x(G|v,) < k1 and
X(Gv,) < ko then x(G) < ki + ka.

Proof. Assume that V3 NV, = § (if not, replace V1 with V1 \ V5 in the following argument).
Color Gy, with ki colors and color G|y, with ks fresh colors. Because G|y, and G|y, are
colored with separate colors any edges between V; and V5 have endpoints with distinct
colors. <

» Lemma 20. Let G = (‘/Y, E), let El,EQ C FE with E4 UFEs = E, and let Gl = (V, El),Gg =
(V,E3). If x(G1) < k1 and x(G2) < ko then x(G) < kiks.

Proof. Let ¢; be a coloring of G; with ki colors, and let co be the coloring of G, with
ko colors. We claim that the coloring as c¢(v) = (¢1(v), c2(v)) is a legal coloring of G with
k1ko colors. Consider an edge e = (u,v) € E. If e € E;y then c(u) differs from ¢(v) in
the fist coordinate. Otherwise e € Fs in which case ¢(u) differs from c(v) in the second
coordinate. |

3.5 Lower Bounding the Chromatic Number

We now prove lower bounds on the chromatic number of percolated graphs. We will consider
both vertex and edge percolation with p = % This choice of p is important because G%

)
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G e become the distributions of graphs induced by uniformly random subsets of V' and F,
respectively. However, we also obtain bounds for p < % by composing the bounds for p = %
When stating bounds based on Lemma 15 we set r = max{e?,21In(1/a)}.

The idea will be to argue that if many subgraphs of a graph G are k-colorable then G is
colorable with f(k) colors for relatively small f(k). To see how this idea works, consider the
following easy case. Suppose that Pr{x(G1 ,) < k] > 1. Then there exists V/ C V such that

G|y and G|W are both k-colorable. It follows that G is 2k-colorable by Lemma 19. We now

1

consider the case where the density of k colorable subgraphs « is less than 3

Proof of Theorem 5

We now prove Theorem 5, saying that if G is an n-vertex graph, then for every « € (0,1)
it holds that Pr[x(G1 ,) = max{x(G)/3 — Oa(1), x(G)/2 — Oa(vn)}] > 1 — a. The proof

relies on the following two lemmas.
> Lemma 21. Pr[x(G},) < k] > a= x(G) < 3k +4/a’.

Proof. Identify subsets of vertices V' with vectors in F3. Because Pr[x(G1 ,) < k] > a by
Lemma 14 there exist Vi, V5, V3 C V such that each G|y, is k-colorable and [V3 U Vo U V3| >
n —4/a®. Using Lemma 19, we can then color Gv,uvuv, Wwith 3k colors. Coloring the
remaining 4/a3 nodes each with a different, new color implies the lemma. <

> Lemma 22. Pr[x(G1,) < k] = a= x(G) <2k+ (1+7)V/n.

Proof. Identify subsets of vertices V' with vectors in Fy. Because Pr[x(G1,) < k] = «
by Lemma 15 there exist V1,V C V such that G|y, , G|y, are k-colorable and [Vi U Va| >
n — (1 +r)y/n. Using Lemma 19, we can then color G|y,uy, with 2k colors. Coloring the
remaining (1 + 7)y/n nodes each with a different, new color implies the lemma. <

Lemmas 21 and 22 imply Theorem 5. Taking the contrapositive of Lemma 21 we get
X(G) >3k +4/a® = Prix(Gy,) > k] 21—,

which is equivalent to
X(G) > €= Pr[x(Gy,) > ({— 4/0*)/3] > 1 - a.

Similarly, taking the contrapositive of Lemma 22 we get the bound

X(G) > €= Pr[x(Gy,) > /2= Oa(Vn)] > 1 - 0.

Proof of Theorem 6

Next we prove Theorem 6, saying that if G is an n-vertex graph with m edges, then for
every a € (0,1) it holds that Pr[x(Gy .) > max{Qa(x(G)"/?), Qa(x(G)/m"/*)}] > 1 - a.
The techniques are similar to those used for proving Theorem 5, but with several additional
observations we push the techniques further.

> Lemma 23. Pr[x(G;.) < k] = a= x(G) < k®+8/ad.

Proof. Identify subsets of edges E with vectors in F3'. Because Pr[x(G1.) < k] =2 «
by Lemma 14 there exist Ey, Fo, E3 C E such that each G; = (V, E;) is k-colorable and
|E1 U FEy U E3| >m —4/a3. Using Lemma 20, we can then color G(V, E; U E; U E3) with
k3 colors. Color the endpoints of the remaining E \ (E; U Eo U E3) edges using 8/a® new
colors to achieve a (k3 + 8/a3)-coloring of G. <
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The next lemma gives an unconditional upper bound on chromatic number.
» Lemma 24. Let G = (V, E) be a graph with |E| =m. Then x(G) < 3y/m + 1.

Proof. Partition V into sets Vo = {v € V : deg(v) < v/m} and V; = {v € V : deg(v) > /m}.
By Brooks’ Theorem [6], x(G|y,) < maxyecy, deg(v) + 1 < \/m + 1. Furthermore, because
> vev, deg(v) < 2m, it follows that [Vi| < 24/m, and in particular x(G|y,) < 2y/m. The
result follows by Lemma 19. |

We use a variant of the same partitioning trick in the following lemma.

» Lemma 25. Pr[x(G1.) < k] > a = x(G) < (4+2r)km!/%.

€

Proof. Note first that if & > m!/4, then the claimed bound holds by Lemma 24. So we
assume henceforth that k < m!/%.

Identify subsets of edges E with vectors in Fy*. Because Pr[X(G%7e) < k] > a by
Lemma 15 there exist Fq, B2 C E such that G; = (V, E1), G2 = (V, E3) are k-colorable and
|E1 U Es| >m — (1+7)y/m.

Let E5 = E \ (E1 U E3) be the set of edges that are not in Fy U Fa, and define the
graph Gs = (V, E3). Define a partition U, U of V, where U = {v € V : degg, (v) < m'/* [k}
and U = {v €V :degg,(v) >m'/*/k}. We claim (1) that x(Gy) < 2km!'/* and (2)
that X(GW) < 2(1 + r)km'/*. By Lemma 19 we then get the upper bound x(G) <
X(Gw) +x(Gg) < (4+ 2r)km1/*.

To prove (1) note that by Brooks’ Theorem [6] we have x((Gs)y) < 2m!/*/k, and
thus by Lemma 20 x(Gj) < x(Gi1) - x(G2) - X((G3)jr) < 2km'/*. For (2) note that
> et degg, (v) < 2(1 +1)y/m, and hence x(G|57) < |U| < 2(1+7)km'/4, as required. <

Taking the contrapositive of Lemmas 23 and 25 implies Theorem 6.

Proof of Theorem 7

Finally, we use Theorem 6 to prove the strong robustness result for Gap-Coloring. Let G be
an instance of the Gap-Coloring(q, @) problem. We claim the following:

YES-case: If x(G) < ¢, then x(G1.) <gq.

NO-case: If x(G) = Q, then x(G ) = Q(Q'/?) with probability at least 0.99.

The YES-case is clear, since removing edges cannot increase the chromatic number. The
NO-case follows from Theorem 6. Thus, the Gap-Coloring(q, Q) problem is strongly-noise-
robust to the Gap-Coloring(q, Q(Q'/3)) problem. The “in particular” part of the theorem
follows from the result of Huang [18] showing that Gap-Coloring(g, 29(‘11/3)) is AP-hard.

Acknowledgements. We thank Itai Benjamini, Uri Feige, Sam Hopkins for useful discussions.
We are grateful to the anonymous referees for helpful comments and turning our attention to
[7]. Part of this work was done during the visit of the second author at NYU. The second
author wishes to thank Subhash Khot for his hospitality.

—— References

1 N. Alon and J. H. Spencer. The Probabilistic Method. Wiley-Interscience series in discrete
mathematics and optimization. J. Wiley & Sons, New York, 2000.



H. Bennett, D. Reichman, and l. Shinkar

10

11

12

13

14

15

16

17

18

19

20

B. Barak, M. Hardt, T. Holenstein, and Steurer D. Subsampling mathematical relaxations
and average-case complexity. In Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, San Francisco, California, USA, pages 512—
531, 2011. doi:10.1137/1.9781611973082.41.

B. Bollobés. The chromatic number of random graphs. Combinatorica, 8(1):49-55, 1988.
doi:10.1007/BF02122551.

B. Bollobas. Random graphs. Springer, 1998.

B. Bollobés, B. P. Narayanan, and A. M. Raigorodskii. On the stability of the erdds-ko-rado
theorem. J. Comb. Theory, Ser. A, 137:64-78, 2016. doi:10.1016/j.jcta.2015.08.002.
R. L. Brooks. On colouring the nodes of a network. Mathematical Proceedings of the
Cambridge Philosophical Society, 37:194-197, 4 1941. doi:10.1017/3030500410002168X.

B. Bukh. Interesting problems that I cannot solve. Problem 2. http://www.borisbukh.
org/problems.html.

I. Dinur, E. Mossel, and O. Regev. Conditional hardness for approximate coloring. STAM
J. Comput., 39(3):843-873, 2009. doi:10.1137/07068062X.

I. Dinur and I. Shinkar. On the conditional hardness of coloring a 4-colorable graph with
super-constant number of colors. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, 13th International Workshop, APPROX 2010,
and 14th International Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010.
Proceedings, pages 138151, 2010. doi:10.1007/978-3-642-15369-3_11.

M. Etscheid and H. Réglin. Smoothed analysis of local search for the maximum-cut problem.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, Portland, Oregon, USA, pages 882—-889, 2014. doi:10.1137/1.9781611973402.66.
U. Feige and J. Kilian. Zero knowledge and the chromatic number. Journal of Computer
and System Sciences, 57(2):187-199, 1998. doi:10.1006/jcss.1998.1587.

U. Feige and Daniel Reichman. Recoverable values for independent sets. Random Struct.
Algorithms, 46(1):142-159, 2015. doi:10.1002/rsa.20492.

A. M. Frieze and C. McDiarmid. Algorithmic theory of random graphs. Random Struct.
Algorithms, 10(1-2):5-42, 1997. doi:10.1002/(SICI)1098-2418(199701/03)10:1/2<5::
AID-RSA2>3.0.C0;2-Z.

M. R. Garey and D. S. Johnson. The complexity of near-optimal graph coloring. J. ACM,
23(1):43-49, January 1976. doi:10.1145/321921.321926.

G. Grimmett. Percolation. Springer, 1999.

G. R. Grimmett and C. J. H. McDiarmid. On colouring random graphs. Mathematical
Proceedings of the Cambridge Philosophical Society, 77:313-324, 3 1975. doi:10.1017/
S0305004100051124.

S. Har-Peled. Concentration of Random Variables — Chernoff’s Inequality. Available at
http://sarielhp.org/teach/13/b_574_rand_alg/lec/07_chernoff.pdf.

S. Huang. Improved hardness of approximating chromatic number. In Approzima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques — 16th
International Workshop, APPROX 2013, and 17th International Workshop, RANDOM
2018, Berkeley, CA, USA, August 21-23, 2013. Proceedings, pages 233-243, 2013. doi:
10.1007/978-3-642-40328-6_17.

D. R. Karger. Random sampling in cut, flow, and network design problems. In Proceedings
of the Twenty-Sixzth Annual ACM Symposium on Theory of Computing, Montréal, Québec,
Canada, pages 648-657, 1994. doi:10.1145/195058.195422.

S. Khot. Improved inapproximability results for maxclique, chromatic number and ap-
proximate graph coloring. In 42nd Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 600-609, 2001.
doi:10.1109/SFCS.2001.959936.

80:13

ICALP 2016


http://dx.doi.org/10.1137/1.9781611973082.41
http://dx.doi.org/10.1007/BF02122551
http://dx.doi.org/10.1016/j.jcta.2015.08.002
http://dx.doi.org/10.1017/S030500410002168X
http://www.borisbukh.org/problems.html
http://www.borisbukh.org/problems.html
http://dx.doi.org/10.1137/07068062X
http://dx.doi.org/10.1007/978-3-642-15369-3_11
http://dx.doi.org/10.1137/1.9781611973402.66
http://dx.doi.org/10.1006/jcss.1998.1587
http://dx.doi.org/10.1002/rsa.20492
http://dx.doi.org/10.1002/(SICI)1098-2418(199701/03)10:1/2<5::AID-RSA2>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1098-2418(199701/03)10:1/2<5::AID-RSA2>3.0.CO;2-Z
http://dx.doi.org/10.1145/321921.321926
http://dx.doi.org/10.1017/S0305004100051124
http://dx.doi.org/10.1017/S0305004100051124
http://sarielhp.org/teach/13/b_574_rand_alg/lec/07_chernoff.pdf
http://dx.doi.org/10.1007/978-3-642-40328-6_17
http://dx.doi.org/10.1007/978-3-642-40328-6_17
http://dx.doi.org/10.1145/195058.195422
http://dx.doi.org/10.1109/SFCS.2001.959936

80:14

On Percolation and N/P-Hardness

21

22

23

24
25

26

27

28

29

30

L. Kucera. The greedy coloring is a bad probabilistic algorithm. J. Algorithms, 12(4):674—
684, 1991.

T. Luczak. The chromatic number of random graphs. Combinatorica, 11(1):45-54, 1991.
doi:10.1007/BF01375472.

M. Mezard and A. Montanari. Information, physics, and computation. Oxford University
Press, 2009.

S. Misra. Decay of Correlation and Inference in Graphical Models. PhD thesis, MIT, 2014.
E. Mossel, R. O’Donnell, O. Regev, J. E. Steif, and B. Sudakov. Non-interactive correlation
distillation, inhomogeneous Markov chains, and the reverse Bonami-Beckner inequality.
Israel Journal of Mathematics, 154:299-336, 2006.

O. Sisask. Discrete fourier analysis. Available at https://people.kth.se/~sisask/
Shillong/DFA_2.pdf.

A. Sly. Computational transition at the uniqueness threshold. In 51th Annual IEEFE
Symposium on Foundations of Computer Science, FOCS 2010, Las Vegas, Nevada, USA,
pages 287-296, 2010. doi:10.1109/F0CS.2010.34.

D. A. Spielman and S-H. Teng. Smoothed analysis of algorithms: Why the simplex al-
gorithm usually takes polynomial time. J. ACM, 51(3):385-463, 2004. doi:10.1145/
990308.990310.

D. A. Spielman and S-H. Teng. Smoothed analysis: an attempt to explain the behavior
of algorithms in practice. Commun. ACM, 52(10):76-84, 2009. doi:10.1145/1562764.
1562785.

V. V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., New York,
NY, USA, 2001.


http://dx.doi.org/10.1007/BF01375472
https://people.kth.se/~sisask/Shillong/DFA_2.pdf
https://people.kth.se/~sisask/Shillong/DFA_2.pdf
http://dx.doi.org/10.1109/FOCS.2010.34
http://dx.doi.org/10.1145/990308.990310
http://dx.doi.org/10.1145/990308.990310
http://dx.doi.org/10.1145/1562764.1562785
http://dx.doi.org/10.1145/1562764.1562785

	Introduction
	A first example – 3-Coloring
	Robustness of NP-hard problems under percolation
	Our results
	Preliminaries
	Related Work

	Maximum Independent Set and Percolation
	Graph Coloring and Percolation
	Maximum Coverage
	Proof of Lemma 14 using additive combinatorics
	Proof of Lemma 15 using Fourier analysis
	Coloring Using Subgraphs
	Lower Bounding the Chromatic Number


