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Abstract
We prove several results which, together with prior work, provide a nearly-complete picture of the
relationships among classical communication complexity classes between P and PSPACE, short of
proving lower bounds against classes for which no explicit lower bounds were already known. Our
article also serves as an up-to-date survey on the state of structural communication complexity.

Among our new results we show that MA 6⊆ ZPPNP[1], that is, Merlin–Arthur proof systems
cannot be simulated by zero-sided error randomized protocols with one NP query. Here the
class ZPPNP[1] has the property that generalizing it in the slightest ways would make it contain
AM ∩ coAM, for which it is notoriously open to prove any explicit lower bounds. We also prove
that US 6⊆ ZPPNP[1], where US is the class whose canonically complete problem is the variant of
set-disjointness where yes-instances are uniquely intersecting. We also prove that US 6⊆ coDP,
where DP is the class of differences of two NP sets. Finally, we explore an intriguing open issue:
are rank-1 matrices inherently more powerful than rectangles in communication complexity?
We prove a new separation concerning PP that sheds light on this issue and strengthens some
previously known separations.
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1 Introduction

Complexity classes form the infrastructure of classical complexity theory. They are used
to express the power of models of computation, characterize the complexities of important
computational problems, and catalyze proofs of other results. A central project is to ascertain
the full, intricate landscape of relationships among complexity classes.

Beginning with [3], there has been a lot of research on the analogues of classical (Turing
machine) complexity classes in two-party communication complexity. The analogue of
P (the class of decision problems solvable in polynomial time) is the class of functions
F : {0, 1}n×{0, 1}n → {0, 1} for which Alice and Bob, given x and y respectively, can evaluate
F (x, y) with a protocol that uses polylogarithmically many bits of communication. For other
classical complexity classes representing other models of computation, one can generally define,
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86:2 The Landscape of Communication Complexity Classes

in a canonical way, associated communication complexity classes representing associated
models of communication. There are many motivations for studying the relationships
(inclusions and non-inclusions) between these communication complexity classes.

A holy grail of classical complexity is to prove separations of classes between P and PSPACE.
Separations relative to oracles can often be viewed as class separations in the restricted
setting of query complexity; see [52] for an excellent survey. Communication complexity
can be viewed as a restricted (but generally less restricted than query complexity) setting
for which lower bounds are more difficult to obtain. Such separations in restricted settings
are sometimes construed as evidence for the classical separations, or at least as barriers
to refuting the classical separations. A stronger form of relativization barriers is known
as algebrization [2], which directly employs communication complexity class separations.
Proving lower bounds against strong communication complexity classes has applications
to other areas of theoretical computer science. One of the most notorious open problems
in communication complexity is to prove lower bounds against the analogue of the
polynomial hierarchy (PH) for any explicit two-party function. Proving PH lower bounds
is a necessary step for obtaining strong rank rigidity lower bounds [44, 36, 37, 53] (as
well as margin complexity rigidity lower bounds [35]), which in turn are related to circuit
complexity [50]. Lower bounds against PH are also related to graph complexity [42, 25].
It even remains open to prove communication lower bounds against the subclass of PH
known as AM (Arthur–Merlin games) for any explicit function (which would be relevant
to streaming delegation [8, 31, 19, 7, 9, 32]).
Communication complexity has a menagerie of techniques for proving lower bounds
(among the oldest being discrepancy and corruption). These techniques often provide
lower bounds against powerful communication complexity classes, and in some cases turn
out to be equivalent to the communication measures corresponding to those classes (e.g.,
discrepancy is equivalent to PP communication [29], and corruption is equivalent to SBP
communication [18]). See [17] for more background on this. Thus, by studying complexity
classes, as a byproduct we study the relative strength of lower bound techniques.
The various models of communication corresponding to complexity classes are math-
ematically interesting because protocols in these models can be viewed as succinct
representations of boolean matrices. The study of classes exposes natural questions about
the combinatorial power of such succinct representations.

We contribute to the exploration of the communication complexity landscape by filling in
many of the remaining gaps in the known relationships among classes, and discovering new
techniques and insights along the way. In Section 2 we state our results more precisely and
provide some intuition for the proofs. In the full version, we summarize the state of affairs
(including our new results) by showing a map of known inclusions and non-inclusions between
pairs of traditional communication classes, and we provide a comprehensive survey of these
results. This updates previous surveys by Babai, Frankl, and Simon [3] and Halstenberg and
Reischuk [21].

We refer to [33, 26] for background on communication complexity. In the full version
we provide a catalog of communication complexity class definitions; throughout the text,
we provide definitions on a “need-to-know” basis. If C is the name of a model (e.g., P for
deterministic or NP for nondeterministic), we follow the convention of using C to denote both
a complexity class and the corresponding complexity measure: C(F ) denotes the minimum
cost of a correct protocol for the (possibly partial) two-party function F in model C, and C
denotes the class of all (families of) partial functions F with C(F ) ≤ poly(logn).
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2 Our Contributions

Several of our results concern two-party composed functions, so we introduce some general
notation for this. A composed function is of the form f ◦ gm where f : {0, 1}m → {0, 1} is
a (possibly partial) outer function and g : {0, 1}b × {0, 1}b → {0, 1} is an inner function
also called a gadget. We write F := f ◦ gm : {0, 1}n × {0, 1}n → {0, 1} where n := m · b.
We view the inputs to Alice and Bob as x, y ∈ ({0, 1}b)m, which are partitioned into blocks
xi, yi ∈ {0, 1}b for i ∈ [m]. The goal is to compute F (x, y) := f(g(x1, y1), . . . , g(xm, ym)).

2.1 MA 6⊆ ZPPNP[1]

A Merlin–Arthur (MA) communication protocol is a proof system in which a nondeterministic
party called Merlin sends a proof string (depending on the input) to Alice and Bob (collectively
constituting Arthur), who then execute a randomized protocol to verify the proof. Merlin–
Arthur communication protocols have been studied many times [28, 43, 2, 16, 30, 19,
20], starting with the work of Klauck [28], who gave a Ω(

√
n) lower bound on the MA

communication complexity of set-disjointness. In contrast, for the related (and stronger)
model of Arthur–Merlin (AM) communication protocols, in which Merlin’s proof string may
depend on Alice’s and Bob’s randomness, no nontrivial lower bound is known for any explicit
function, and such lower bounds have become very sought-after in the recent literature
[35, 40, 32, 9].

Our first result concerns the relationship between MA and another class, ZPPNP[1], which
is a slightly obscure but intriguing character with many curious properties. A ZPP-type
protocol is randomized and may output the correct answer or ⊥ (representing “don’t know”),
and must output the correct answer with high probability on every input; granting the
protocol access to one query to an NP oracle yields ZPPNP[1]. It is not a priori clear that
the model is robust with respect to the choice of threshold for the success probability,
since standard amplification by repetition would increase the number of NP oracle queries.
However, it was shown in [11] that ZPPNP[1] does indeed admit efficient amplification as
long as the success probability is > 1/2 (the proof for time-bounded complexity also works
for communication complexity); hence we define the model with success probability some
constant > 1/2, say 3/4.

If we allowed ZPPNP[1] to have success probability< 1/2, the class would change drastically:
it would contain AM ∩ coAM (see the full version), and hence proving explicit lower bounds
for the communication version would yield breakthrough AM communication lower bounds.
Granting the model access to two nonadaptive NP queries (and requiring success probability
> 1/2) would also encompass AM ∩ coAM. Thus, in a sense, ZPPNP[1] represents a boundary
beyond which AM lower bounds would be the next step. The class ZPPNP[1] is also sandwiched
between BPP and S2P [6]; S2P is a subclass of the polynomial hierarchy that has not been
studied before in communication complexity (the definition appears in the full version), and
no nontrivial lower bounds against it are known for any explicit function. This is another
sense in which ZPPNP[1] constitutes a new frontier toward the elusive goal of proving explicit
PH communication lower bounds. We also mention that ZPPNP[1] shows up frequently in the
literature on the “two queries problem” (e.g., if PNP[2]

‖ ⊆ ZPPNP[1] then PH = S2P [49]).
We prove that MA 6⊆ ZPPNP[1] in the setting of communication complexity. This can be

interpreted as saying that one-round non-interactive1 proof systems cannot be made to have

1 Here, the term non-interactive means that Alice and Bob cannot interact with Merlin other than
receiving the proof string.
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zero-sided error, even if the proof is generalized to an NP oracle query that depends on the
randomness.

Before officially stating the theorem, we give the relevant formal definitions. An MA
communication protocol computing F : {0, 1}n × {0, 1}n → {0, 1} consists of a randomized
two-party protocol which takes as input, in addition to the usual inputs x and y, a proof string
(witness) w ∈ {0, 1}k that is visible to both Alice and Bob. The completeness criterion is that
for every (x, y) ∈ F−1(1) there exists a w such that the protocol accepts with probability
at least 3/4, and the soundness criterion is that for every (x, y) ∈ F−1(0) and every w, the
protocol rejects with probability at least 3/4. The cost is the witness length k plus the length
of the subsequent transcript between Alice and Bob.

A ZPPNP[1] protocol Π computing F is a distribution over PNP[1]-type protocols, each
of which is of the following form: There is a deterministic protocol where for each leaf v
having associated rectangle Rv, there is also an associated collection of “witness rectangles”{
Sv,w ⊆ Rv : w ∈ {0, 1}k

}
and an associated “output function” ov : {0, 1} → {0, 1,⊥}. The

output of the PNP[1]-type protocol on input (x, y) is obtained by running the deterministic
part to reach a leaf v, then applying ov to the indicator of whether (x, y) ∈

⋃
w Sv,w.

The correctness criterion is that for every (x, y) ∈ F−1, P
[
Π(x, y) ∈ {F (x, y),⊥}

]
= 1

and P
[
Π(x, y) = F (x, y)

]
≥ 3/4. The cost is the witness length k plus the maximum

communication cost of the deterministic part of any of the constituent PNP[1]-type protocols.
The result of [11] shows that changing the success probability from 3/4 to any other constant
strictly between 1/2 and 1 would only change the measure ZPPNP[1](F ) by a constant factor.

We prove a lower bound for the block-equality function Block-Eq, defined as follows:2
Given

√
n instances of the equality function Eq of length

√
n, is at least one of them a

yes-instance? More formally, we have Block-Eq := Or ◦ Eqm where the input to Or is
m :=

√
n bits, and each input to Eq is b :=

√
n bits. In other words, writing x := x1 · · ·x√n ∈

({0, 1}
√
n)
√
n and y := y1 · · · y√n ∈ ({0, 1}

√
n)
√
n, we have Block-Eq(x, y) = 1 iff xi = yi for

some i. Note that Block-Eq ∈ MA since i can be nondeterministically guessed by Merlin,
and then xi = yi can be verified using a randomized protocol for Eq. (It was first noticed in
[34] that Block-Eq ∈ Σ2P ∩ Π2P, which is a superset of MA.)

I Theorem 1. ZPPNP[1](Block-Eq) = Θ(
√
n), and hence MA 6⊆ ZPPNP[1].

To prove Theorem 1 (Section 3), we apply a new lower bound technique that combines
the corruption bound with the 1-monochromatic rectangle size bound and asserts that they
hold simultaneously (under the same distribution over inputs). We prove that, perhaps
surprisingly, this combined technique gives a lower bound for ZPPNP[1] (though neither of
the individual bounds suffices).

To apply our technique to Block-Eq, we first note that it is straightforward to achieve
the two bounds separately: the 1-monochromatic rectangle size bound follows by simple
counting, and the corruption bound follows by using Razborov’s corruption lemma for the set-
intersection function Inter [45] together with a simple reduction from Inter to Block-Eq.
However, the latter does not result in a distribution satisfying the 1-monochromatic rectangle
size bound for Block-Eq. To fix this problem, we argue that if we average Razborov’s
distribution over all ways of implementing the reduction (of which there are many), then the
corruption bound is still satisfied, and now the 1-monochromatic rectangle size bound is also
satisfied.

2 The complement of block-equality is often known as list-non-equality.
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2.2 US 6⊆ ZPPNP[1]

For the set-intersection function Inter, Alice and Bob are each given a subset of [n] (and
we identify the subset with its characteristic vector, a length-n bit string), and the goal is to
output 1 when the sets are intersecting and 0 when they are disjoint.3 Phrased as a composed
function, Inter := Or ◦ Andn (for single-bit And). This is the canonical NP-complete
problem in communication complexity, holding a comparable status to satisfiability, the
canonical NP-complete problem in time-bounded complexity.

In the literature, “unique-set-intersection” commonly refers to the partial function version
of Inter where the intersection is promised to have size 0 or 1. We propose a change in
terminology, in order to be consistent with the following corresponding terminology from
time-bounded complexity (see, e.g., [4, 51, 10]): Unique-satisfiability is the problem of
determining whether the number of satisfying assignments of a formula is exactly 1, and is
complete for the complexity class called US. Unambiguous-satisfiability is the problem of
determining whether the number of satisfying assignments of a formula is 0 or 1 under the
promise that one of these cases holds, and is complete for the complexity class called UP.

Therefore, we make the following declarations: Unique-set-intersection is the total func-
tion Unique-Inter : {0, 1}n × {0, 1}n → {0, 1} that maps (x, y) to 1 iff |x ∩ y| = 1, i.e.,
Unique-Inter := Unique-Or ◦Andn where Unique-Or(z) = 1 iff the Hamming weight
of z is 1. Unambiguous-set-intersection is the partial function Unambig-Inter : {0, 1}n ×
{0, 1}n → {0, 1} that maps (x, y) to |x ∩ y| if the latter is in {0, 1}, i.e., Unambig-Inter :=
Unambig-Or ◦Andn where Unambig-Or(z) equals the Hamming weight of z if the latter
is in {0, 1}.

Note that Unique-Inter is US-complete, where a cost-k US communication protocol is
defined as a collection of rectangles

{
Rw ⊆ {0, 1}n × {0, 1}n : w ∈ {0, 1}k

}
, where on input

(x, y) the output of the protocol is 1 iff (x, y) is in Rw for exactly one w.

I Theorem 2. ZPPNP[1](Unique-Inter) = Θ(n), and hence US 6⊆ ZPPNP[1].

We give two proofs of Theorem 2. Both proofs show that Theorem 2 holds even under
the promise that the input sets intersect in at most two coordinates. Also, in both proofs,
handling ZPPNP[1] instead of PNP[1] incurs almost no extra complication.

The first proof (Section 3) employs the same lower bound technique as in Theorem 1,
but where we use Razborov’s corruption lemma [45] directly (and we must do a little
analysis to verify the 1-monochromatic rectangle size bound). The optional second proof
(relegated to the full version) uses information complexity tools (including an adaptation of
the “partial information cost” approach from [24]) and, although longer to write, has some
minor advantages over the first proof: It is more self-contained, as it does not rely on the
corruption lemma (only on some basic facts that are standard in information complexity).
Also, it directly handles success probability 1/2 + ε (for any constant ε > 0) without relying
on the amplification result of [11] (whereas the first proof assumes success probability 0.999).

2.3 US 6⊆ coDP
The class DP was introduced in [39] to capture the complexity of certain exact versions of
optimization problems. A set (of all 1-inputs of a function) is in DP iff it is the difference
between two NP sets. The classes P, NP, and DP are the 0th, 1st, and 2nd (respectively)
levels of the so-called boolean hierarchy.

3 We let “set-disjointness” refer to the complementary function where 1-inputs are disjoint.
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We have US ⊆ DP since to check that there is exactly one witness, we can use an NP
computation to check that there is at least one witness, and another to check that there are at
least two witnesses, and require that the first computation returns 1 and the second returns
0. However, it is unlikely that US ⊆ coDP: [10] showed that this inclusion cannot hold in the
classical time-bounded setting unless the polynomial hierarchy collapses. This result does
not yield a communication separation, since it is unknown whether the polynomial hierarchy
collapses in the communication setting. Nevertheless, we show that indeed US 6⊆ coDP in
communication complexity.

Formally, a cost-k coDP communication protocol is defined as a pair of collections of
rectangles,

{
Sw ⊆ {0, 1}n × {0, 1}n : w ∈ {0, 1}k

}
and

{
Tw ⊆ {0, 1}n × {0, 1}n : w ∈

{0, 1}k
}
, where on input (x, y) the output is 0 iff (x, y) ∈

⋃
w Sw r

⋃
w Tw.

I Theorem 3. coDP(Unique-Inter) = Θ(n), and hence US 6⊆ coDP.

To prove Theorem 3 (Section 3), we show that the same lower bound technique we
introduced for ZPPNP[1] (the combination of the corruption bound and the 1-monochromatic
rectangle size bound) also lower bounds coDP complexity. Thus we can simply reuse the
application of the technique to Unique-Inter from Theorem 2. (Reusing the application to
Block-Eq from Theorem 1 would show that Block-Eq 6∈ coDP, but in fact Block-Eq 6∈
PNP ⊇ coDP was already known [23].)

2.4 ZPPNP[1] ⊆ PostBPP
Consider bounded-error randomized computations (like in BPP) but with postselection: the
output may come from {0, 1,⊥} and must be correct with high probability conditioned on
not outputting ⊥ (and the probability of this conditioning event must be positive). The
complexity class corresponding to this model was originally called BPPpath [22], but the name
PostBPP (inspired by [1]) has gained popularity in the recent literature ([17] is one example)
and seems more appropriate, so we use it instead.

According to modern conventions, the standard way to define the cost of a PostBPP
communication protocol for F would be as the communication cost plus log(1/α), where
α is the minimum over all (x, y) ∈ F−1 of the probability of not outputting ⊥. (Allowing
public randomness and not charging for α would enable PostBPP protocols to compute every
function with constant cost.) Similarly, the cost of a PP (i.e., unbounded-error randomized)
protocol would be the communication cost plus log(1/ε) where 1/2 + ε is the minimum over
all (x, y) ∈ F−1 of the probability of outputting the correct answer.

However, for reasons that will become clear in Section 2.5, we choose to revert to the
original convention of [3] and define PostBPP and PP in a slightly different but equivalent
way: we do not charge for α or ε but we require the public randomness to be uniformly
distributed over {0, 1}k and we charge for k. For both PostBPP and PP, this cost measure is
equivalent to the above “modern” definition within a constant factor and additive O(logn)
term, by standard sparsification of the public randomness [38].

Formally, we define a PostBPP communication protocol Π for F in the following succinct
way: For each outcome of the public randomness (which is uniformly distributed over {0, 1}k)
there is a deterministic protocol outputting values in {0, 1,⊥}. For each (x, y) ∈ F−1 we
must have P

[
Π(x, y) = F (x, y)

]
> 2 · P

[
Π(x, y) = 1− F (x, y)

]
. The cost is the randomness

length k plus the maximum communication cost of any of the constituent deterministic
protocols.

A priori it is not clear that any explicit lower bounds for ZPPNP[1] follow from prior
work. The following result shows that in fact they do, since many explicit lower bounds for
PostBPP were known.
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I Theorem 4. PostBPP(F ) ≤ O
(
ZPPNP[1](F ) + logn

)
for all F , and hence ZPPNP[1] ⊆

PostBPP.

It turns out that Theorem 4 can be derived from the lower bound technique we develop
for ZPPNP[1] in Section 3; however, that approach is more complicated than necessary and,
more importantly, is specific to communication complexity. We give a proof of Theorem 4 (in
the full version) using a black-box simulation that also works for time-bounded complexity,
without exploiting any special properties of communication.

Intuitively, the worst case for simulating a ZPPNP[1] protocol is the following situation:
Whenever the NP oracle responds “0” the protocol outputs the right answer, and whenever
the NP oracle responds “1” the protocol outputs ⊥ but would have output the wrong answer
if the response were “0”. In this situation, pretending the oracle always responds “0” would
yield a BPP protocol (this is where we crucially need the success probability to be > 1/2).
To handle more general situations, we must also randomly guess and verify a witness for the
NP query, outputting ⊥ if the witness is invalid.

2.5 Open issue: Rank-1 vs. rectangles
The classes PostBPP and PP can be further generalized by allowing the use of private ran-
domness, which does not count toward the cost. This gives rise to the so-called “unrestricted
probabilities” classes UPostBPP (which was defined, but not extensively studied, in [17]) and
UPP (which is well-studied [41, 13, 48, 46]). In UPostBPP and UPP we can dispense with
public randomness altogether as the public coins could be tossed privately by Alice and then
sent to Bob.

Combinatorially, PostBPP and PP protocols of cost c induce a distribution over 2c labeled
rectangles (rank-1 matrices with 0-1 entries) each occurring with a “restricted” probability
of at least 2−c (see the full version). In the case of UPostBPP and UPP there is a similar
characterization with rectangles replaced by nonnegative rank-1 matrices (see the full version).
A natural question arises:

Informal question: Are rank-1 matrices inherently more powerful than rectangles in
communication complexity?

While it has been shown that, e.g., PP 6= UPP [5, 47], the known examples of functions F ∈
UPPrPP can actually be computed without exploiting the full power of private randomness
(their rank-1 property): we can use a UPP protocol whose associated rank-1 matrices are
still rectangles, but occurring with unrestricted, possibly tiny, probability. We conclude that
“PP vs. UPP” is not the right way to formalize our informal question (and the existing proofs
for PP 6= UPP do not incidentally answer our question), since UPP protocols can be more
powerful than PP protocols for reasons unrelated to their rank-1 property.4

A better formalization is as follows. We define new communication classes, UPostBPP� ⊆
UPostBPP and UPP� ⊆ UPP, in the same way as PostBPP and PP, except allowing the
public randomness to be arbitrarily distributed over {0, 1}k (still charging for k and not for
α or ε). Combinatorially, we have a distribution over 2k labeled rectangles, but with no
restrictions on their probabilities. Our informal question can now be formalized as follows:

4 The Log Rank Conjecture (and its variants) also do not adequately formalize our question, since the
definition of a protocol imposes constraints on how its rectangles interrelate, whereas there are no
analogous constraints on the rank-1 matrices making up a low-rank decomposition. A fairer formalization
along these lines would be to compare the power (in representing boolean matrices) of sums of rank-1
matrices vs. linear combinations of rectangles; nothing seems to be known about this question.
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Formal question: Do we have UPostBPP = UPostBPP�? How about UPP = UPP�?

The seemingly minor syntactic generalization introduced in the definitions of the �-classes
makes a huge difference: We observe (in the full version) that PNP ⊆ UPostBPP�,5 whereas
it is known that PostBPP and PNP are incomparable. Hence UPostBPP� is a strict superset
of both PostBPP and PNP. This leaves us with no known examples of functions to witness a
separation for our “rank-1 vs. rectangle” question; currently the best gap is UPostBPP(F ) ≤
O(1) vs. UPostBPP�(F ) ≥ Ω(logn) where F is the usual Greater-Than function defined
by F (x, y) = 1 iff x > y when x, y ∈ [2n] are viewed as numbers. There is also no clear
analogue of the “rank-1 vs. rectangle” distinction in query complexity, so a separation of the
two notions in communication complexity might require interesting techniques. In fact, in
the context of SBP (subclass of PostBPP), it can be shown that rank-1 matrices do not add
any power over mere rectangles [17].

2.6 PP 6⊆ UPostBPP�
Our final result is to develop and apply a useful lower bound method for the class UPostBPP�

introduced above. PostBPP already has a tight rectangle-based lower bound technique,
which was dubbed “extended discrepancy” in [15] but was used earlier in [28] to show that
PP 6⊆ PostBPP. We strengthen the latter result to show that PP 6⊆ UPostBPP�. (Showing
PP 6⊆ UPostBPP remains open.) In our proof, we make use of the main theorem from [17],
which applies to composed functions where the gadget is as follows.

I Definition 5. The confounding gadget g is defined by g(xi, yi) := 〈xi, yi〉 mod 2, where
xi, yi ∈ {0, 1}b and the block length b is b(m) := 100 logm.

We introduce the confounded-majority function, defined as Conf-Maj := f ◦ gm where
f is the majority function and g is the confounding gadget. Note that Conf-Maj has input
length n := m · b = m · 100 logm and is in PP since Alice and Bob can pick i ∈ [m] uniformly
at random and then exchange b+ 1 ≤ O(logn) bits to evaluate g(xi, yi).

I Theorem 6. UPostBPP�(Conf-Maj) = Θ(n), and hence PP 6⊆ UPostBPP�.

To prove Theorem 6 (in the full version) we introduce a lower bound technique for
UPostBPP� that strengthens the extended discrepancy bound (for PostBPP) by requiring it
to hold under a product distribution over inputs (analogously to how [40] showed that the
“monochromatic rectangle size bound under product distributions” gives a lower bound for
PNP). However, only a Ω(

√
n logn) lower bound for Conf-Maj follows using this technique,

so to get the Ω(n) lower bound in Theorem 6, we generalize the technique further by allowing
a rectangle’s size to be measured with respect to some product distribution while its error is
measured with respect to some other (arbitrary) distribution. (This is very analogous to
the idea of relative discrepancy [14, 12].) To apply our general lower bound technique to
Conf-Maj, we employ the communication-to-query machinery from [17] in a new, somewhat
indirect way.

Finally, we mention another intriguing property of UPostBPP�: By our lower bound
technique and the results of [15] it follows immediately that to prove the Log Rank Conjecture,

5 This inclusion also holds for time-bounded complexity. In defining the time-bounded version of
UPostBPP�, we would allow the distribution of the random string to depend nonuniformly on the input
length n, though for the inclusion of PNP, the distribution is computable in exponential time given the
string 1n.
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i.e., that P(F ) ≤ poly(log rank(F )) for all total boolean matrices F , it suffices to prove the
same with UPostBPP� instead of P. See the full version for more details.

3 Lower Bounds for Block-Equality and Unique-Set-Intersection

We now describe a technique for lower bounding both ZPPNP[1] and coDP communication.

I Lemma 7. Suppose µ0 is a distribution over F−1(0), µ1 is a distribution over F−1(1), and
C is a constant such that for every rectangle R ⊆ {0, 1}n × {0, 1}n, µ0(R) ≤ C · µ1(R) + δ,
and if R is 1-monochromatic (i.e., contains no 0-inputs) then µ1(R) ≤ δ. Then
(i) ZPPNP[1](F ) ≥ Ω(log(1/δ)),
(ii) coDP(F ) ≥ Ω(log(1/δ)).

The first half of the technique (µ0(R) ≤ C · µ1(R) + δ) is the corruption bound (which
is a tight lower bound technique for so-called coSBP [18]), and the other half is the 1-
monochromatic rectangle size bound (which is a tight lower bound technique for NP [33,
§2.4]). The combined technique gives a lower bound for both ZPPNP[1] and coDP, even
though neither of these classes appears to be a “combination” of coSBP and NP.

We prove parts (i) and (ii) of Lemma 7 in Section 3.1 and Section 3.2. Then we apply
the technique to Block-Eq in Section 3.3 (thus proving Theorem 1), and finally we apply
the technique to Unique-Inter in Section 3.4 (thus proving Theorem 2 and Theorem 3).

3.1 Proof of Lemma 7(i)
Suppose for contradiction there is a cost-o(log(1/δ)) ZPPNP[1] protocol Π computing F .
Then in particular we have δ ≤ o(1). By the amplification result of [11], we may assume
P
[
Π(x, y) = ⊥

]
≤ 1/10C for all (x, y) ∈ F−1. By Markov’s inequality and a union bound, we

may fix a PNP[1]-type protocol Π∗ in the support of Π such that P(x,y)∼µ0

[
Π∗(x, y) = ⊥

]
≤

1/5C and P(x,y)∼µ1

[
Π∗(x, y) = ⊥

]
≤ 1/5C. Let the notation k,Rv, Sv,w, ov be with respect

to Π∗ (see the definition of ZPPNP[1] in Section 2.1), and note that without loss of generality,
each ov is non-constant (otherwise we could redefine Sv,w = ∅ for all w and redefine ov(1)
arbitrarily).

For b ∈ {0, 1,⊥}, define Wb :=
⋃
v,w : ov(1)=b Sv,w as the set of “witnessed” inputs (the NP

oracle responds “1”) on which Π∗ outputs b, and define Nb :=
⋃
v : ov(0)=b

(
Rv r

⋃
w Sv,w

)
as the set of “non-witnessed” inputs (the NP oracle responds “0”) on which Π∗ outputs b.
Note that {W0, N0,W1, N1,W⊥, N⊥} partitions {0, 1}n × {0, 1}n. By assumption, µ0(W⊥ ∪
N⊥) ≤ 1/5C and µ1(W⊥ ∪ N⊥) ≤ 1/5C. By the correctness of Π, for b ∈ {0, 1} we have
(Wb ∪Nb) ∩ F−1(1− b) = ∅.

I Claim 8. µ0(W0) ≤ 1/4.

I Claim 9. µ0(N0) ≤ 1/4.

This provides the contradiction since then µ0
(
{0, 1}n × {0, 1}n

)
= µ0(W0) + µ0(N0) +

µ0(W1 ∪N1) + µ0(W⊥ ∪N⊥) ≤ 1/4 + 1/4 + 0 + 1/5C < 1.

Proof of Claim 8. For each v, w such that ov(1) = 0, we have µ1(Sv,w) = 0 and hence
µ0(Sv,w) ≤ δ. Thus by a union bound, µ0(W0) ≤

∑
v,w : ov(1)=0 µ0(Sv,w) ≤ 2o(log(1/δ)) · δ ≤

δ1−o(1) ≤ 1/4. J
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Proof of Claim 9. If v is such that ov(0) = 0, then we have

µ0
(
Rv r

⋃
w Sv,w

)
≤ µ0(Rv) ≤ C · µ1(Rv) + δ = C · µ1

(⋃
w Sv,w

)
+ δ

by the fact that
(
Rv r

⋃
w Sv,w

)
∩ F−1(1) = ∅. Also, since each ov is non-constant, we have∑

v : ov(0)=0 µ1
(⋃

w Sv,w
)

=
∑
v : ov(0)=0, ov(1)=⊥ µ1

(⋃
w Sv,w

)
+
∑
v : ov(0)=0, ov(1)=1 µ1

(⋃
w Sv,w

)
≤ µ1(W⊥) +

∑
v,w : ov(1)=1 µ1(Sv,w)

≤ µ1(W⊥ ∪N⊥) + 2o(log(1/δ)) · δ
≤ 1/5C + δ1−o(1)

where the third line follows since Sv,w is 1-monochromatic if ov(1) = 1. Combining these, we
have

µ0(N0) =
∑
v : ov(0)=0 µ0

(
Rv r

⋃
w Sv,w

)
≤
∑
v : ov(0)=0

(
C · µ1

(⋃
w Sv,w

)
+ δ
)

≤ C ·
(∑

v : ov(0)=0 µ1
(⋃

w Sv,w
))

+ 2o(log(1/δ)) · δ

≤ C ·
(
1/5C + δ1−o(1))+ δ1−o(1)

≤ 1/4. J

3.2 Proof of Lemma 7(ii)
Suppose for contradiction there is a cost-k coDP protocol Π computing F where k ≤
o(log(1/δ)). Then in particular we have δ ≤ o(1). We have a pair of collections of rectangles,{
Sw : w ∈ {0, 1}k

}
and

{
Tw : w ∈ {0, 1}k

}
, such that if F (x, y) = 0 then (x, y) ∈⋃

w Sw and (x, y) 6∈
⋃
w Tw, and if F (x, y) = 1 then (x, y) 6∈

⋃
w Sw or (x, y) ∈

⋃
w Tw.

Since µ0
(⋃

w Sw
)

= 1, there exists a w∗ such that µ0(Sw∗) ≥ 2−k ≥ δ1/3 and hence
µ1(Sw∗) ≥ 1

C · (δ
1/3 − δ) ≥ δ1/2. Since Sw∗ ∩ F−1(1) ⊆

⋃
w Tw, there exists a w′ such that

µ1(Tw′) ≥ µ1
(
Sw∗ ∩ F−1(1)

)
· 2−k > δ1/2 · δ1/2 = δ. But Tw′ is 1-monochromatic since

F−1(0) ∩
⋃
w Tw = ∅, so this is a contradiction.

3.3 Proof of Theorem 1
Let µ0 be the uniform distribution over Block-Eq−1(0), and let µ1 be the uniform distri-
bution over the subset of Block-Eq−1(1) consisting of all (x, y) for which xi = yi for a
unique i.

I Lemma 10. µ0(R) ≤ 45 · µ1(R) + 2−Ω(
√
n) holds for every rectangle R ⊆ {0, 1}n ×{0, 1}n.

I Lemma 11. µ1(R) ≤ 2−Ω(
√
n) holds for every 1-monochromatic rectangle R of Block-Eq.

Together, Lemma 10 and Lemma 11 show that the hypothesis of Lemma 7 holds with
F := Block-Eq, C := 45, and δ := 2−Ω(

√
n). The lower bound in Theorem 1 follows. For

the upper bound, in fact ZPP(Block-Eq) ≤ O(
√
n) holds [33, §4.1.1] (though it is slightly

quicker to see that NP(Block-Eq) ≤ O(
√
n) holds by guessing i and deterministically

verifying that xi = yi).
For the proofs of the lemmas, we define m :=

√
n and b :=

√
n (as in the notation for the

decomposition Block-Eq := Or ◦Eqm where Eq takes b-bit inputs).
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Proof of Lemma 10. For x0, x1, y0, y1 ∈ {0, 1}b, we say the tuple (x0, x1, y0, y1) is valid iff
x0 6= y0, x0 6= y1, x1 6= y0, and x1 = y1. We say Ξ :=

(
(x0

1, x
1
1, y

0
1 , y

1
1), . . . , (x0

m, x
1
m, y

0
m, y

1
m)
)

is valid iff it is a tuple of valid tuples. If Ξ is valid then the injection ΦΞ : {0, 1}m ×
{0, 1}m → {0, 1}n × {0, 1}n defined by ΦΞ(u, v) :=

(
xu1

1 · · ·xum
m , yv1

1 · · · yvm
m

)
is a reduction

from Inter := Or ◦Andm (for single-bit And) to Block-Eq:

Inter(u, v) = Block-Eq
(
ΦΞ(u, v)

)
.

(In other words, the image of ΦΞ, as a submatrix of the Block-Eq matrix, is a copy of the
Inter matrix.)

Define Unambig-Inter := Unambig-Or◦Andm where the partial function Unambig-Or
is Or restricted to the domain of strings of Hamming weight 0 or 1; i.e., Unambig-Inter−1(0)
consists of all pairs of disjoint sets, and Unambig-Inter−1(1) consists of all pairs of uniquely
intersecting sets.

I Lemma 12 ([45]). There exists a distribution ν0 over Unambig-Inter−1(0) and a distri-
bution ν1 over Unambig-Inter−1(1) such that ν0(R) ≤ 45 · ν1(R) + 2−Ω(m) holds for every
rectangle R ⊆ {0, 1}m × {0, 1}m. Moreover, the uniquely intersecting coordinate in ν1 is
uniformly distributed.

We claim that for a ∈ {0, 1} we have µa = EΞ ΦΞ(νa) where a valid Ξ is chosen uniformly
at random independently of νa. In other words, µa equals the distribution obtained by
choosing Ξ, then independently taking a sample from νa, then applying ΦΞ to the sample
(i.e., the uniform mixture of the distributions ΦΞ(νa)). We only argue that µ1 = EΞ ΦΞ(ν1)
(the argument for µ0 = EΞ ΦΞ(ν0) is essentially the same). In fact, we make the stronger
claim that for every (u, v) ∈ Unambig-Inter−1(1), say with ui = vi = 1, the distribution
EΞ ΦΞ(u, v) is uniform over the subset of Block-Eq−1(1) consisting of all (x, y) for which
xi = yi and xj 6= yj for all j 6= i. The original claim follows from this since the uniquely
intersecting coordinate i is uniformly distributed. The stronger claim follows immediately
from the facts that the coordinates of Ξ are independent, that (x1

i , y
1
i ) is uniformly distributed

over Eq−1(1), and that for j 6= i, (x0
j , y

0
j ), (x0

j , y
1
j ), and (x1

j , y
0
j ) are all marginally uniformly

distributed over Eq−1(0). The claim is established.
Now for every rectangle R ⊆ {0, 1}n × {0, 1}n, if we let Φ−1

Ξ (R) denote the rectangle of
all points in {0, 1}m × {0, 1}m that map into R under ΦΞ, then we have

µ0(R) = EΞ
(
ΦΞ(ν0)(R)

)
= EΞ ν0

(
Φ−1

Ξ (R)
)

≤ EΞ

(
45 · ν1

(
Φ−1

Ξ (R)
)

+ 2−Ω(m)
)

= 45 · EΞ ν1
(
Φ−1

Ξ (R)
)

+ 2−Ω(m)

= 45 · EΞ
(
ΦΞ(ν1)(R)

)
+ 2−Ω(m)

= 45 · µ1(R) + 2−Ω(
√
n). J

Proof of Lemma 11. Note that µ1 is uniform over a set of size

m · 2b · (22b − 2b)m−1 = m · 2b · 22b(m−1) · (1− 2−b)m−1 ≥ Ω(m · 2b · 22b(m−1)).

If R := A×B is 1-monochromatic then |A| ≤ m · 2b(m−1) (since for any y ∈ B there are at
most m · (2b)m−1 many x’s for which Block-Eq(x, y) = 1), and similarly |B| ≤ m · 2b(m−1),
and hence |R| ≤ m2 · 22b(m−1). It follows that

µ1(R) ≤ m2 · 22b(m−1)

Ω(m · 2b · 22b(m−1))
≤ O(m · 2−b) ≤ 2−Ω(

√
n). J
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3.4 Proof of Theorem 2 and Theorem 3
We again use the corruption lemma from [45], but now we need to take a closer look at the
distribution over 1-inputs. Let n = 4`−1. Let µ0 be the distribution over Unique-Inter−1(0)
that samples uniformly random disjoint sets of size `, and let µ1 be the distribution over
Unique-Inter−1(1) that samples uniformly random uniquely intersecting sets of size `.

I Lemma 13 ([45]). µ0(R) ≤ 45 · µ1(R) + 2−Ω(n) holds for every rectangle R ⊆ {0, 1}n ×
{0, 1}n.

I Lemma 14. µ1(R) ≤ 2−Ω(n) holds for every 1-monochromatic rectangle R of Unique-Inter.

Together, Lemma 13 and Lemma 14 show that the hypothesis of Lemma 7 holds with
F := Unique-Inter, C := 45, and δ := 2−Ω(n). Theorem 2 and Theorem 3 follow.

Proof of Lemma 14. For each i ∈ [n] let us define the rectangle Ri :=
{

(x, y) ∈ R : xi =
yi = 1

}
, and note that the Ri’s partition R. For each i we have |Ri| ≤ 2n−1 since every

(x, y) ∈ Ri is disjoint on the coordinates [n] r {i}.6 Hence |R| ≤ n2n−1 ≤ 2(1+o(1))n.
Note that µ1 can be sampled by the following process.

1. Pick a uniformly random i ∈ [n].
2. Pick a uniformly random H ⊆ [n] r {i} of size 2` − 2. There are

(
n−1
2`−2

)
= Θ(2n/

√
n)

choices.
3. Pick a uniformly random partition H = H1 ∪ H2 into sets of size ` − 1. There are(2`−2

`−1
)

= Θ(20.5n/
√
n) choices.

4. Let x := {i} ∪H1 and y := {i} ∪H2.

Hence µ1 is uniform over its support of size n ·Θ(2n/
√
n) ·Θ(20.5n/

√
n) = Θ(21.5n) ≥

2(1.5−o(1))n. It follows that µ1(R) ≤ 2(1+o(1))n/2(1.5−o(1))n ≤ 2−Ω(n). J
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