
Information Complexity Is Computable∗

Mark Braverman†1 and Jon Schneider2

1 Department of Computer Science, Princeton University, Princeton, NJ, USA
mbraverm@cs.princeton.edu

2 Department of Computer Science, Princeton University, Princeton, NJ, USA
js44@cs.princeton.edu

Abstract
The information complexity of a function f is the minimum amount of information Alice and
Bob need to exchange to compute the function f . In this paper we provide an algorithm for
approximating the information complexity of an arbitrary function f to within any additive
error ε > 0, thus resolving an open question as to whether information complexity is computable.

In the process, we give the first explicit upper bound on the rate of convergence of the
information complexity of f when restricted to b-bit protocols to the (unrestricted) information
complexity of f .
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1 Introduction

In 1948, Shannon introduced the field of information theory as a set of tools for understanding
the limits of one-way communication [15]. One of these tools, the information entropy function
H(X), measures the amount of information contained in a random source X.

The analogue of information entropy in communication complexity is information com-
plexity. The information complexity of a function f is the least amount of information
Alice and Bob need to exchange about their inputs to compute a function f . Just as
the information entropy of a random source X provides a lower bound on the amount of
communication required to transmit X, the information complexity of a function f provides
a lower bound on the communication complexity of f [3]. Moreover, just as Shannon’s
source coding theorem establishes H(X) as the asymptotic communication-per-message
required to send multiple independent copies of X, the information complexity of f is the
asymptotic communication-per-copy required to compute multiple copies of f in parallel on
independently distributed inputs [7, 5].

These properties make information complexity a valuable tool for proving results in
communication complexity. Communication complexity lower bounds themselves have a
wide variety of applications to other areas of computer science; for example, results in
circuit complexity such as Karchmer-Wigderson games and ACC lower bounds rely on
communication complexity lower bounds [12, 4]. In addition, techniques from information
complexity have been applied to prove various direct sum results in communication complexity
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[8, 2, 11], including the only known direct sum results for general randomized communication
complexity [3]. Information complexity has also been applied to prove a tight asymptotic
bound on the communication complexity of the set disjointness function [6].

Despite this, many fundamental properties of information complexity remain unknown [6].
It is unknown how the information complexity of a function changes asymptotically as we
allow the protocol to fail with probability ε. It is unknown how the information complexity
of a function grows if we restrict our attention to protocols of bounded depth. Perhaps
most surprisingly, it is even unknown if, given the truth table of a function f , whether it is
possible to even compute (to within some additive factor of ε) the information complexity of
f , ICµ(f). (Contrast this with the case of the information entropy H(X), which is easily
computed given the distribution of X).

In this paper, we resolve the last of these questions; we prove that the information
complexity of f is indeed computable. Our main technical result is an explicit bound on the
convergence rate of b-bit information complexity (information complexity when restricted
to protocols that have total communication at most b bits) to unrestricted information
complexity. More specifically, we show how to convert an arbitrary protocol π into a protocol
π′ that leaks at most ε more information than π, but has communication cost at most
(Nε−1)O(N) bits, where N is the size of the truth table of f (Theorem 12). Equivalently,
we show that the b-bit information complexity of f is at most b−O(N−1) larger than the
information complexity of f . By then enumerating over all protocols with this communication
cost, we obtain an algorithm that computes the information complexity of f to within an
additive factor of ε in time 2exp((Nε−1)O(N)) (here N is the size of the truth table of f).

1.1 Prior Work

In [13, 14], Ma and Ishwar present a method to compute tight bounds on the information
complexity of functions for protocols restricted to r rounds of computation. By examining
the limit as r tends to infinity, this method allows them to numerically compute the
information complexity of several functions (such as the 2-bit AND function). To make
these computations provably correct, one would need effective (computable) estimates on the
rate of convergence of r-round information complexity to the true information complexity.
Such estimates were unknown prior to the present paper.

Plenty of unsolved problems of this flavor – where the computability of some limiting
value is unknown despite it being straightforward to compute individual terms of this limit –
occur in information theoretic contexts. One famous problem is the problem of computing
the Shannon capacity of a graph, the amortized independence number of the kth power of a
graph (this limiting quantity also has an interpretation as the zero-error channel capacity
of a certain channel defined by this graph). While computing the independence number
of any given graph is possible (albeit NP-hard), the rate at which this limit converges
is unknown. Indeed, Alon and Lubetzky have shown that the limiting behavior of this
quantity can be quite complex; no fixed number of terms of this limit is guaranteed to give
a subpolynomial approximation to the Shannon capacity [1]. Another example, from the
realm of quantum information theory, occurs in computing the quantum value of games [9].
Here it is straightforward to compute the quantum value of a game when limited to n bits
of entanglement, but no explicit bounds are known for how many bits of entanglement are
required to achieve within ε of optimal performance.
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1.2 Outline of Proof

The main result of our paper is that zero-error information complexity is computable.
Formally, we prove the following theorem.

I Theorem 1. There exists an algorithm which, given a function f : A×B → {0, 1}, initial
distribution µ ∈ ∆(A× B), and a real number ε > 0, returns a value C between ICµ(f)− ε
and ICµ(f) + ε. This can be performed in time 2exp((Nε−1)O(N)), where N = |A × B|.

Throughout this paper, we will take the perspective of an outside observer watching in
as Alice and Bob execute some protocol. This observer starts with some probabilistic belief
about the inputs of Alice and Bob (initially this is just µ, the distribution of inputs to Alice
and Bob). As Alice and Bob execute the protocol, they send each other signals – Bernoulli
random variables that contain information about their inputs – which cause the observer to
update his belief. The total amount of information leaked by the protocol to the participants
can then be represented directly in terms of the final belief and initial belief. These notions
are defined in more detail in Section 2.

The strategy of the proof is as follows. We start with a general protocol π for solving f ,
and whose information cost is very close to the information complexity of f . Unfortunately,
we do not know anything about π besides the fact that it’s a finite, discrete protocol that
computes f without error. Note that if we could restrict π to a finite family of protocols
(e.g. protocols that sent at most b bits, for an explicit bound b = b(ε,N)), then we could
just brute force over all such π’s and compute the approximate information complexity of f .
The proof shows that, indeed, there is always a protocol π′ that can be derived from π, and
which belongs to such an explicit family. The proof proceeds in several steps. In each step,
more structure is added to π (structure that is then exploited by the following steps). The
difficulty is, of course, ensuring at each step that π can be replaced with a more structured
protocol π′ while increasing its information cost by only, say, ε/10. Ultimately, we manage
to turn π into a protocol with r back-and-forth rounds, where r is an explicit function of N
and ε. Finally, it is shown that an r-rounds of interaction protocol can be replaced with a
b-bit protocol where b = b(ε,N, r) = b(ε,N) is an explicit function, while only increasing its
information cost by a controlled amount, completing the proof.

The full proof of Theorem 1 is roughly structured into three parts. In the first part,
we begin by showing that we can ‘discretize’ any protocol π; that is, we can simulate any
protocol π with a protocol π′ that only uses a bounded number of different types of signals,
but that only reveals a marginal amount of additional information. We accomplish this by
building a ‘mesh’ of signals and rounding each signal in π to one of the signals in this mesh.
This is described in Section 3.1.

In the second part, we show in Section 3.2 that we can transform any suitably discrete
protocol π (i.e. one that uses an explicitly bounded number of distinct signals) into a protocol
that uses few rounds. We achieve this via a bundling scheme; the main idea is that, where
Alice would ordinarily send Bob one instance of a signal, she instead sends Bob several
instances of this signal. Then, the next several times Alice would send that signal to Bob,
Bob simply refers to the next unused copy sent by Alice, thus decreasing the number of
rounds in the protocol.

In the third part, we show in Section 3.3 that it is never advantageous to send more than
logN bits in any round of a protocol, thus providing an explicit bound on the communication
complexity of the protocol. We accomplish this by showing that if it is ever the case that
Alice sends one of M > N different messages in a round, Alice can use public randomness
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to sample a subset of N of these M messages and use logN bits to send one of these N
messages instead.

Combining the above steps allows us to prove the following bound on the convergence
rate of b-bit information complexity.

I Theorem 12 (restated). Let π be a communication protocol with information cost C that
successfully computes function f over inputs drawn from distribution µ over A× B. Then
there exists a protocol π′ with information cost at most C + ε that also successfully computes
f over inputs drawn from µ, but has communication cost at most b(f, ε) where

b(f, ε) = (Nε−1)O(N) (1)

and N = |A × B|.

Finally, by reapplying the discretization procedure of Section 3.1, we show that it suffices
to consider protocols whose signals all belong to an explicit finite set. By enumerating
over all protocols of this depth that use signals from this set and computing the minimum
information cost of any such protocol, we can therefore approximate ICµ(f) to within ε, thus
completing the proof.

The proof we provide below shows that zero-error internal and external information
complexity are computable. We believe similar techniques can be used to show that ε-error
information complexity is computable, but do not include such a proof in this paper.

1.3 Open Problems
Naturally, the most immediate open problem arising from our work is understanding whether
(and how much) the rate of convergence in Theorem 12 can be improved:

I Open Problem 2. What is the (worst case) rate of convergence of the b-bit (or r-round)
information complexity of f to ICµ(f)? In other words, for a given ε > 0 and truth table
size N = |A × B|, how large does b(N, ε) need to be to ensure that the b-bit information
complexity ICb,µ(f) satisfies

ICb,µ(f) > ICµ(f)− ε?

In this paper we prove that b(N, ε) ≤ (Nε−1)O(N). On the other hand, [6] shows that
when f is the two-bit AND (and thus N = 4 is a constant), the tight estimate for b is
b = Θ(ε−1/2). Therefore, the polynomial dependence on ε, even when N is a constant, is
necessary. On the other hand, we do not have any interesting lower bounds on b in terms
of N . In particular, it is not known whether the exponential dependence on N is necessary
here.

The second open problem is in a similar vein, asking whether Theorem 1 can be improved.

I Open Problem 3. What is the computational complexity of computing the (zero-error
internal) information complexity of a function f within error ε given its truth table? By how
much can the bound of 2exp((Nε−1)O(N)) be improved?

By the analysis in Section 3.4, any progress on Problem 2 will translate into progress on
Problem 3. For comparison, it is not hard to see that the trivial algorithm for computing the
average-case communication complexity of a function f : [n]× [n]→ {0, 1} (so that N = n2)
within an additive error ε runs in time 2n·NN/ε = 2exp((Nε−1)O(1)) (it suffices to look at all
protocols of depth at most N logN

ε , of which there are at most 2n·NN/ε). In other words,
there is an exponential gap between the trivial communication complexity upper bound and
the bound we obtain in Theorem 1.
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2 Preliminaries

2.1 Information Theory
For an introduction to the information theoretic notions used throughout this paper, we refer
the reader to [10] (A brief introduction can also be found in the full version of this paper).

2.2 Protocols and Information Complexity
In the two-party communication setting, Alice is given an element a from a finite set A, while
Bob is given an element b from a finite set B, where (a, b) is drawn from some distribution µ
over A× B. Their goal is to compute f(a, b), where f : A× B → {0, 1} is a function known
to both parties. They would like to accomplish this while revealing as little information as
possible; either to each other (in the case of information cost) or to an outside observer (in
the case of external information cost). To do this, they execute a communication protocol,
which we view as being built out of signals.

I Definition 4. A signal σ over a set S is an assignment of a probability σs ∈ [0, 1] to each
element s in S. For a given element s of S, we define σ(s) to be the Bernoulli random
variable that equals 1 with probability σs.

I Definition 5. A communication protocol π is a finite rooted binary tree, where each
non-leaf node is labeled by either a signal over A (corresponding to Alice’s move) or a signal
over B (corresponding to Bob’s move), and each edge is labeled either 0 or 1. Alice and Bob
can execute this protocol by starting at the root and repeatedly performing the following
procedure; if the signal σ at the current node is a signal over A, Alice sends Bob an instance
of σ(a), and they both move down the corresponding edge; likewise, if the signal is a signal
over B, Bob performs the analogous procedure.

Each leaf node is labeled with a value 0 or 1. We say the communication protocol
successfully computes f with zero error if the value of the leaf node Alice and Bob finish
the protocol on is always equal to f(a, b) for all (a, b) ∈ A × B (in particular, even (a, b)
where µ(a, b) = 0). The communication cost CC(π) of protocol π is equal to the depth of
the deepest leaf in π.

This agrees with the usual definition of a private coins protocol (indeed, any bit Alice
can ever send in any protocol must be a signal over A, and likewise for Bob). A public coins
protocol is simply a distribution over private coins protocols. For our purposes, it suffices to
solely examine private coins protocols, since the information cost of a public coins protocol
is simply the expected information cost of the corresponding private coins protocols.

As is standard, we will let A and B be random variables representing Alice’s input
and Bob’s input respectively, and let Π be the random variable representing the protocol’s
transcript. We can then define the information cost of a protocol and the information
complexity of a function as follows.

I Definition 6. The information cost of a protocol π is given by

ICµ(π) = I(A; Π|B) + I(B; Π|A) .

The external information cost of a protocol π is given by

ICextµ (π) = I(AB; Π) .

ICALP 2016
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I Definition 7. The information complexity of a function f is given by

ICµ(f) = inf
π
ICµ(π)

where the infimum is over all protocols π that successfully compute f . Likewise, the external
information complexity of a function f is given by

ICextµ (f) = inf
π
ICextµ (π) .

where again, the infimum is over all protocols π that successfully compute f .

Throughout the remainder of this paper, it will be useful to think of signals as operating
on the space ∆(A×B) of probability distributions over A×B, which we term beliefs. At the
beginning of a protocol, an outside observer’s belief is simply given by µ, the distribution
(a, b) was drawn from. As this observer observes new signals, his belief evolves according to
Bayes’ rule; for example, if he observes the signal σ(a) sent by Alice, his belief changes from
the prior belief p to the posterior belief

p0(a, b) = (1− σa)p(a, b)∑
i,j(1− σi)p(i, j)

(2)

if σ(a) = 0 (which occurs with probability P0 =
∑
i,j(1 − σi)p(i, j)) and to the posterior

belief

p1(a, b) = σap(a, b)∑
i,j σip(i, j)

(3)

if σ(a) = 1 (which occurs with probability P1 =
∑
i,j σip(i, j)). As shorthand, we will

say that σ shifts belief p to (p0, p1). Note that the probabilities P0 and P1 are uniquely
recoverable given p0 and p1 (in particular, treating beliefs as vectors in R|A×B|, it must be
the case that P0p0 + P1p1 = p and that P0 + P1 = 1).

Throughout the remainder of the paper, we will let N = |A × B| = |A| · |B|. Note that
N is the size of the truth table of f and is thus (in some sense) the size of the input to the
problem of computing the information complexity of f . All logarithms are to base 2 unless
otherwise specified.

3 Computability of Information Complexity

3.1 Discretizing signals
In the first part of the proof, we show that we can convert any protocol for f into a protocol
that uses a bounded number of types of signals. In particular, we prove the following theorem.

I Theorem 8. Let π be a communication protocol with information cost C. Then, for any
ε > 0, there exists a communication protocol π′ that computes the same function as π with
information cost at most C + ε but that only uses Q = (Nε−1)O(N) different types of signals.

Proof Sketch. Recall that signals are simply vectors in RN . Our general approach will
therefore be to build a ‘mesh’ of signals in RN and round each signal in our protocol to
one of the nearby signals in the mesh. We can show this rounding procedure preserves the
correctness of the protocol but possibly leaks some additional information.

Via the concavity of mutual information, it happens that if we take the width of this mesh
to be poly(ε/N), then this rounding procedure leaks at most ε additional information. Such
a mesh in N dimensions contains at most (1/poly(ε/N))N = (Nε−1)O(N) different signals,
as desired. J
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The above sketch suppresses a number of technical difficulties in proving the above
theorem. In particular, in the full paper, we demonstrate how to deal with:
1. Initial distributions µ that lack full support (Section 3.1 in full paper).
2. Signals sent near the boundary of ∆(A× B) (Section 3.2 in full paper).
3. Signals with widely differing magnitudes (Section 3.3 in full paper).

3.2 Bounding the number of alternations
We next show that we can convert a protocol for f that uses a bounded number of distinct
signals (yet arbitrarily many of them) into a protocol for f that, while leaking at most ε
extra information, uses a bounded number of alternations (steps in the protocol where Alice
stops talking and Bob starts talking, or vice versa).

We achieve this by ‘bundling’ signals of the same type together; that is, at a point in the
protocol where Alice would send Bob a certain signal, she may instead send him a bundle of
t signals. Then, the next t− 1 times Alice would send Bob this signal, Bob instead refers
to the next unused signal in the bundle. If there are unused signals in a bundle, this may
increase the information cost of the protocol; however, by choosing the size of the bundle
cleverly, we can bound the size of this increase.

I Definition 9. Let π be a communication protocol and let v1, v2, . . . , vk be one possible
computation path for π. An alternation in this computation path is an index i where the
signals at vi and vi+1 are sent by different players. The number of alternations in π is the
maximum number of alternations over all computation paths of π.

I Theorem 10. Let π be a communication protocol with information cost C that only uses Q
distinct signals. Then, for any ε > 0, there exists a communication protocol π′ that computes
the same function as π with information cost at most C + 2ε but that uses at most

W =
(

2Q logN
ε

+Q

)
logN
ε

alternations.

Proof Sketch. Label our Q different signals σ(1) through σ(Q). We will reduce the number
of alternations in π by bundling signals of the same type in large groups. That is, if Alice (at
a specific point in the protocol) would send Bob signal σ(i), she instead sends Bob t copies of
signal i (for an appropriately chosen t). Then, the next t− 1 times in the protocol that Alice
would send Bob signal σ(i), Bob instead refers to one of the unused t copies Alice originally
sent. Once these t copies are depleted and protocol calls for a (t + 1)st copy, the process
repeats and Alice sends a new bundle to Bob (possibly with a different value for t).

We choose t as follows. Without loss of generality, assume Alice is sending a bundle
of signals σ to Bob. Let Πpre be the transcript of the protocol thus far. Let Xt =
(X1, X2, . . . , Xt) be a random variable corresponding to t independently generated outputs
of σ. We consider three cases:
Case 1: It is the case that I(A;X1|ΠpreB) ≥ ε

Q . In this case we set t = 1 (note that this is
equivalent to simply following the original protocol).

Case 2: There exists a positive t0 such that ε
2Q ≤ I(A;Xt0 |ΠpreB) ≤ ε

Q . In this case, we
set t = t0.

Case 3: For all positive t, I(A;Xt|ΠpreB) ≤ ε
2Q . In this case, we set t to be the maximum

number of times signal σ is ever sent in protocol π.

ICALP 2016
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The remainder of this proof is divided into three parts. In the first part, we argue that
the three cases above are comprehensive. In the second part, we argue that the information
cost of this new protocol is at most C + ε. Finally, in the third part we argue that this
bundling process decreases the total number of alternations to at most W . We briefly sketch
these arguments here (see the full paper for detailed proofs).

Cases are comprehensive

It is not immediately clear that one of the three above cases must occur; it could be the case
that I(A;Xt|ΠpreB) ‘jumps’ from below ε/2Q to above ε/Q as t increases by one step. To
show this cannot happen, we prove a ‘diminishing returns’ theorem for information revealed
by additional copies of X (in particular, we show I(A;Xt+1|ΠpreB) − I(A;Xt|ΠpreB) is
decreasing in t).

Information leakage is small

When not all the signals in a bundle are used, this new protocol leaks some additional
information over our original protocol. However, by the selection of t, each bundle is either
a Case 1 bundle (which is immediately used up) or leaks at most ε/Q information. Since
there are at most Q unused bundles (one for each signal type), we leak at most ε additional
information.

Number of alternations is small

The number of alternations is at most the number of bundles sent. With the exception
of Case 3 bundles (of which we send at most one of each type, for a total of Q), each
bundle increases the expected information revealed by at least ε/2Q. Since the amount of
information revealed by the protocol is bounded above by logN , in expectation we send at
most Q+ 2Q logN

ε bundles. To translate this to a worst case result, we simply terminate the
protocol after sending at most W bundles; it then follows from Markov’s inequality that we
leak at most ε additional information by doing this. J

3.3 Bounding the number of bits
We finally show that each alternation in any protocol can be executed in a way that requires
the exchange of at most logN bits without any loss in information cost; it follows that a
protocol with at most W alternations can be converted into an equivalent protocol with
communication complexity at most W logN .

I Theorem 11. Let π be a communication protocol with information cost C that has W
alternations. Then there exists a communication protocol π′ with information cost C that
computes the same function as π but that sends a total of at most W logN bits.

Proof. We will show how to execute each alternation of a protocol in at most logN bits.
For simplicity, we will assume Alice and Bob have access to public randomness; this can later
be converted into a protocol with only private randomness via the observation that some
fixed choice of public randomness minimizes the information cost of the protocol.

Assume that Alice is speaking during some alternation of π, and let there be M possible
strings she may send to Bob. If p is the belief at the beginning of the alternation, then at
the end of the alternation we will have shifted to one of M possible beliefs, p1, p2, . . . , pM .
Let αi equal the probability we end up at belief pi. We can therefore write p =

∑M
i=1 αipi.
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In particular, note that p is contained in the convex hull of the pi. Since the beliefs pi lie
in a space of dimension N − 1, by Caratheodory’s theorem, it follows that there exists some
set T ⊂ [M ] such that |T | ≤ N and p is a convex combination of {pi|i ∈ T}. Fix such a T .
We can then write p =

∑
i∈T βipi.

Let γ = mini∈T αi
βi
. Alice and Bob now use public randomness to flip a weighted coin

that comes up heads with probability γ. If this coin comes up heads, then Alice samples an
element of T according to the distribution induced by the βi and sends this element to Bob
using at most log |T | ≤ logN bits (by say, specifying its location in T ).

If this coin comes up tails, they construct a new probability distribution α′ over [M ]
given by setting α′i = αi − γβi for all i ∈ [M ] (where βi = 0 if i 6∈ T ) and renormalizing.
Note that by our choice of γ, it will be the case that α′i ≥ 0 for all i; moreover, for at least
one i, α′i = 0. They now repeat this process for this new distribution α′.

Note that throughout this modified round, Alice sends in total at most logN bits to
Bob. Moreover, each time they use public randomness, the round either terminates (Alice
sends a message to Bob) or the size of the support of α shrinks by one, guaranteeing that
the round eventually terminates. Finally, at the end of this process, the probability Bob
receives message i ∈ [M ] from Alice is equal to αi, hence making this modified round
information-theoretically equivalent to the original round.

Applying this to every alternation in a protocol π with W rounds results in a protocol π′
with communication complexity of at most W logN , as desired. J

3.4 Computing Information Complexity
Combining the results of Theorems 8, 10 and 11, we obtain the following result.

I Theorem 12. Let π be a communication protocol with information cost C that successfully
computes function f over inputs drawn from distribution µ over A× B. Then there exists a
protocol π′ with information cost at most C + ε that also successfully computes f over inputs
drawn from µ, but has communication cost at most b(f, ε) where

b(f, ε) = (Nε−1)O(N)

and N = |A × B|.

By a similar rounding technique to that in Section 3.1, we can further ensure each signal
in π belongs to a set S of size (Nε−1)O(N2) (see Section 3.7 of the full paper for details). We
can now proceed to prove our main theorem.

Proof of Theorem 1. Fix an ε > 0; we will show how to approximate the information
complexity of f to within an additive factor of ε.

By Theorem 12, there exists some protocol with information cost at most ICµ(f) + ε

with communication complexity at most B(f, ε) and that only uses signals in the set S. The
number of such protocols is finite; in particular each such protocol has at most 2B(f,ε) nodes,
each of which is labelled by one of |S| signals. Since |S| = (Nε−1)O(N2), it follows that the
total number of protocols is at most

|S|2
B(f,ε)

= (Nε−1)O(N2)2(Nε−1)O(N)

= 2exp((Nε−1)O(N))

The information cost of a protocol with depth B (and thus at most 2B nodes) can be
computed in time 2O(B). It follows that computing the minimum information cost of the
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above protocols can be done in time 2exp((Nε−1)O(N)), and hence one can approximate ICµ(f)
to within an additive factor ε in time 2exp((Nε−1)O(N)), as desired. J
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