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Abstract
We initiate a systematic study of tolerant testers of image properties or, equivalently, algorithms
that approximate the distance from a given image to the desired property (that is, the smallest
fraction of pixels that need to change in the image to ensure that the image satisfies the desired
property). Image processing is a particularly compelling area of applications for sublinear-time
algorithms and, specifically, property testing. However, for testing algorithms to reach their full
potential in image processing, they have to be tolerant, which allows them to be resilient to noise.
Prior to this work, only one tolerant testing algorithm for an image property (image partitioning)
has been published.

We design efficient approximation algorithms for the following fundamental questions: What
fraction of pixels have to be changed in an image so that it becomes a half-plane? a representa-
tion of a convex object? a representation of a connected object? More precisely, our algorithms
approximate the distance to three basic properties (being a half-plane, convexity, and connec-
tedness) within a small additive error ε, after reading a number of pixels polynomial in 1/ε and
independent of the size of the image. The running time of the testers for half-plane and convexity
is also polynomial in 1/ε. Tolerant testers for these three properties were not investigated previ-
ously. For convexity and connectedness, even the existence of distance approximation algorithms
with query complexity independent of the input size is not implied by previous work. (It does
not follow from the VC-dimension bounds, since VC dimension of convexity and connectedness,
even in two dimensions, depends on the input size. It also does not follow from the existence of
non-tolerant testers.)

Our algorithms require very simple access to the input: uniform random samples for the
half-plane property and convexity, and samples from uniformly random blocks for connectedness.
However, the analysis of the algorithms, especially for convexity, requires many geometric and
combinatorial insights. For example, in the analysis of the algorithm for convexity, we define a
set of reference polygons Pε such that (1) every convex image has a nearby polygon in Pε and
(2) one can use dynamic programming to quickly compute the smallest empirical distance to a
polygon in Pε. This construction might be of independent interest.
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1 Introduction

Image processing is a particularly compelling area of applications for sublinear-time algorithms
and, specifically, property testing. Images are huge objects, and our visual system manages
to process them very quickly without examining every part of the image. Moreover, many
applications in image analysis have to process a large number of images online, looking for
an image that satisfies a certain property among images that are generally very far from
satisfying it. Or, alternatively, they look for a subimage satisfying a certain property in a
large image (e.g., a face in an image where most regions are part of the background.) There
is a growing number of proposed rejection-based algorithms that employ a quick test that is
likely to reject a large number of unsuitable images (see, e.g., citations in [15]).

Property testing [21, 10] is a formal study of fast algorithms that accept objects with a
given property and reject objects that are far. Testing image properties in this framework was
first considered in [19]. Ron and Tsur [20] initiated property testing of images with a different
input representation, suitable for testing properties of sparse images. Since these models
were proposed, several sublinear-time algorithms for visual properties were implemented and
used: namely, those by Kleiner et al. and Korman et al. [15, 16, 17].

However, for sublinear-time algorithms to reach their full potential in image processing,
they have to be resilient to noise: images are often noisy, and it is undesirable to reject
images that differ only on a small fraction of pixels from an image satisfying the desired
property. Tolerant testing was introduced by Parnas, Ron and Rubinfeld [18] exactly with
this goal in mind—to deal with noisy objects. It builds on the property testing model and
calls for algorithms that accept objects that are close to having a desired property and reject
objects that are far. Another related task is approximating distance of a given object to a
nearest object with the property within additive error ε. (Distance approximation algorithms
imply tolerant testers in a straightforward way.) The only image problem for which tolerant
testers were studied is the image partitioning problem investigated by Kleiner et al. [15].

Our results. We design efficient approximation algorithms for the following fundamental
questions: What fraction of pixels have to be changed in an image so that it becomes a
half-plane? a representation of a convex object? a representation of a connected object?
In other words, we design algorithms that approximate the distance to being a half-plane,
convexity and connectedness within a small additive error or, equivalently, tolerant testers
for these properties. These problems were not investigated previously in the tolerant testing
framework. For all three properties, we give ε-additive distance approximation algorithms
that run in constant time (i.e., dependent only on ε, but not the image size). We remark
that even though it was known that these properties can be tested in constant time [19], this
fact does not necessarily imply constant-query tolerant testers for these properties. E.g.,
Fischer and Fortnow [9] exhibit a property (of objects representable with strings of length
n) which is testable with a constant number of queries, but for which every tolerant tester
requires nΩ(1) queries. For convexity and connectedness, even the existence of distance
approximation algorithms with query (or time) complexity independent of the input size
does not follow from previous work. It does not follow from the VC-dimension bounds, since
VC dimension of convexity and connectedness, even in two dimensions, depends on the input
size1. Implications of the VC dimension bound on convexity are further discussed below.

1 For n× n images, the VC dimension of convexity is Θ(n2/3) (this is the maximum number of vertices of
a convex lattice polygon in an n× n lattice [1]); for connectedness, it is Θ(n).
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Table 1 Our results on distance approximation. To get complexity of (ε1, ε2)-tolerant testing,
substitute ε = (ε2 − ε1)/2.

Property Sample Complexity Run Time Access to Input

Half-plane O
(

1
ε2 log 1

ε

)
O
(

1
ε3 log 1

ε

)
uniformly random pixels

Convexity O
(

1
ε2 log 1

ε

)
O
(

1
ε8

)
uniformly random pixels

Connectedness O
(

1
ε4

)
exp
(
O
(

1
ε

))
uniformly random blocks of pixels

Our results on distance approximation are summarized in Table 1. Our algorithm for
convexity is the most important and technically difficult of our results, requiring a large
number of new ideas to get running time polynomial in 1/ε. To achieve this, we define a set
of reference polygons Pε such that (1) every convex image has a nearby polygon in Pε and
(2) one can use dynamic programming to quickly compute the smallest empirical distance to
a polygon in Pε. It turns out that the empirical error of our algorithm is proportional to the
sum of the square roots of the areas of the regions it considers in the dynamic program. To
guarantee (2) and keep our empirical error small, our construction ensures that the sum of
the square roots of the areas of the considered regions is small. This construction might be
of independent interest.

Our algorithms do not need sophisticated access to the input image: uniformly randomly
sampled pixels suffice for our algorithms for the half-plane property and convexity. For
connectedness, we allow our algorithms to query pixels from a uniformly random block. (See
the end of Section 2 for a formal specification of the input access.)

Our algorithms for convexity and half-plane work by first implicitly learning the object2.
PAC learning was defined by Valiant [23], and agnostic learning, by Kearns et al. [14] and
Haussler [12]. As a corollary of our analysis, we obtain fast proper agnostic PAC learners of
half-planes and of convex sets in two dimensions that work under the uniform distribution.
The sample and time complexity3 of the PAC learners is as indicated in Table 1 for distance
approximation algorithms for corresponding properties.

While the sample complexity of our agnostic half-plane learner (and hence our distance
approximation algorithm for half-planes) follows from the VC dimension bounds, its running
time does not. Agnostically learning half-spaces under the uniform distribution has been
studied by [13], but only for the hypercube {−1, 1}d domains, not the plane. Our PAC learner
of convex sets, in contrast to our half-plane learner, dimension lower bounds on sample
complexity. (The sample complexity of a PAC learner for a class is at least proportional to
the VC dimension of that class [8].) Since VC dimension of convexity of n × n images is
Θ(n2/3), proper PAC learners of convex sets in two dimensions (that work under arbitrary

2 There is a known implication from learning to testing. As proved in [10], a proper PAC learning
algorithm for property P with sampling complexity q(ε) implies a 2-sided error (uniform) property
tester for P that takes q(ε/2) +O(1/ε) samples. There is an analogous implication from proper agnostic
PAC learning to distance approximation with an overhead of O(1/ε2) instead of O(1/ε). We choose to
present our testers first and get learners as corollary because our focus is on testing and because we
want additional features for our testers, such as 1-sided error, that do not automatically follow from the
generic relationship.

3 All our results are stated for error probability δ = 1/3. To get results for general δ, by standard
arguments, it is enough to multiply the complexity of an algorithm by log 1/δ.
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distributions) must have sample complexity Ω(n2/3). However, one can do much better with
respect to the uniform distribution. Schmeltz [22] showed that a non-agnostic learner for
that task needs Θ(ε−3/2) samples. Surprisingly, it appears that this question has not been
studied at all for agnostic learners. Our agnostic learner for convex sets in 2D under the
uniform distribution needs O

( 1
ε2 log 1

ε

)
samples and runs in time O

( 1
ε8

)
.

Finally, we note that for connectedness, we take a different approach. Our algorithms
do not try to learn the object first; instead they rely on a combinatorial characterization of
distance to connectedness. We show that distance to connectedness can be represented as an
average of distances of sub-images to a related property.

Comparison to other related work. Property testing has rich literature on graphs and
functions, however, properties of images have been investigated very little. Even though
superficially the inputs to various types of testing tasks might look similar, the problems
that arise are different. In the line of work on testing dense graphs, started by Goldreich et
al. [10], the input is also an n× n binary matrix, but it represents an adjacency matrix of
the dense input graph. So, the problems considered are different than in this work. In the
line of work on testing geometric properties, started by Czumaj, Sohler, and Ziegler [7] and
Czumaj and Sohler [6], the input is a set of points represented by their coordinates. The
allowed queries and the distance measure on the input space are different from ours.

A line of work potentially relevant for understanding connectedness of images is on
connectedness of bounded-degree graphs. Goldreich and Ron [11] gave a tester for this
property, subsequently improved by Berman et al. [3]. Campagna et al. [5] gave a tolerant
tester for this problem. Even though we view our image as a graph in order to define
connectedness of images, there is a significant difference in how distances between instances
are measured (see [19] for details). We also note, that unlike in [5], our tolerant tester for
connectedness is fully tolerant, i.e., it works for all settings of parameters.

The only previously known tolerant tester for image properties was given by Kleiner et
al. [15]. They consider the following class of image partitioning problems, each specified by
a k × k binary template matrix T for a small constant k. The image satisfies the property
corresponding to T if it can be partitioned by k − 1 horizontal and k − 1 vertical lines into
blocks, where each block has the same color as the corresponding entry of T . Kleiner et al.
prove that O(1/ε2) samples suffice for tolerant testing of image partitioning properties. Note
that VC dimension of such a property is O(1), so by Footnote 2, we can get a O(1/ε2 log 1/ε)
bound. Our algorithms required numerous new ideas to significantly beat VC dimension
bounds (for convexity and connectedness) and to get low running time.

For the properties we study, distance approximation algorithms and tolerant testers
were not investigated previously. In the standard property testing model, the half-plane
property can be tested in O(ε−1) time [19], convexity can be tested in O(ε−4/3) time [2],
and connectedness can be tested in O(ε−2 log ε−1) time [19, 3]. As we explained, property
testers with running time independent of ε do not necessarily imply tolerant testers with
that feature. Many new ideas are needed to obtain our tolerant testers. In particular, the
standard testers for half-plane and connectedness are adaptive while the testers here need
only random samples from the image, so the techniques used for analyzing them are different.
The tester for convexity in [2] uses only random samples, but it is not based on dynamic
programming.

Open questions. In this paper we give tolerant testers for several important problems
on images. It is open whether these testers are optimal. No nontrivial lower bounds are
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known for these problems. (For any non-trivial property, an easy lower bound on the query
complexity of a distance approximation algorithm is Ω(1/ε2). This follows from the fact that
Ω(1/ε2) coin flips are needed to distinguish between a fair coin and a coin that lands heads
with probability 1/2 + ε.) Thus, our testers for half-plane and convexity are nearly optimal
in terms of query complexity (up to a logorithmic factor in 1/ε). But it is open whether their
running time can be improved.

Organization. We give formal definitions and notation in Section 2, deferring some standard
definitions to the full version of this article. Algorithms for being a half-plane, convexity,
and connectedness are given in Sections 3, 4, and 5, respectively. We view our half-plane
result as a good preparation for our distance approximation algorithm for convexity, the
most technically difficult result in the paper. Corollaries about PAC learners as well as all
omitted proofs and numerous figures can be found in the full version of this article.

2 Definitions and Notation

We use [0..n) to denote the set of integers {0, 1, . . . , n− 1} and [n] to denote {1, 2, . . . , n}.

Image representation. We focus on black and white images. For simplicity, we only consider
square images, but everything in this paper can be easily generalized to rectangular images.
We represent an image by an n× n binary matrix M of pixel values, where 0 denotes white
and 1 denotes black. We index the matrix by [0..n)2. The object is a subset of [0..n)2

corresponding to black pixels; namely, {(i, j) |M [i, j] = 1}.
The absolute distance, Dist(M1,M2), between matrices M1 and M2 is the number of

the entries on which they differ. The relative distance between them is dist(M1,M2) =
Dist(M1,M2)/n2. A property P is a subset of binary matrices.

Access to the input. A query-based algorithm accesses its n × n input matrix M by
specifying a query pixel (i, j) and obtaining M [i, j]. A uniform algorithm accesses its n× n
input matrix by drawing independent samples (i, j) from the uniform distribution over the
domain (i.e., [0..n)2) and obtainingM [i, j]. A block-uniform algorithm accesses its n×n input
matrix by specifying a block length r ∈ [n]. For a block length r of its choice, the algorithm
draws x, y ∈ [dn/re] uniformly at random and obtains set {(i, j) | bi/rc = x and bj/rc = y}
and M [i, j] for all (i, j) in this set. The sample complexity of a uniform or a block-uniform
algorithm is the number of pixels of the image it examines.
I Remark 2.1. Uniform algorithms have access to independent (labeled) samples from the
uniform distribution over the domain. Bernoulli algorithms only have access to (labeled)
Bernoulli samples from the image: namely, each pixel appears in the sample with probability
s/n2, where s is the sample parameter that controls the expected sample complexity. By
standard arguments, a Bernoulli algorithm with the sample parameter s can be used to
obtain a uniform algorithm that takes O(s) samples and has the same guarantees as the
original algorithm (and vice versa).

3 Distance Approximation to the Nearest Half-Plane

An image is a half-plane if there exist an angle ϕ ∈ [0, 2π) and a real number c such that
M [x, y] = 1 (i.e., pixel (x, y) is black) iff x cosϕ+ y sinϕ ≥ c. In other words, an image is a
half-plane if there is a line, called a separating line, that separates black and white pixels of

ICALP 2016
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the image. For all ϕ and c, let Mϕ
c denote the half-plane that satisfies the above inequality

with parameters ϕ and c, and let Lϕc be the segment of the separating line that belongs
to the image. We call ϕ the direction of Mϕ

c (and Lϕc ). Note that ϕ is the oriented angle
between the x-axis and a line perpendicular to Lϕc .

I Theorem 3.1. There is a uniform ε-additive distance approximation algorithm for the
half-plane property with sample complexity O( 1

ε2 log 1
ε ) and time complexity O( 1

ε3 log 1
ε ).

Proof. At a high level, our algorithm (Algorithm 1) constructs a small set Hε of reference
half-planes. It samples pixels uniformly at random and outputs the empirical distance to the
closest reference half-plane. The core property of Hε is that the smallest empirical distance
to a half-plane in Hε can be computed quickly.

I Definition 3.2 (Reference directions and half-planes). Given ε ∈ (0, 1
4 ), let a = εn/

√
2.

Let Dε be the set of directions of the form iε for i ∈ [0..d2π/εe), called reference directions.
The set of reference half-planes, denoted Hε, consists of half-planes of the form Mϕ

c , where
ϕ ∈ Dε, the reference line intersects [0, n− 1]2, and c is an integer multiple of a.

In other words, for every reference direction, we space reference half-planes distance a apart.
By definition, there are at most

√
2n/a = 2/ε reference half-planes for each direction in Dε

and, consequently, |Hε| ≤ 2π/ε · (2/ε) < 13/ε2.

Algorithm 1: Distance approximation to being a half-plane.
Input : parameters n ∈ N, ε ∈ (0, 1/4); Bernoulli access to an n× n binary matrix M .

1 Sample a set S of s = 4
ε2 ln 9

ε pixels uniformly at random with replacement.
2 Let Dε and Hε be the sets of reference directions and half-planes, respectively (see

Definition 3.2) and let a = εn/
√

2.
// Compute d̂ = min

M ′∈Hε
d̂(M ′), where d̂(M ′) = 1

s · |{p ∈ S : M [p] 6= M ′[p]}|:

3 foreach ϕ ∈ Dε do
// Lines with direction ϕ partition the image. Bucket sort samples by

position in the partition:
4 Assign each sample (x, y) ∈ S to bucket j = b(x cosϕ+ y sinϕ)/ac.
5 For each bucket j, compute wj and bj , the number of white and black pixels it has.
6 For each j, where Mϕ

ja ∈ Hε, compute d̂(Mϕ
ja) = 1

s

∑
k<j bk + 1

s

∑
k≥j wk.

7 Output d̂, the minimum of the values computed in Step 6.

I Lemma 3.3. For every half-plane matrixM , there isM ′ ∈ Hε such that dist(M,M ′) ≤ ε/2.

Proof. Consider a half-plane Mϕ
c . Let ϕ′ be a reference direction closest to ϕ. Then

|ϕ− ϕ′| ≤ ε/2. We consider two cases. See Figures 1 and 2.

Case 1: Suppose that there is a reference half-plane Mϕ′

c′ such that the separating line
segments Lϕc and Lϕ

′

c′ intersect. Note that the length of every line segment that belongs to
the image is at most

√
2n. The symmetric difference of Mϕ

c and Mϕ′

c′ is contained in two
regions formed by line segments Lϕc and Lϕ

′

c′ . Each of these regions is either a triangle or (if
it contains a corner of the image) a quadrilateral. First, suppose both regions are triangles.
The sum of lengths of their bases, that lie on the same line, is at most

√
2n, whereas the
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𝜀/2

Figure 1 Proof of Lemma 3.3: triangular
regions.

𝜑1 𝜑2

Figure 2 Proof of Lemma 3.3: triangular
and quadrilateral regions.

sum of their heights is at most sin(ε/2)×
√

2n ≤ εn/
√

2. Hence, the sum of their areas4 is
at most εn2/2.

If exactly one of the regions is a quadrilateral, we add a line through the corner of
the image contained in the quadrilateral and the intersection point of Lϕc and Lϕ

′

c′ . It
partitions the symmetric difference of Mϕ

c and Mϕ′

c′ into two pairs of triangular regions. Let
ϕ1 (respectively, ϕ2) be the angle between the new line and Lϕc (respectively, Lϕ

′

c′ ). Then
ϕ1 + ϕ2 ≤ ε/2. Applying the same reasoning as before to each pair of regions, we get that
the sum of their areas is at most ϕ1n

2 + ϕ2n
2 ≤ εn2/2. If both regions are quadrilaterals,

we add a line as before for each of them and apply the same reasoning as before to the three
resulting pairs of regions. Again, the area of the symmetric difference of Mϕ

c and Mϕ′

c′ is at
most εn2/2. Thus4, Mϕ′

c′ is the required M ′.

Case 2: There exist reference half-planes with separating line segments L = Lϕ
′

c′ and
L′ = Lϕ

′

c′+a such that the line segment Lϕc is between L and L′. The region between L and
L′ has length at most

√
2n and width a. Thus, its area is at most εn2. Partition it into two

regions: between L and Lϕc and between L′ and Lϕc . One of the two regions has area at most
εn2/2. Thus, Mϕ′

c′ or Mϕ′

c′+a is the required M ′. J

Analysis of Algorithm 1. Let dM be the distance of M to being a half-plane. Then there
exists a half-plane matrixM∗ such that dist(M,M∗) = dM . By a uniform convergence bound
(see, e.g., [4]), since s ≥ (2/ε2)(ln |Hε|+ln 6) for all ε ∈ (0, 1/4), we get that with probability at
least 2/3, |dist(M,M ′)− d̂(M ′)| ≤ ε/2 for all M ′ ∈ Hε. Suppose this event happened. Then
d̂ ≥ dM − ε/2 because dist(M,M ′) ≥ dM for all half-planes M ′. Moreover, by Lemma 3.3,
there is a matrix M̂ ∈ Hε such that dist(M,M̂) ≤ dist(M,M∗) + dist(M∗, M̂) ≤ dM + ε/2.
For this matrix, d̂(M̂) ≤ dist(M,M̂) + ε/2 ≤ dM + ε. Thus, dM − ε/2 ≤ d̂ ≤ dM + ε. That
is, |dM − d̂| ≤ ε with probability 2/3, as required.

Sample and time complexity. The number of samples, s, is O(1/ε2 log 1/ε). To analyze
the running time, recall that |Dε| = O(1/ε). For each direction in Dε, we bucket sort

4 For simplicity of presentation, we equate the area of a convex region and the number of pixels in it,
thus ignoring additional small-order terms. By Pick’s theorem, the number of pixels could be at most
the area plus 2n. It does not affect the asymptotic analysis of our algorithms.

ICALP 2016
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𝜑 ∈ 𝐷𝜀𝜑

Θ(𝜀𝑛)

Figure 3 An illustration of reference lines
and reference points.

𝑏0

𝑏1

𝑏2

𝑏3

ℓ0

ℓ1 ℓ3

ℓ2

Figure 4 An illustration of a reference
box and triangles of T0.

all samples in expected O(s) time. The remaining steps in the foreach loop of Step 3
can be implemented to run in O(s) time. The expected run time of Algorithm 1 is thus
O(1/ε · s) = O(1/ε3 log 1/ε). Remark 2.1 implies a tester with the same worst case run
time. J

4 Distance Approximation to the Nearest Convex Image

An image is convex if the convex hull of all black pixels contains only black pixels.

I Theorem 4.1. There is a uniform ε-additive distance approximation algorithm for convexity
with sample complexity O( 1

ε2 log 1
ε ) and running time O( 1

ε8 ).

Proof. The starting point for our algorithm for approximating the distance to convexity
(Algorithm 2) is similar to that of Algorithm 1 that approximates the distance to a nearest
half-plane. We define a small set Pε of reference polygons. Algorithm 2 implicitly learns a
nearby reference polygon and outputs the empirical distance from the image to that polygon.
The key features of Pε is that (1) every convex image has a nearby polygon in Pε, and (2)
one can use dynamic programming (DP) to quickly compute the smallest empirical distance
to a polygon in Pε.

We start by defining reference directions, lines, points, and line-point pairs that are
later used to specify our DP instances. Reference directions are almost the same as in
Definition 3.2.

I Definition 4.2 (Reference lines, line-point pairs). Fix ε0 = ε/144. The set of reference
directions isDε = {π/2}∪{iε0 : i ∈ [0, d2π/ε0e)}. For every ϕ ∈ Dε, define the set of reference
lines Lϕ = {` : ` passes through the image and satisfies the equation x cosϕ + y sinϕ = c,

where c is an integer multiple of ε0n}. For each reference line, the set of reference points
on ` contains points w.r.t. `, which are inside [0, n− 1]2, spaced exactly ε0n apart (it does
not matter how the initial point is picked). A line-point pair is a pair (`, b), where ` is a
reference line and b is a reference point w.r.t. `. (Note that there could be reference points
on ` that were defined w.r.t. some other reference line. This is why we say “a reference point
w.r.t. `”, and not “a reference point on `”.)

Roughly speaking, a reference polygon is a polygon whose vertices are defined by line-point
pairs. There are additional restrictions that stem from the fact that we need to be able to
efficiently find a nearby reference polygon for an input image. The actual definition specifies
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which actions we can take while constructing a reference polygon. Reference polygons are
built starting from reference boxes, which are defined next.

I Definition 4.3 (Reference box). A reference box is a set of four line-point pairs (`i, bi) for
i = 0, 1, 2, 3, where `0, `2 are distinct horizontal lines, such that `0 is above `2, and (`1, `3)
are distinct vertical lines, such that `1 is to the left of `3. The reference box defines a vertex
set B0 = {b0, b1, b2, b3} and a triangle set T0, formed by removing the quadrilateral b0b1b2b3
from the rectangle delineated by the lines `0, `1, `2, `3.

Intuitively, by picking a reference box, we decide to keep the area inside the quadrilateral
b0b1b2b3 black, the area outside the rectangle formed by `0, `1, `2, `3 white, and the triangles
in T0 gray, i.e., undecided for now.

I Definition 4.4. For points x, y, let `(x, y) denote the line that passes through x and y.
Let xy denote the line segment between x and y.

Reference polygons are defined next. Intuitively, to obtain a reference polygon, we keep
subdividing “gray” triangles in T0 into smaller triangles and deciding to color the smaller
triangles black or white or keep them gray (i.e., undecided for now). We also allow “cutting
off” a quadrilateral that is adjacent to black and coloring it black (a.k.a. “the base change
operation”). Even though the definition of reference polygons is somewhat technical, the
readers can check their understanding of this concept by following Algorithm 2, as it chooses
the best reference polygon to approximate the input image.

I Definition 4.5 (Reference polygon). A reference polygon is an image of a polygon Hull(B),
where the set B can be obtained from a reference box with a vertex set B0 and a triangle set
T0 by the following recursive process. Initially, Tend = ∅ and B = B0. While T0 6= ∅, move
a triangle T from T0 to Tend and perform the following steps:
1. (Base Change). Let T = 4b′b′′v, where b′, b′′ ∈ B. Select reference point b′0 on b′v w.r.t.

line `(b′, v), and reference point b′′0 on b′′v w.r.t. line `(b′′, v). Add b′0, b
′′
0 to B. (This

corresponds to coloring the quadrilateral b′b′0b′′0b′′ black.) Let h be the height of 4b′0b′′0v
w.r.t. the base b′0b′′0 .

2. (Subdivision Step) If h > 6ε0n, choose whether to proceed with this step or go to Step 3
(both choices correspond to a legal reference polygon); otherwise, go to Step 3. Let ϕ
be the angle between `(b′0, b′′0) and the x-axis, and ϕ̂ ∈ Dε be such that |ϕ̂− ϕ| ≤ ε0/2.
Select a reference line-point pair (`, b), where the line ` ∈ Lϕ̂ crosses b′0v and b′′0v, whereas
b is in the triangle 4b′0b′′0v. Let v′ (resp., v′′) be the point of intersection of ` and b′0v
(resp., ` and b′′0v). Let T ′ = 4b′0bv′, T ′′ = 4b′′0bv′′. Add b to B and triangles T ′, T ′′ to
T0. (This represents coloring 4b′0b′′0b black and keeping T ′ and T ′′ gray.)

3. (End of Processing) Do nothing. (This represents coloring 4b′0b′′0v white).

By Remark 2.1, to prove Theorem 4.1, it suffices to design a Bernoulli tester that takes
s = O( 1

ε2 log 1
ε ) samples in expectation and runs in time O( 1

ε8 ). Our Bernoulli tester is
Algorithm 2. In Algorithm 2, we use the following notation for the (relative) empirical error
with respect to an input image M , a set of sampled pixels S, and the size parameter s. For
an image M ′, let d̂(M ′) = 1

s · |{u ∈ S : M [u] 6= M ′[u]}|. For every region R ⊆ [0..n)2, we let
d̂+(R) = 1

s · |{u ∈ S ∩ R : M [u] = 0}|, and d̂−(R) = 1
s · |{u ∈ S ∩ R : M [u] = 1}|, i.e., the

empirical error if we make R black/white, respectively.
Subroutine Best chooses the option with the smallest empirical relative error among those

given in Definition 4.5, items 1-3. Its pseudocode is in the full version of this article.
Our set of reference polygons has two critical features. First, for each convex image there

is a nearby reference polygon. It turns out that the empirical error for a region is proportional
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Figure 5 An illustration to Definition 4.5: Triangle 4b′b′′v.

Algorithm 2: Bernoulli approximation algorithm for distance to convexity.
Input : parameters n ∈ N, ε ∈ (0, 1/4); Bernoulli access to an n× n binary matrix M .

1 Set s = Θ( 1
ε2 log 1

ε ). Include each image pixel in the sample S w.p. p = s/n2.
// Run the algorithm to find d̂, the smallest fraction of samples

misclassified by a reference polygon in Pε. A dynamic programming
implementation of the algorithm is given in the full version.

2 Let W`0 (resp., W`2) be the set of pixels of the image M that lie either above `0 or to
the left of b0 on `0 (resp., either below `2 or to the left of b2 on `2). Let W`1 (resp.,
W`3) be the set of pixels of M −W`0 −W`2 to the left of `1 (resp., to the right of `3).

3 Set d̂ = 1.
4 forall line-point pairs (`0, b0), (`2, b2), where `0, `2 are horizontal lines do
5 Set d̂left = 1.

// The best error for the region to the left of b0b2, between `0 and `2.
6 foreach line-point pair (`1, b1), where `1 is a vertical line do
7 Let v0 (resp., v2) be the point where `1 intersects `0 (resp., `1 intersects `2).
8 d̂left = min(d̂left, d̂−(W`1) + d̂+(4b0b1b2) + Best(4b0b1v0) + Best(4b1b2v2))
9 Similarly to Steps 5–8, compute d̂right.

// The best error for the region to the right of b0b2, between `0 and `2.
10 Compute d̂ = min(d̂, d̂−(W`0 ∪W`2) + d̂left + d̂right).
11 return d̂.

to the square root of its area. The second key feature of our reference polygons is that, for
each of them, the set of considered triangles, Tend, has small

∑
T∈Tend

√
A(T ), where A(T )

denotes the area of triangle T . The proofs of both features, as well as the analysis of the
empirical error, are quite technical and appear in the full version of this article. J

Here, we state and partially prove a lemma that puts together different parts of the
analysis. It makes it clear why the empirical error of each region is proportional to the square
root of its area which is, as explained in Footnote 4, a proxy for the number of pixels in it.

I Lemma 4.6. With probability at least 2/3 over the choice of the samples taken by Al-
gorithm 2, |d̂(M ′)− dist(M,M ′)| ≤ 5ε/6 for all reference polygons M ′.

Proof. Consider a region R = (R+, R−), partitioned into two regions R+ and R−, such that
in some step, the algorithm checks the assumption that R+ is black and R− is white, i.e.,
evaluates d̂+(R+) + d̂−(R−). Let R be the set of all such regions R. We show that with
probability at least 2/3, the estimates d̂+(R+) + d̂−(R−) are accurate on all regions in R.
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Fix R = (R+, R−) ∈ R. Let Γ be the set of misclassified pixels in R, i.e., pixels in R+
which are white inM and pixels in R− which are black inM . Define γ = |Γ|/n2. Algorithm 2
approximates γ by d̂+(R+) + d̂−(R−) = 1

s |Γ ∩ S|. Equivalently, it uses the estimate 1
p |Γ ∩ S|

for |Γ| (recall that p = s/n2). The error of the estimate is errS(R) = 1
p |Γ ∩ S| − |Γ|.

I Claim 4.7. Pr[|errS(R)| > √γ · cεn2] ≤ 2 exp(− 3
8c

2ε2s), where c = 1/21.

Proof. For each pixel u, define random variables χu and Xu, where χu is the indicator for the
event u ∈ S (i.e., a Bernoulli variable with the probability parameter p), whereas Xu = χu

p −1.
Then our estimate of |Γ| is 1

p |Γ ∩ S| = 1
p

∑
u∈Γ χu, whereas errS(R) =

∑
u∈ΓXu. We use

Bernstein inequality to bound Pr[
∑
u∈ΓXu >

√
γ · cεn2]. The variables Xu are identically

distributed. The maximum value of |Xu| is a = 1−p
p . Note that E[X2

u] = 1
p2 E[(χu − p)2] =

1
p2 Var[χu] = 1−p

p = a. Assume w.l.o.g. that z < |Γ|. (If z ≥ |Γ| then
∑
u∈ΓXu cannot exceed

z, and the probability we are bounding is 0.) By Bernstein inequality,

Pr
[∑
u∈Γ

Xu > z

]
≤ exp

(
−z2/2

a|Γ|+ a · z/3

)
< exp

(
− 3

8 ·
z2 · p
|Γ|

)
= exp

(
− 3

8
γc2ε2n4

γn2
s

n2

)
= exp(−3

8c
2ε2s).

The second inequality holds because a < 1/p and z < |Γ|. The equalities are obtained by
substituting the expressions for z, |Γ|, and p, and simplifying. By symmetry, Pr[|errS(R)| ≥
z] ≤ 2 exp(− 3

8c
2ε2s). J

The rest of the proof appears in the full version of this article. J

5 Distance Approximation to the Nearest Connected Image

To define connectedness, we consider the image graph GM of an image M . The vertices of
GM are {(i, j) |M [i, j] = 1}, and two vertices (i, j) and (i′, j′) are connected by an edge if
|i− i′|+ |j − j′| = 1. In other words, the image graph consists of black pixels connected by
the grid lines. The image is connected if its image graph is connected.

I Theorem 5.1. There is a block-uniform ε-additive distance approximation algorithm for
connectedness with sample complexity O( 1

ε4 ) and running time exp
(
O
( 1
ε

))
.

The first idea in our algorithms for connectedness is that we can modify an image
by superimposing a grid on it, and as a result obtain a nearby image whose distance to
connectedness is determined by the properties of individual squares into which the grid lines
partition the image. The squares and the relevant property of the squares are defined next.

For a set S ⊂ [0..n)2 and (i, j) ∈ [0..n)2, we define S+ (i, j) = {(x+ i, y+ j) : (x, y) ∈ S}.

I Definition 5.2 (Squares and grid pixels). Fix a side length n ≡ 1 (mod r). For all integers
i, j ∈ [0..n− r), where i and j are divisible by r, the (r − 1)× (r − 1) image that consists
of all pixels in [r − 1]2 + (i, j) is called an r-square of M . The set of all r-squares of M is
denoted Sr.

The pixels that do not lie in any squares of Sr, i.e., pixels (i, j) where i or j is divisible
by r, are called grid pixels. The set of all grid pixels is denoted by GPr.

I Claim 5.3. |GPr| ≤ 2n2/r.

ICALP 2016
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Note that a square consists of pixels of an r-block, with the pixels of the first row and column
removed. Therefore, a block-uniform algorithm can obtain a uniformly random r-square.

Recall the definition of the border of an image from Section 2.

I Definition 5.4 (Border connectedness). A (sub)image S is border-connected if for every
black pixel (i, j) of S, the image graph GS contains a path from (i, j) to a pixel on the border.
The property border connectedness, denoted C′, is the set of all border-connected images.

The main idea behind Algorithm 3, used to prove Theorem 5.1, is to relate the distance
to connectedness to the distance to another property, which we call grid connectedness.
The latter distance is the average over squares of the distances of these squares to border
connectedness. The average can be easily estimated by looking at a sample of the squares.

W.l.o.g. assume that n ≡ 1 (mod 4/ε). (Otherwise, we can pad the image with white
pixels without changing whether it is connected and adjust the accuracy parameter.)

Algorithm 3: Distance approximation to connectedness.
Input :n ∈ N and ε ∈ (0, 1/4); block-sample access to an n× n binary matrix M .

1 Sample s = 4/ε2 squares uniformly and independently from S4/ε (see Definition 5.2).
// Tho do this draw random blocks from the 4/ε-partition of [0..n)2.

2 For each such square S, compute dist(S, C′), where C′ is border connectedness (see
Definition 5.4). Let d̂squares be the average of computed distances dist(S, C′).

3 return d̂ =
(
(1− ε

4 )(1− 1
n )
)2 · d̂squares.

I Definition 5.5. Fix ε ∈ (0, 1/4). Let image Mε be a gridded image obtained from image
M as follows:

Mε[i, j] =
{

1 if (i, j) is a grid pixel from GP4/ε;
M [i, j] otherwise.

Let C be the set of all connected images. For ε ∈ (0, 1/4), define grid connectedness
Cε = {M |M ∈ C, and M [i, j] = 1 for all (i, j) ∈ GP4/ε}.

I Lemma 5.6. Let dM = dist(M, C) and dε = dist(Mε, Cε). Then dM − ε
2 ≤ dε ≤ dM .

Moreover,

dε =
((

1− ε

4
)(

1− 1
n

))2
· 1
|S4/ε|

∑
S∈S4/ε

dist(S, C′).

Proof. First, we prove that dε ≤ dM . Let M ′ be a connected image such that dist(M,M ′) =
dM . Then M ′ε, the gridded image obtained from M ′, satisfies Cε. Since dist(Mε,M

′
ε) ≤ dM ,

it follows that dε ≤ dM . Now we show that dM − ε
2 ≤ dε. Let M ′′ε ∈ Cε be such that

dist(Mε,M
′′
ε ) = dε. Then M ′′ε ∈ C and, by Claim 5.3, dist(M,M ′′ε ) ≤ |GP4/ε|/n2 + dε ≤

ε/2 + dε, implying dM ≤ ε/2 + dε, as required.
Finally, observe that to make Mε satisfy Cε, it is necessary and sufficient to ensure that

each square satisfies C′. In other words,

dεn
2 =

∑
S∈S4/ε

Dist(S, C′) = (4/ε− 1)2
∑

S∈S4/ε

dist(S, C′).

Since |S4/ε| = (n−1
4/ε )2, the desired expression for dε follows. J

The rest of the analysis is completed in the full version of this article.



P. Berman, M. Murzabulatov, and S. Raskhodnikova 90:13

References
1 Imre Barany. Extremal problems for convex lattice polytopes: a survey. Contemporary

Mathematics, 2000.
2 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Testing convexity of

figures under the uniform distribution. In SoCG, 2016.
3 Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In STOC,

pages 164–173, 2014. doi:10.1145/2591796.2591887.
4 Avrim Blum. Machine learning theory. Lecture notes. URL: http://www.cs.cmu.edu/

~avrim/ML12/lect0201.pdf.
5 Andrea Campagna, Alan Guo, and Ronitt Rubinfeld. Local reconstructors and tolerant

testers for connectivity and diameter. In APPROX-RANDOM, pages 411–424, 2013. doi:
10.1007/978-3-642-40328-6_29.

6 Artur Czumaj and Christian Sohler. Property testing with geometric queries. In Algorithms
– ESA 2001, 9th Annual European Symposium, Aarhus, Denmark, August 28-31, 2001,
Proceedings, pages 266–277, 2001. doi:10.1007/3-540-44676-1_22.

7 Artur Czumaj, Christian Sohler, and Martin Ziegler. Property testing in computa-
tional geometry. In Algorithms – ESA 2000, 8th Annual European Symposium, Saar-
brücken, Germany, September 5-8, 2000, Proceedings, pages 155–166, 2000. doi:10.1007/
3-540-45253-2_15.

8 Andrzej Ehrenfeucht, David Haussler, Michael J. Kearns, and Leslie G. Valiant. A general
lower bound on the number of examples needed for learning. Inf. Comput., 82(3):247–261,
1989.

9 Eldar Fischer and Lance Fortnow. Tolerant versus intolerant testing for boolean properties.
Theory of Computing, 2(1):173–183, 2006. doi:10.4086/toc.2006.v002a009.

10 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. doi:10.1145/285055.285060.

11 Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002. doi:10.1007/s00453-001-0078-7.

12 David Haussler. Decision theoretic generalizations of the PAC model for neural net
and other learning applications. Inf. Comput., 100(1):78–150, 1992. doi:10.1016/
0890-5401(92)90010-D.

13 Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio. Agnost-
ically learning halfspaces. SIAM J. Comput., 37(6):1777–1805, 2008.

14 Michael J. Kearns, Robert E. Schapire, and Linda Sellie. Toward efficient agnostic learning.
Machine Learning, 17(2-3):115–141, 1994. doi:10.1007/BF00993468.

15 Igor Kleiner, Daniel Keren, Ilan Newman, and Oren Ben-Zwi. Applying property testing
to an image partitioning problem. IEEE Trans. Pattern Anal. Mach. Intell., 33(2):256–265,
2011. doi:10.1109/TPAMI.2010.165.

16 Simon Korman, Daniel Reichman, and Gilad Tsur. Tight approximation of image matching.
CoRR, abs/1111.1713, 2011. URL: http://arxiv.org/abs/1111.1713.

17 Simon Korman, Daniel Reichman, Gilad Tsur, and Shai Avidan. Fast-match: Fast affine
template matching. In CVPR, pages 2331–2338, 2013. doi:10.1109/CVPR.2013.302.

18 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. J. Comput. Syst. Sci., 72(6):1012–1042, 2006. doi:10.1016/j.jcss.2006.
03.002.

19 Sofya Raskhodnikova. Approximate testing of visual properties. In RANDOM-APPROX,
pages 370–381, 2003. doi:10.1007/978-3-540-45198-3_31.

20 Dana Ron and Gilad Tsur. Testing properties of sparse images. ACM Trans. Algorithms,
10(4):17:1–17:52, 2014. doi:10.1145/2635806.

ICALP 2016

http://dx.doi.org/10.1145/2591796.2591887
http://www.cs.cmu.edu/~avrim/ML12/lect0201.pdf
http://www.cs.cmu.edu/~avrim/ML12/lect0201.pdf
http://dx.doi.org/10.1007/978-3-642-40328-6_29
http://dx.doi.org/10.1007/978-3-642-40328-6_29
http://dx.doi.org/10.1007/3-540-44676-1_22
http://dx.doi.org/10.1007/3-540-45253-2_15
http://dx.doi.org/10.1007/3-540-45253-2_15
http://dx.doi.org/10.4086/toc.2006.v002a009
http://dx.doi.org/10.1145/285055.285060
http://dx.doi.org/10.1007/s00453-001-0078-7
http://dx.doi.org/10.1016/0890-5401(92)90010-D
http://dx.doi.org/10.1016/0890-5401(92)90010-D
http://dx.doi.org/10.1007/BF00993468
http://dx.doi.org/10.1109/TPAMI.2010.165
http://arxiv.org/abs/1111.1713
http://dx.doi.org/10.1109/CVPR.2013.302
http://dx.doi.org/10.1016/j.jcss.2006.03.002
http://dx.doi.org/10.1016/j.jcss.2006.03.002
http://dx.doi.org/10.1007/978-3-540-45198-3_31
http://dx.doi.org/10.1145/2635806


90:14 Tolerant Testers of Image Properties

21 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applic-
ations to program testing. SIAM J. Comput., 25(2):252–271, 1996.

22 Bernd Schmeltz. Learning convex sets under uniform distribution. In Data Structures
and Efficient Algorithms, Final Report on the DFG Special Joint Initiative, pages 204–213,
1992.

23 Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.
doi:10.1145/1968.1972.

http://dx.doi.org/10.1145/1968.1972

	Introduction
	Definitions and Notation
	Distance Approximation to the Nearest Half-Plane
	Distance Approximation to the Nearest Convex Image
	Distance Approximation to the Nearest Connected Image

