
Thin MSO with a Probabilistic Path Quantifier
Mikołaj Bojańczyk

University of Warsaw, Warsaw, Poland

Abstract
This paper is about a variant of mso on infinite trees where:

there is a quantifier “zero probability of choosing a path π ∈ 2ω which makes ϕ(π) true”;
the monadic quantifiers range over sets with countable topological closure.

We introduce an automaton model, and show that it captures the logic.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Automata, mso, infinite trees, probabilistic temporal logics

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.96

1 Introduction

The ambient topic of this paper is mso on infinite binary trees, extended by a quantifier
zeroπ ϕ(π) which says that there is zero probability of choosing a path π in the tree so that
ϕ(π) is true. Here we assume that each bit (i.e. turn) in the path is chosen independently at
random. This logic was introduced by Michalewski and Mio in [10], where the decidability of
satisfiability was left open.

That satisfiability question is not solved here, but we make a small step in its direction.
We consider a fragment of the logic, called tmso+zero, standing for thin mso+zero. In this
fragment, the monadic set quantifiers are restricted to sets which are thin in the following
sense: a set of nodes is thin if there are countably many paths which visit it infinitely often.
For example, every path (when seen as a set of nodes) is thin, and every finite set is thin. In
the logic tmso+zero, one has existential and universal quantification over nodes and thin
sets of nodes, as well as the probabilistic path quantifier zero. Being thin is definable in mso,
and therefore without the zero quantifier, the logic would be a special case of mso, and with
the zero quantifier it is a special case of the logic from [10].

The contribution of this paper is the definition of an automaton model, called zero
automata, and a proof that every formula of tmso+zero can be effectively translated to an
equivalent zero automaton.

Motivation

The first source of motivation for this paper is the study of probabilistic temporal logics [1,
8, 13, 4]. An important example is the logic pctl. It is an open problem whether this logic
has decidable satisfiability. Much of the difficulty stems from the ability of talking about
probabilities like 1/2 or 1/3. If one can only compare probabilities to 0 or 1, which is in
the spirit of our logic tmso+zero, then we get qualitative pctl, whose satisfiability was
shown decidable by Brázdil, Forejt, Kretínský and Kucera in [4]. Actually, the qualitative
fragment of pctl, as well as stronger qualitative logics like pctl*, can be straightforwardly
formalised in tmso+zero, and therefore, by the main result of this paper, translated into zero
automata. Another example that we discuss later in the paper is the probabilistic version
of tree automata by Carayol, Haddad and Serre [6]; these are also a special case of zero
automata.

EA
T

C
S

© Mikołaj Bojanczyk;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 96; pp. 96:1–96:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.96
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

96:2 Thin MSO with a Probabilistic Path Quantifier

The second source of motivation is trying to find a robust classes of languages of infinite
words or trees which remains decidable (e.g. with respect to satisfiability). The point of
departure is mso, with its famous decidability results by Büchi [5] and Rabin [11]. One way
of departing from that point is to add unary predicates, e.g. extending mso over ω-words
by a predicate “x is a position of the form n!”, see [12] for a survey. Another way is to add
new quantifiers. Due to the strength of mso, it is not so easy to come up with a quantifier
extending mso that is not obviously undecidable, and yet not already definable in mso. For
example, a nice quantifier is “there exist uncountably many sets with a given property” –
but as shown in [2], this quantifier does not add to the expressive power of mso. A logic
that does properly extend mso is mso+u, which is an extension of mso by a quantifier which
can say that a given property is true for finite sets of unbounded size. The logic is itself
undecidable, but has many decidable fragments, typically variants of weak mso. See [3] for a
survey of mso+u and related logics, including the cost logics of Colcombet [7]. The logic
studied in this paper, tmso+zero, is another example of a logic that is not contained in mso
(and even contains mso, if the logic is extended by allowing an outermost layer of non-weak
existential set quantifiers, which does not affect decidability of satisfiability).

2 The logic and the automaton

This section describes the two main models used in the paper: the logic tmso+zero and zero
automata. The following sections discuss how the logic is translated into the automaton.

Tree notation

The logics and automata of this paper describe properties of possibly infinite binary labelled
trees. We treat a node in a tree as a sequence in 2∗, with 2 denoting the set of directions
{0, 1}. Define a tree over an alphabet Σ to be a partial function t : 2∗ → Σ whose domain is
closed under prefixes. The special case when function is total is called a complete tree, but
we do allow incomplete trees, e.g. trees with finite domains. We use standard terminology for
trees: node, root, left child, right child, leaf, ancestor and descendant. In our definition, a
node might have a right child but not a left child. We write treesΣ for the set of trees over Σ.

Probability measure over paths

A path is defined to be a sequence in 2ω, which is viewed as an infinite sequence of left or
right turns. An equivalent definition is that a path is an ancestor-closed set of nodes that is
totally ordered by the ancestor relation. When saying that a path is contained in a set of
nodes, or contains a node, the second definition is used. When talking about the probability
of a subset of 2ω we use the coin-flipping measure, i.e. we assume that each bit is chosen
independently at random, with 0 and 1 having equal probability. The probability is defined
at least for all Borel subsets of 2ω.

I Definition 1. We say a set Π ⊆ 2ω has zero probability if it is contained in a Borel set
with coin-flipping measure zero.

The sets of paths that will appear in the logic tmso+zero will always be Borel, so the closure
under subsets in the above definition will not play much of a role.

2.1 The logic
Before defining the logic tmso+zero, we discuss the probability-free fragment tmso.

M. Bojanczyk 96:3

Thin MSO without the zero quantifier

A set of nodes X ⊆ 2∗ is called thin if its closure defined by

X̄
def= {π ∈ 2ω : π passes through infinitely many nodes from X}

is countable. For example, every finite set is thin, because it has empty closure, and every
path is thin, when viewed as a set of nodes, because its closure has one path. Thin sets
are closed under arbitrary intersections and finite unions, but not under countable unions,
because the countable set of all nodes has all paths in its closure, and is therefore not thin.

The logic thin mso, denoted by tmso, is the variant of mso as in Rabin’s theorem, except
that set quantifiers range only over thin sets. The syntax of the logic is the same as for mso
from Rabin’s theorem: there are two types of variable in the logic: node variables, which
range over nodes in the domain of the input tree, and (thin) set variables, which range over
thin subsets of the domain of the input tree. There are binary predicates for the left and
right child relations, and there is a unary predicate for every label in the input alphabet.
By the Cantor-Bendixson theorem, a set of nodes X is thin if and only if one cannot find a
subset Y ⊆ X such that Y , when ordered by the descendant relation, is a complete binary
tree. Since this alternative characterisation can be formalised in mso, it follows that tmso
is a fragment of mso in terms of expressive power. On the other hand, tmso is at least as
expressive as wmso with path quantifiers.

As far as the author knows, the logic tmso was not considered explicitly in the literature
so far, and it might be interesting to examine its expressive power, e.g. prove that it is strictly
weaker than mso and maybe, in the long run, find an algorithm which inputs a formula of
mso and decides if the formula is equivalent to some formula in tmso. This investigation,
however, is not the topic of the present paper. The present paper is about extending tmso
with a quantifier for zero probability.

Thin MSO with the zero quantifier

We now define the main topic of this paper, i.e. the logic tmso+zero. First we explain why
our point of departure for adding the zero quantifier is tmso and not some other fragment
of mso. The reason is that tmso is the strongest logic we could find such that the set
quantifiers commute with the probabilistic quantifier in a way which will be made more
precise in Section 6. The key observation reason is this: if the domain of the input tree is
thin, then it has countably many paths, and therefore the zero quantifier can be eliminated
because it always says “yes”.

A parameter in the definition of tmso+zero is a family zero of subsets of 2ω. The example
we have in mind is that zero is the sets with zero probability according to Definition 1, but
the results will also work for other choices of zero. The logic tmso+zero is the extension
of the logic tmso defined above, by adding a quantifier, called zero, which binds a thin set
variable π, and such that

zeroπ ϕ(π)

is true if zero contains the set of paths π which are contained in the domain of the input tree
and make ϕ(π) true, assuming that a path is treated as a set of nodes. (Formally speaking,
the path π is seen as a set of nodes when evaluating ϕ(π), and as an element of 2ω when
measuring how many paths π make ϕ(π) true.)

ICALP 2016

96:4 Thin MSO with a Probabilistic Path Quantifier

I Example 2. Consider an alphabet {a, b}. The following formula says that zero contains
the set of paths that visit at least one a:

zeroπ ∃x (x ∈ π ∧ a(x)).

If the parameter zero is prefix independent (see Definition 7 for a more precise treatment)
and does not contain the set 2ω of all paths, then the above formula is equivalent to ∀x ¬a(x),
and therefore the zero quantifier can be avoided.

I Example 3. Consider an alphabet {a, b}. The following formula says that zero contains
the set of paths which visit b finitely often:

zeroπ ∃x
(
x ∈ π ∧ ∀y (y ≥ x ∧ y ∈ π ⇒ b(x))

)
If zero is our guiding example of zero probability, the negation of the above formula says
that the Büchi condition is satisfied with probability one. As shown in [6], Theorem 21, the
property above is not definable in mso.

I Example 4. The reduction from qualitative pctl* in Theorem 5 from [10] produces
formulas where set quantification is only used for paths. Therefore, qualitative pctl* is a
special case of tmso+zero.

Beyond Thin MSO with the zero quantifier

In the logic tmso+zero, the set variables are restricted to thin sets. The obvious question
is about the more general case, where set variables range over arbitrary sets of nodes,
not necessarily thin ones. As mentioned in the introduction, the more general logic was
introduced in [10], under the name mso+∀=1

π , and the authors asked about decidability of its
satisfiability problem. A long term project for this research is to find out if the satisfiability
problem for the more general logic is decidable – or not. In this paper we only begin the
project, by studying the thin variant. One scenario is that the thin variant is decidable, but
the non-thin variant is undecidable, which would be similar to the situation for mso+u,
where weak variants are decidable, but the full logic is undecidable. However, one should
not take the analogy with mso+u too far: e.g. the thin variant of mso+u would already be
undecidable, because mso+u is undecidable already for ω-words.

Another natural version of mso with probability would be to choose a subset of 2∗
at random, with each node chosen independently, and then have a quantifier that says
there is zero probability of finding a subset with a given property. This logic was proved
undecidable in [10], already for ω-words (which can be seen as a special case of tmso), and
the undecidability proof works also for formulas of the form

there is zero probability of choosing a set X ⊆ N which makes ϕ(X) true,

where ϕ(X) is a formula of first-order logic that defines a set of ω-words over alphabet 2.
Therefore, it seems that this kind of probabilistic quantifier is doomed to undecidability.

2.2 The automaton
Having defined the logic tmso+zero, we define our main automaton model, which is called a
zero automaton. Like in the logic tmso+zero, a parameter of the semantics for the automaton
is a family zero of subsets of 2ω. The idea is that the automaton extends a nondeterministic
parity automaton with the ability to say that the set of paths satisfying the parity condition
belongs, or does not belong, to zero.

M. Bojanczyk 96:5

I Definition 5. The syntax of a zero automaton is a tuple

Q︸︷︷︸
states

Σ︸︷︷︸
input alphabet

I ⊆ Q︸ ︷︷ ︸
initial states

⋃
C⊆2

δC ⊆ Q× Σ×Q|C|︸ ︷︷ ︸
transitions

,

with all components finite, together with a total order on Q and four subsets

Qall, Qzero, Qnonzero, Qseed ⊆ Q.

The idea behind the transitions is that δ{0,1} is used for those nodes which have both children
defined, but e.g. δ{1} is used for nodes where only the right child is defined, and δ∅ is used
for leaves.

The semantics are defined as follows. The automaton is run on a tree over the input
alphabet, which might not necessarily be complete. A run of the automaton is a tree labelled
by states with the same domain as the input tree, which is consistent with the transition
relation in the following sense: if a node x is in the domain, and we define

C
def= {i ∈ 2 : xi is in the domain}

then there must be a transition in δC which relates the state in x, the label of x in the input
tree, and the states in the children of x that are in the domain. A tree is accepted if it
admits a run which has the initial state in the root and is accepting in the following sense.
Define the maxinf state on a path in a run to be the maximal state that appears infinitely
often on the path. When talking about a maximal state, we refer to the total order on states
that is given in the syntax of the automaton. A run ρ is accepting if all of the following
conditions hold, assuming that paths ρ ⊆ 2ω denotes the set of paths contained in ρ:
1. all paths acceptance condition: every path from paths ρ has maxinf in Qall; and
2. zero acceptance condition: zero contains the set of paths from pathsρ which have maxinf

state in Qzero; and
3. nonzero acceptance condition: for every node x in the run with state q ∈ Qseed:

zero 63 {π ∈ paths ρ :

π passes through x, and
π sees only states < q after x, and
π has maxinf state in Qnonzero

}

An automaton is called zeroless if Qzero is empty (which makes the zero condition
vacuously true) and seedless if there are no seed states, i.e. Qseed is empty (which makes the
nonzero condition vacuously true). In particular, a zeroless and seedless automaton is the
same thing as a parity automaton, which proves the zero automata are at least as powerful
as mso.

I Example 6. Assume that zero is probability zero as in Definition 1. Consider the special
case of a zero automaton where Qall is all states and Qseed is empty. A run is accepting if and
only if there is zero probability of having maxinf state in Qzero. Equivalently, the probability
of having maxinf state outside Qzero is one. Languages recognised by such automata are the
qualitative tree languages from [6]. The class of positive tree languages from [6] is obtained
when Qall and Qzero are empty, and the initial state is used only once in the root, is maximal
in the total order, and is the unique seed state.

ICALP 2016

96:6 Thin MSO with a Probabilistic Path Quantifier

3 Fat Cantor

In this section, we illustrate the logic and automaton with an extended example. Let us fix
zero to be probability zero according to Definition 1. Define the fat Cantor language to be
the set of complete trees over the alphabet {a, b} which satisfy the following property:

¬zeroπ
(
∀x x ∈ π ∧ b(x)

)︸ ︷︷ ︸
nonzero probability of avoiding a

∧ ∀x∃y y ≥ x ∧ a(y)︸ ︷︷ ︸
a’s are dense

Note that “avoiding a” is a Borel property of paths, and therefore “nonzero probability of
avoiding a” means that the sets of paths avoiding a have defined positive probability. This
argument will be true in general for our logic – for every fixed input tree, any property of
paths definable in the logic will be Borel, and therefore not belonging to zero will mean that
it there is defined and positive probability.

The fat Cantor language is nonempty. To construct a tree in the fat Cantor language,
choose a fast growing sequence of natural numbers

n1 < n2 < n3 < · · ·

and then choose a tree (which is unique up to reordering siblings) where a labels are found
only at depths from the sequence above, and every node at depth ni has a unique descendant
at depth ni+1 with label a. If the sequence (ni) grows fast enough, then there is nonzero
probability of avoiding a. Let us now argue that the fat Cantor language contains no regular
tree, i.e. no tree with finitely many nonisomorphic subtrees. Suppose then that t is a regular
tree, with n distinct subtrees. If a’s are dense in this tree, it follows from regularity that
every node has a descendant at distance at most n that has label a. This means there is some
constant ε > 0 such that for every interval I ⊆ N of n consecutive positions, the probability
of a path visiting a at depth from I is at least ε. These events are independent for disjoint
intervals, and therefore the probability of seeing a at least once, and even infinitely often, is
1. Summing up: the fat Cantor language is nonempty but contains no regular trees.

Fat Cantor automaton

We now show a zero automaton which recognises the fat Cantor language described above.
To simplify notation, we define an automaton which works only on complete trees, i.e. it
recognises the intersection of the fat Cantor language with the set of complete trees. In
particular, when talking about transitions, we only consider transitions δC for C = {0, 1}.

The input alphabet is {a, b}. The automaton has four states, totally ordered as follows:

qa︸︷︷︸
already saw a

< q1︸︷︷︸
searching for a

< q2︸︷︷︸
not searching for a

< q0︸︷︷︸
initial state

The automaton begins in state q0 in the root, this state will not be visited again during the
run. When the automaton is in state qi with i ∈ {0, 1, 2} and it reads a node with label
b, then it sends q1 to some child and q2 to the other child, as witnessed by the following
transitions:

(qi, b, qj , qk) for i ∈ {0, 1, 2} and {j, k} = {1, 2}.

Choosing which child gets q1 and which child gets q2 is the only source of nondeterminism in
this automaton. When the automaton sees letter a, it sends qa to both children regardless of

M. Bojanczyk 96:7

its current state, and qa is a sink state that cannot be left, as witnessed by the following
transitions:

(q, a, qa, qa) for all q ∈ Q (qa, a, qa, qa) (qa, b, qa, qa)

Since q0 is used only once in the root, and qa is a sink state, it follows that on every path
either qa is seen from some point on, or qa is never seen and the maxinf state is one of q1, q2.
The acceptance condition is defined by the following sets:

Qall = {qa, q2} Qzero = ∅ Qnonzero = {q1, q2} Qseed = {q0}

Because Qzero is empty, every run satisfies the zero acceptance condition. The state q0
appears only once in the root, and therefore it is never used as a maxinf state. By choice of
Qall, the state q1 is forbidden as a maxinf state, which means that in an accepting run, every
path eventually stabilises on either qa or q2. Since the only way of leaving q1 is by seeing an
a letter, it follows that a’s must be dense. The only seed state is the initial state, which is
used only once in the root, and is also the most important state. Therefore, a run satisfies
the nonzero acceptance condition if and only if its there is nonzero probability of having
maxinf state in {q1, q2}, which means there is nonzero probability of avoiding a.

4 From logic to automata

The main technical result of this paper is that every formula of tmso+zero can be effectively
translated to an equivalent zero automaton. The result works not just for zero probability,
but for other choices of zero, as described in the following definition.

I Definition 7. For a family zero of subsets of 2ω, consider the following properties:
1. σ-ideal: zero is closed under subsets and countable union;
2. atomless: zero contains all singletons;
3. prefix independence: every set Π ⊆ 2ω satisfies

Π ∈ zero⇔ iΠ ∈ zero for every i ∈ 2

4. recurrent nonzero: there is a zero automaton which recognises the language

{t ∈ trees{1, 2, 3} : for every subtree, the set of paths with maxinf 2 is 6∈ zero}

In the recurrent nonzero condition, it is important that the trees are not necessarily complete.
For such a tree, a subtree is obtained by shifting the root to some node in the domain. In
particular, if a tree belongs to the language from the recurrent nonzero condition, then it
cannot have any leaves.

Here is the main result of this paper.

I Theorem 8. Let zero be a family of subsets of 2ω satisfying conditions 1-4 in Definition 7.
Then for every formula of tmso+zero one can compute an equivalent zero automaton.

The proof has three steps. In Section 5, we show closure properties of languages recognised
by zero automata, of which the most interesting is closure under intersection. In Section 6,
we show that the logic tmso+zero has the same expressive power as a certain transducer
model. In Section 7, we complete the proof of the theorem, by translating transducers into
zero automata. The results in Section 5 and 6 only use properties 1-3 in Definition 7, while
Section 7 uses also property 4.

The following corollary shows the main application of Theorem 8.

ICALP 2016

96:8 Thin MSO with a Probabilistic Path Quantifier

I Corollary 9. Let zero be the subsets of 2ω that have zero probability in the sense of
Definition 1. Then for every formula of tmso+zero one can compute an equivalent zero
automaton.

Other examples of zero which can be shown to satisfy the assumptions of Theorem 8 include
“countable sets of paths [2]” and “meagre sets of paths [9]”. These other examples are less
interesting because they can already be formalised in mso alone, i.e. parity automata are
sufficient. Theorem 8 can be seen as an alternative way of recovering the results from [2, 9]:
one only needs to check that the assumptions of Theorem 8 are satisfied for a particular
choice of zero, and that zero automata can be captured by mso. In view of the results from
[2, 9], we have only one example of zero that satisfies the assumptions of Theorem 8, and
which strictly extends mso, namely probability zero.

5 Closure properties of zero automata

This section is about closure properties of the class of languages recognised by zero automata.
We show that this class is closed under positive Boolean operations – with intersection being
by far the more interesting case. We do not know if languages recognised by zero automata
are closed under complementation. If they would be, then zero automata would have exactly
the same expressive power as full mso+zero.

Define a Mealy machine to be a deterministic finite automaton on words over some input
alphabet Σ, where every transition is labelled by a letter from some output alphabet Γ. Such
a machine can be run on a finite word, yielding a length preserving function Σ∗ → Γ∗, it can
also be run on an ω-word, yielding a function Σω → Γω, or finally it can be run on all paths
in a tree, yielding a function treesΣ→ treesΓ which does not change the domain of the tree.
The last case will be called a tree transducer recognised by a Mealy machine.

I Lemma 10. Languages recognised by zero automata are closed under union, as well as
images and inverse images under tree transducers recognised by Mealy machines.

Proof sketch. The lemma does not require any closure properties from the set zero. For
union, we use disjoint union of automata (and gluing the initial state). For images use
nondeterminism, and for both images and inverse images use a Cartesian product construction
to simulate the Mealy machine in the state space of the zero automaton. Note that state
spaces in zero automata are ordered. Therefore we impose some random total order on a
Mealy machine, and in the Cartesian product we use a lexicographic ordering, with the order
on the original zero automaton being more important. J

We now show another closure property, which is closure under factorisations, as described
below. Define a factor to be a set of nodes that is connected with respect to the child relation.
In particular, a factor has a unique root, i.e. a unique node which is least with respect to the
descendant ordering. If X is a factor, then define the restriction to X of a tree t to be the
tree obtained from t by keeping only the nodes from X. We now show that if L is a language
recognised by a zero automaton, then there is a zero automaton which inputs a tree together
with a decomposition into disjoint factors, and checks that L contains every tree obtained by
restricting the input tree to one of the factors in the partition.

We begin by describing how a decomposition into factors is given on the input. If X is a
set of nodes, then define an X-factor to be a set of nodes obtained by taking some x ∈ X
and adding all descendants y such that (x..y] is disjoint with X, where (x..y] denotes proper
descendants of x that are (not necessarily proper) ancestors of y. By abuse of notation, we

M. Bojanczyk 96:9

define an X-factor of a tree t to be any tree obtained from t by restricting it to some X-factor.
Finally, if X is a set of nodes in a tree t ∈ treesΣ, then define t⊗X ∈ trees(Σ× 2) to be the
tree obtained from t by extending the label of each node by a bit indicating membership in
X.

I Lemma 11 (Factorisation Lemma). Assume that zero satisfies conditions 1–3 in Definition 7.
If L ⊆ treesΣ is recognised by a zero automaton, then so is

{t⊗X : t ∈ treesΣ and X is a set of nodes in t such that L contains every X-factor of t} .

The main idea in the proof is that to use the “nested” character of the nonzero acceptance
condition; here by nesting we mean that the paths contributing to the nonzero condition are
cut off whenever a more important state is seen.

We finish this section by stating the most challenging result, which is closure under
intersection, as stated in the following lemma.

I Lemma 12 (Intersection Lemma). Assume that zero satisfies conditions 1-3 in Definition 7.
Then languages recognised by zero automata are closed under intersection.

The proof has several steps. One of these steps, namely the first step, is showing that
languages recognised by zero automata are closed under intersection with languages recognised
by zero automata which do not use the nonzero acceptance condition. The first step uses
McNaughton’s Latest Appearance Record construction.

6 Transducers

To prove Theorem 8, we use a transducer characterisation of the logic tmso+zero. The
transducer characterisation is an “if and only if” characterisation, unlike the translation in
the main Theorem 8.

Transducers

Define a tree transducer to be any function treesΣ→ treesΓ which does not change the domain
of the input tree. Our goal is to show each language definable mso+zero can be described by
composing transducers of certain basic types. To model a language as a transducer, we use
the following definition.

I Definition 13. For a tree language L ⊆ treesΣ, define

transL : treesΣ→ trees2,

called the characteristic transducer of L, to be the transducer which labels each node of the
input tree by a bit saying whether or not the subtree rooted in that node belongs to L.

We define the combination t0 ⊗ t1 of two trees t0, t1 over possibly different alphabets
Σ0,Σ1 but with equal domains, to be the unique tree over Σ0 × Σ1 which projects to each ti
on the i-th coordinate. In the following theorem, composition of transducers is defined as for
functions, while the combination of two transducers f1, f2 with the same input alphabet but
possibly different output alphabets is the transducer t 7→ f1(t)⊗ f2(t).

I Theorem 14. Assume that zero has the closure properties 1-3 from Theorem 8. Then a
tree language is definable in tmso+zero if and only if its characteristic transducer belongs to
the smallest class of transducers which is closed under composition and combination, and
which contains the following transducers:

ICALP 2016

96:10 Thin MSO with a Probabilistic Path Quantifier

1. Zero base. The characteristic transducers of all languages of the form:

Zn
def= {t ∈ trees{1, . . . , n,⊥} : zero 3 {π ∈ paths t :

{
π does not visit ⊥, and
π has even maxinf

}}

2. Zeroless base. The characteristic transducers of all languages definable in tmso.
3. Child number transducer. Transducers of the form treesΣ→ trees2 which map each node

to its child number, with the convention that the root gets label 0.
4. Mealy machine on trees. Transducers recognised by Mealy machines.

The difficult implication is from logic to transducers; here we use the composition method.
Intuitively speaking, the above theorem shows that formula of tmso+zero can be decomposed
into parts that do not talk about zero at all, and into the very basic property Zn.

7 From transducers to zero automata

In this section we complete the proof of Theorem 8, by showing that the transducers from
the previous section can be compiled into zero automata. We say that a tree transducer f
is recognised by a zero automaton if there is a zero automaton recognising the set of trees
t⊗ f(t) where t ranges over all input trees for the tree transducer.

I Lemma 15. Transducers recognised by zero automata are closed under composition, com-
bination and include the child number transducers, transducers induced by Mealy machines,
and the characteristic transducers of all languages definable in tmso.

Proof sketch. For composition, the automaton guesses the intermediate result, and checks
both underlying transducers in parallel, using the Intersection Lemma. Combination also
uses intersection. For the child-number transducers, Mealy machines and characteristic
transducers of languages definable in tmso, one observes that their corresponding languages
are definable in mso, and zero automata generalise nondeterministic parity tree automata. J

By Theorem 14 and the above lemma, in order to prove Theorem 8 it suffices to show
that zero automata recognise the characteristic transducers of the languages of the form Zn
as used in Theorem 14. By unraveling the definitions, we need to show the following lemma.

I Lemma 16. For every n ∈ N there is a zero automaton recognising the set of trees

t⊗ s with t ∈ trees{1, . . . , n,⊥}, s ∈ trees2

such that for every node x, its label in s is 1 iff Zn contains the subtree of t rooted in x.

Proof. Let L be the language in the statement of the lemma. For a tree t ⊗ s, define a
⊥-factor to be a maximal factor contained in the domain of the tree that does not use label
⊥ in t. It is not difficult to see that t⊗ s belongs to L if and only if: (a) every node with
label ⊥ in t has label 1 in s; and (b) every ⊥-factor belongs to L. Condition (a) can be easily
checked by a parity automaton, so thanks to the Intersection Lemma it suffices to produce
a zero automaton which checks (b). By the Factorisation Lemma, it suffices to find a zero
automaton which tests memberhip in L for individual ⊥-factors.

Summing up, we can assume without loss of generality that t does not use label ⊥ at all.
Therefore, in the rest of the proof, we show a zero automaton which recognises the language
L restricted to the case where t ∈ {1, . . . , n}.

M. Bojanczyk 96:11

For i ∈ {1, . . . , n}, consider the function

fi : trees{1, . . . , n} → trees{1, 2, 3} label of x in fi(t) =

1 if label of x in t is < i

2 if label of x in t is = i

3 if label of x in t is > i

.

We will only use this function for even i. For t ∈ trees{1, . . . , n}, define nonzero(t) to be the
set of nodes in t whose subtree does not belong to Zn. In terms of this definition, a tree
t⊗ s belongs to L if and only if nonzero(t) is exactly the nodes that have label 0 in s. Also,
condition 4 from Definition 7 says that there is a zero automaton recognising the language

N def= {t ∈ trees{1, 2, 3} : nonzero(t) is all nodes of t}

I Claim 17. Let t ∈ trees{1, . . . , n} and s ∈ trees2 be trees with the same domain. Then
t⊗ s ∈ L if and only if one can find an ancestor closed set of nodes {Xi}i, with i ranging
over even numbers in {1, . . . , n}, such that the following conditions hold:
1. a node has label 0 in s if and only if it belongs to some Xi;
2. for every even i ∈ {1, . . . , n}, restricting fi(t) to the nodes from Xi yields a tree in N;
3. zero 3 {π ∈ paths t : π has even t-maxinf and sees 0 finitely often in s}

Before proving the claim, let us observe how it implies the lemma. Since a zero automaton
can nondeterministically guess the sets Xi, it suffices to show that there is a zero automaton
which checks conditions 1, 2, 3 in the claim. By the Intersection Lemma, it suffices to check
each condition individually. Condition 1 is definable in mso. Condition 2, for any fixed i,
follows from the assumption that N is recognised by a zero automaton and the Factorisation
Lemma. For condition 3, it is straightforward to construct a zero automaton – it essentially
copies the labels from t into its states, except that nodes with label 0 in s trigger a state
which is maximal in the total order. It remains to prove the claim.

Proof. We begin with the following observation, which follows from the assumption that
zero satisfies conditions 1-3 in Definition 7. For every t ∈ trees{1, . . . , n}, the set nonzero(t)
is closed under ancestors and a node x belongs to nonzero(t) if and only if

zero 63 {π ∈ paths t :

π is contained in nonzero(t), and
π passes through x, and
π has even t-maxinf

} (1)

By definition of the tree transducers fi, a path has even t-maxinf if and only if it has even
fi(t)-maxinf for some even i. Therefore, by closure of zero under countable – and therefore
also finite – unions, we see that

nonzero(t) =
⋃
i

nonzero(fi(t)), (2)

where i ranges over even numbers in {1, . . . , n}.
Let us now prove the claim.
Let us begin with the bottom-up implication. From condition 2 it follows that every node

in Xi belongs to nonzero(t). From condition 1 it follows that all nodes with label 0 are in
nonzero(t). From condition 1, it follows that the set of nodes with label 0 in s is closed under
ancestors. Therefore, condition 3 implies that for every node with label 1 in s is outside

ICALP 2016

96:12 Thin MSO with a Probabilistic Path Quantifier

nonzero(t). Thus nonzero(t) is exactly the nodes which have label 0 in s, which means that
t⊗ s ∈ L.

Consider the top-down implication. Our assumption is that nonzero(t) is exactly the
nodes which have label 0 in s. Define Xi to be nonzero(fi(t)). By (2), we see that condition
1 in the statement of the claim holds. From (1) applied to the trees fi(t), we get condition 2.
To prove condition 3, by definition of nonzero(t) and prefix independence of zero, we know
that every node x 6∈ nonzero(t) satisfies

zero 3 {π ∈ paths t : π passes through x and has even t-maxinf}

Since nonzero(t) is ancestor closed, it follows that a path passes through some x 6∈ nonzero(t)
if and only if it sees 0 in s finitely often. Therefore, by closure of zero under countable unions,
we get condition 3 in the statement of the claim. J

J

8 Conclusion

We have proved that, under certain conditions on zero, every formula of the logic tmso+zero
is recognised by a zero automaton. Therefore, in order to decide satisfiability of tmso+zero,
it suffices to decide emptiness for zero automata. Unlike the logic, zero automata involve no
nesting, which makes the emptiness check easier. A planned followup paper will show that
emptiness is indeed decidable for zero automata, assuming that zero is the sets of probability
zero.

Apart from the emptiness question for zero automata, the main open problem is decidab-
ility for the full logic mso+zero, and not just the thin variant considered in this paper. It
is not at all clear if zero automata are closed under complement, and therefore it is quite
possible that zero automata are not the right model for mso+zero. There is another logic,
which sits between tmso+zero and mso+zero, and which might still admit a translation to
zero automata. In this intermediate logic, the condition on sets X ⊆ 2∗ is relaxed: instead of
thin sets, we consider sets which satisfy X̄ ∈ zero. We leave open the question whether this
intermediate logic admits a translation to zero automata.

Acknowledgment. I would like to thank Henryk Michalewski and Matteo Mio for introdu-
cing me into this area, and for their many valuable comments and suggestions.

References
1 Christel Baier, Marcus Größer, and Nathalie Bertrand. Probabilistic ω-automata. J. ACM,

59(1):1, 2012. doi:10.1145/2108242.2108243.
2 Vince Bárány, Łukasz Kaiser, and Alexander Rabinovich. Cardinality quantifiers in MLO

over trees. In Proc. of CSL, 2009.
3 Mikolaj Bojanczyk. U. ACM SIGLOG News, 2(4):2–15, 2015.
4 Tomás; Brázdil, Vojtech Forejt, Jan Kretínský, and Antonín Kucera. The satisfiability

problem for probabilistic CTL. In Proc. of LICS, pages 391–402, 2008.
5 Julius R. Büchi. On a decision method in restricted second-order arithmetic. In Proc. 1960

Int. Congr. for Logic, Methodology and Philosophy of Science, pages 1–11, 1962.
6 Arnaud Carayol, Axel Haddad, and Olivier Serre. Randomization in automata on infinite

trees. ACM Trans. Comput. Log., 15(3):24:1–24:33, 2014. doi:10.1145/2629336.
7 Thomas Colcombet. Regular cost functions, part I: logic and algebra over words. Logical

Methods in Computer Science, 9(3), 2013. doi:10.2168/LMCS-9(3:3)2013.

http://dx.doi.org/10.1145/2108242.2108243
http://dx.doi.org/10.1145/2629336
http://dx.doi.org/10.2168/LMCS-9(3:3)2013

M. Bojanczyk 96:13

8 Daniel Lehmann and Saharon Shelah. Reasoning with time and chance. Information and
Control, 53(3):165–1983, 1982.

9 Henryk Michalewski and Matteo Mio. Baire category quantifier in monadic second order
logic. In Automata, Languages, and Programming – 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, pages 362–374, 2015. doi:
10.1007/978-3-662-47666-6_29.

10 Henryk Michalewski and Matteo Mio. Measure quantifier in monadic second order logic. In
Logical Foundations of Computer Science – International Symposium, LFCS 2016, Deerfield
Beach, FL, USA, January 4-7, 2016. Proceedings, pages 267–282, 2016. doi:10.1007/
978-3-319-27683-0_19.

11 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of American Mathematical Society, 141:1–35, 1969.

12 Alexander Rabinovich. On decidability of monadic logic of order over the naturals extended
by monadic predicates. Inf. Comput., 205(6):870–889, 2007. doi:10.1016/j.ic.2006.12.
004.

13 Sergiu Hart Micha Sharir. Probabilistic propositional temporal logics. Information and
Control, 70(2–3):97–155, 1986.

ICALP 2016

http://dx.doi.org/10.1007/978-3-662-47666-6_29
http://dx.doi.org/10.1007/978-3-662-47666-6_29
http://dx.doi.org/10.1007/978-3-319-27683-0_19
http://dx.doi.org/10.1007/978-3-319-27683-0_19
http://dx.doi.org/10.1016/j.ic.2006.12.004
http://dx.doi.org/10.1016/j.ic.2006.12.004

	Introduction
	The logic and the automaton
	The logic
	The automaton

	Fat Cantor
	From logic to automata
	Closure properties of zero automata
	Transducers
	From transducers to zero automata
	Conclusion

