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Abstract
We survey some recent results on 2-edge and 2-vertex connectivity problems in directed graphs.
Despite being complete analogs of the corresponding notions on undirected graphs, in digraphs 2-
vertex and 2-edge connectivity have a much richer and more complicated structure. It is thus not
surprising that 2-connectivity problems on directed graphs appear to be more difficult than on
undirected graphs. For undirected graphs it has been known for over 40 years how to compute
all bridges, articulation points, 2-edge- and 2-vertex-connected components in linear time, by
simply using depth-first search. In the case of digraphs, however, the very same problems have
been much more challenging and required the development of new tools and techniques.
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1 Preliminaries

Let G = (V,E) be an undirected (resp., directed) graph, with m edges and n vertices.
Throughout the paper, we use interchangeably the term directed graph and digraph. Edge
and vertex connectivity are fundamental concepts in graph theory with numerous practical
applications [2, 32]. As an example, we mention the computation of disjoint paths in routing
and reliable communication, both in undirected and directed graphs [21, 24].

We assume that the reader is familiar with the standard graph terminology, as contained
for instance in [7]. An undirected path (resp., directed path) in G is a sequence of vertices v1,
v2, . . ., vk, such that edge (vi, vi+1) ∈ E for i = 1, 2, . . . , k − 1. An undirected graph G is
connected if there is an undirected path from each vertex to every other vertex. The connected
components of an undirected graph are its maximal connected subgraphs. A directed graph
G is strongly connected if there is a directed path from each vertex to every other vertex.
The strongly connected components of a directed graph are its maximal connected subgraphs.
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Figure 1 An undirected graph G.

Figure 2 The bridges and 2-edge-connected components of the graph G in Figure 1. (Better
viewed in color).

1.1 2-Connectivity in Undirected Graphs
Given an undirected graph G = (V,E), an edge is a bridge if its removal increases the number
of connected components of G. A graph G is 2-edge-connected if it has no bridges. The 2-
edge-connected components of G are its maximal 2-edge-connected subgraphs. Figure 1 shows
an undirected graph, and Figure 2 highlights its bridges and 2-edge-connected components.

Two vertices v and w are 2-edge-connected if there are two edge-disjoint paths between
v and w: we denote this relation by v ↔2e w. Equivalently, by Menger’s Theorem [31], v
and w are 2-edge-connected if the removal of any edge leaves them in the same connected
component.

Analogous definitions can be given for 2-vertex connectivity. In particular, a vertex is an
articulation point if its removal increases the number of connected components of G. Figure 3
shows the articulation points of the graph in Figure 1. A graph G is 2-vertex-connected if it
has at least three vertices and no articulation points. The 2-vertex-connected components of
G are its maximal 2-vertex-connected subgraphs. Note that the condition on the minimum
number of vertices in a 2-vertex-connected graph disallows degenerate 2-vertex-connected
components consisting of one single edge. Figure 4 shows the 2-vertex-connected components
of the graph in Figure 1.

Two vertices v and w are 2-vertex-connected if there are two internally vertex-disjoint
paths between v and w: we denote this relation by v ↔2v w. If v and w are 2-vertex-connected
then Menger’s Theorem implies that the removal of any vertex different from v and w leaves
them in the same connected component. The converse does not necessarily hold, since v
and w may be adjacent but not 2-vertex-connected. It is easy to show that v ↔2e w (resp.,
v ↔2v w) if and only if v and w are in a same 2-edge-connected (resp., 2-vertex-connected)
component.

All bridges, articulation points, 2-edge- and 2-vertex-connected components of undirected
graphs can be computed in linear time essentially by the same algorithm, which is simply
based on depth-first search [34].
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Figure 3 The articulation points of the graph G in Figure 1. (Better viewed in color).

Figure 4 The 2-vertex-connected components of the graph G in Figure 1. (Better viewed in
color).

1.2 2-Connectivity in Directed Graphs

The notions of 2-edge and 2-vertex connectivity can be naturally extended to directed graphs.
The main idea is that now the role of connected components is played by strongly connected
components. Given a digraph G, an edge (resp., a vertex) is a strong bridge (resp., a strong
articulation point) if its removal increases the number of strongly connected components of
G. A digraph G is 2-edge-connected if it has no strong bridges; G is 2-vertex-connected if it
has at least three vertices and no strong articulation points. The 2-edge-connected (resp.,
2-vertex-connected) components of G are its maximal 2-edge-connected (resp., 2-vertex-
connected) subgraphs. Again, the condition on the minimum number of verti ces disallows
for degenerate 2-vertex-connected components consisting of two mutually adjacent vertices
(i.e., two vertices v and w and the two edges (v, w) and (w, v)).

Similarly to the undirected case, we say that two vertices v and w are 2-edge-connected
(resp., 2-vertex-connected), and we denote again this relation by v ↔2e w (resp., v ↔2v w),
if there are two edge-disjoint (resp., internally vertex-disjoint) directed paths from v to w
and two edge-disjoint (resp., internally vertex-disjoint) directed paths from w to v. (Note
that a path from v to w and a path from w to v need not be edge-disjoint or vertex-disjoint).
It is easy to see that v ↔2e w if and only if the removal of any edge leaves v and w in the
same strongly connected component. Similarly, v ↔2v w implies that the removal of any
vertex different from v and w leaves v and w in the same strongly connected component.
We define a 2-edge-connected block (resp., 2-vertex-connected block) of a digraph G = (V,E)
as a maximal subset B ⊆ V such that u ↔2e v (resp., u ↔2v v) for all u, v ∈ B. Figure 5
illustrates (a) a strongly connected digraph G together with its strong articulation points
and strong bridges, (b) the 2-vertex-connected components of G, (c) the 2-vertex-connected
blocks of G, (d) the 2-edge-connected components of G, and (e) the 2-edge-connected blocks
of G.
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(a) G (b) 2VCC (G) (c) 2VCB(G) (d) 2ECC (G) (e) 2ECB(G)

Figure 5 (a) A strongly connected digraph G, with strong articulation points and strong bridges
shown in red (better viewed in color). (b) The 2-vertex-connected components of G. (c) The 2-
vertex-connected blocks of G. (d) The 2-edge-connected components of G. (e) The 2-edge-connected
blocks of G. Note that vertices e and f are in the same 2-vertex- (resp., 2-edge-) connected block of
G since there are two internally vertex-disjoint (resp., edge-disjoint) paths from e to f and from
f to e. However, e and f are not in the same 2-vertex (resp., 2-edge-) connected component of G.
(Better viewed in color).

1.3 Differences between 2-Connectivity in Undirected and Directed
Graphs

Connectivity-related problems for digraphs are notoriously harder than for undirected graphs,
and indeed many notions for undirected connectivity do not translate to the directed case.
Differently from undirected graphs, in digraphs 2-edge- and 2-vertex-connected blocks do
not correspond to 2-edge- and 2-vertex-connected components, as it is clearly illustrated in
Figure 5. Namely, two vertices may be 2-edge-connected (resp., 2-vertex-connected) but lie
in different 2-edge-connected (resp., 2-vertex-connected) components. Furthermore, these
notions seem to have a much richer and more complicated structure in digraphs, as depicted in
Figure 6. Just to give an example, we observe that while in the case of undirected connected
graphs the 2-edge-connected components (which correspond to the 2-edge-connected blocks)
are exactly the connected components left after the removal of all bridges, for directed
strongly connected graphs the 2-edge-connected components, the 2-edge-connected blocks,
and the strongly connected components left after the removal of all strong bridges are not
necessarily the same (see Figure 7).

Finally, we observe that an undirected graph is naturally decomposed by bridges (resp.,
articulation points) into a tree of 2-edge- (resp., 2-vertex-) connected components, known as
the bridge-block (resp., block) tree (see, e.g., [36]). In digraphs, the decomposition induced by
strong bridges and strong articulation points becomes much more complicated (see Figure 8):
in general, it was shown by Benczúr that in digraphs there can be no “cut” tree for various
connectivity concepts [3].

It is thus not surprising that, despite being complete analogs of the corresponding notions
on undirected graphs, 2-edge and 2-vertex connectivity problems appear to be much more
difficult on digraphs.
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2ECB

2ECC2VCC2VCB

Figure 6 The relation among various notions of 2-connectivity in directed graphs. Two vertices
that are 2-edge-connected (resp., 2-vertex-connected) are in the same 2-edge-connected (resp., 2-
vertex-connected) block but not necessarily in the same 2-edge-connected (resp., 2-vertex-connected)
component. Also, a 2-vertex-connected component is included in a 2-edge-connected component.
(Better viewed in color).
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Figure 7 (a) A digraph G with strong bridges shown in red; (b) The 2-edge-connected blocks of
G; (c) The strongly connected components left after removing all the strong bridges from G; (d)
The 2-edge-connected components of G. (e) An undirected graph U with bridges shown in red; (f)
The 2-edge-connected components of U , corresponding to the 2-edge-connected blocks and to the
connected components left after the removal of all bridges of U . (Better viewed in color).

2 Simple-minded Algorithms for 2-edge and 2-vertex Connectivity in
Directed Graphs

A simple algorithm for computing the 2-edge-connected components can be obtained by
repeatedly removing all the strong bridges in the graph (and repeating this process until no
strong bridges are left). At each round all the strong bridges can be computed in O(m+ n)
time [26] and since there can be at most O(n) rounds, the total time taken by this algorithm
is O(mn). The same bound was previously achieved by Nagamochi and Watanabe [33]. As
for 2-vertex connectivity, Erusalimskii and Svetlov [9] proposed an algorithm that reduces the
problem of computing the 2-vertex-connected components of a digraph to the computation of
the 2-vertex-connected components in an undirected graph, but did not analyze the running
time of their algorithm. Jaberi [28] showed that the algorithm of Erusalimskii and Svetlov
has O(nm2) running time, and proposed two different algorithms with running time O(mn).
Both algorithms follow substantially the same high-level approach as the simple algorithm
for computing the 2-edge-connected components of a digraph sketched before.

A simple algorithm for computing the 2-edge- or 2-vertex-connected blocks of a digraph
G takes O(mn) time: given a vertex v, one can find in linear time all the vertices that are
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Figure 8 An example illustrating the complicated structure of 1-edge cuts in digraphs. (a) A
strongly connected digraph G. (b) The strongly connected components in G \ (f, e). (c) The strongly
connected components in G \ (e, h). Note that a strongly connected component in G \ (f, e) and a
strongly connected component in G \ (e, h) are neither disjoint nor nested. In fact, all edges are
strong bridges, and the deletion of each edge creates many non-disjoint and non-nested sets in the
resulting partitions.

2-edge- or 2-vertex-connected with v with the help of dominator trees [11]. Since in the
worst case this step must be repeated for all vertices v in G, the total time required by this
simple algorithm is O(mn). Very recently, Jaberi [27] presented algorithms for computing the
2-vertex-connected and 2-edge-connected blocks. His algorithms require O(n ·min{m, b∗n})
time for computing the 2-edge-connected blocks and O(n · min{m, (a∗ + b∗)n}) time for
computing the 2-vertex-connected blocks, where a∗ and b∗ are respectively the number of
strong articulation points and strong bridges in the digraph G. Since both a∗ and b∗ can be
as large as O(n), both bounds are O(mn) in the worst case.

3 Flow Graphs and Dominators

In this section, we introduce some of the main tools that provided to be useful for solving
2-connectivity problems. Let G = (V,E) be a strongly connected graph. Throughout, we
denote by GR = (V,ER) the reverse digraph of G, i.e., the digraph obtained by reversing the
direction of all edges.

A flow graph is a digraph with a distinguished start vertex s such that every vertex is
reachable from s. Let s be a fixed but arbitrary start vertex of a strongly connected digraph
G. Since G is strongly connected, all vertices are reachable from s and reach s, so we can
view both G and GR as flow graphs with start vertex s. To avoid ambiguities, throughout the
paper we will denote those flow graphs respectively by Gs and GR

s . Vertex u is a dominator
of vertex v (u dominates v) in Gs if every path from s to v in Gs contains u. Vertex u is a
proper dominator of v if u dominates v and u 6= v. Let dom(v) be the set of dominators of v.
Clearly, dom(s) = {s} and for any v 6= s we have that {s, v} ⊆ dom(v): we say that s and
v are the trivial dominators of v in the flow graph Gs. The dominator relation is reflexive
and transitive. Its transitive reduction is a rooted tree, the dominator tree D: u dominates
v if and only if u is an ancestor of v in D. For any v 6= s, we denote by d(v) the parent of
v in D. Similarly, we can define the dominator relation in the flow graph GR

s , and let DR

denote the dominator tree of GR
s , and dR(v) the parent of v in DR. Throughout the paper,

we let N (resp., NR) denote the set of nontrivial dominators of Gs (resp., GR
s ). Lengauer

and Tarjan [30] presented an algorithm for computing dominators in O(mα(m,n)) time for
a flow graph with n vertices and m edges, where α is a functional inverse of Ackermann’s
function [35]. Subsequently, several linear-time algorithms were discovered [1, 4, 11, 12].
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Figure 9 A flow graph Gs and its reverse GR
s , and their dominator trees D and DR. The

corresponding digraph G is strongly connected. Strong bridges of G and GR and bridges of Gs and
GR

s in D and DR are shown red. (Better viewed in color.)

Figure 9 shows a flow graph Gs, its reverse GR
s , and their dominator trees D and DR.

An edge (u, v) is a bridge of a flow graph Gs if all paths from s to v include (u, v).1 Let
s be an arbitrary start vertex of G. As shown in [26], an edge e = (u, v) is strong bridge
of G if and only if it is either a bridge of Gs or a bridge of GR

s . As a consequence, all the
strong bridges of G can be obtained from the bridges of the flow graphs Gs and GR

s , and
thus there can be at most 2(n− 1) strong bridges overall.

1 Throughout the paper, to avoid confusion we use consistently the term bridge to refer to a bridge of a
flow graph and the term strong bridge to refer to a strong bridge in the original graph.
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4 Efficient Algorithms for 2-Connectivity in Directed Graphs

In this section, we show how to exploit the basic tools described in Section 3 to obtain fast
algorithms for 2-connectivity in digraphs. We start by showing a connection between strong
articulation points and dominators in flowgraphs. Consider the problem of finding all strong
articulation points of a strongly connected digraph G = (V,E). Let s be any vertex in G.
Since G is strongly connected, every vertex in G is reachable from s: thus for every vertex
s ∈ V , Gs is a flowgraph. Note that there can be n flowgraphs for each strongly connected
graph. The following lemmas show a close relationship between strong articulation points in
strongly connected graphs and non-trivial dominators in flow graphs.

I Lemma 1 ([26]). Let G = (V,E) be a strongly connected graph, and let s be any vertex in
G. Let Gs be the flowgraph with start vertex s. If a vertex u is a non-trivial dominator of a
vertex v in Gs, then u is a strong articulation point in G.

Proof. If u is a non-trivial dominator of v in the flowgraph Gs, then u 6= s, u 6= v and all
the paths in G from s to v must include u. Consequently, G \ {u} is not strongly connected
and thus u must be a strong articulation point in G. J

I Lemma 2 ([26]). Let G = (V,E) be a strongly connected graph. If u is a strong articulation
point in G, then there must be a vertex s ∈ V such that u is a non-trivial dominator of a
vertex v in the flowgraph Gs.

Proof. If u is a strong articulation point of G, then there must exist two vertices s and v in
G, s 6= u, v 6= u, such that every path from s to v contains vertex u. This implies that u
must be a non-trivial dominator of vertex v in the flowgraph Gs. J

We note that Lemmas 1 and 2 are still not sufficient to achieve a linear-time algorithm for
our problem: indeed, to compute all the strong articulation points of a strongly connected
graph G, we need to compute all the non-trivial dominators in the flowgraphs G(s), for
each vertex s in V . Since the dominators of a flowgraph can be computed in O(m + n)
time [1, 4, 11, 12] and there are exactly n flowgraphs to be considered, the running time
of this algorithm is O(n(m + n)). We show next how a more careful exploitation of the
relationship between strong articulation points and dominators yields a linear-time algorithm
for computing the strong articulation points of a directed graph.

I Theorem 3 ([26]). Let G = (V,E) be a strongly connected graph, and let s ∈ V be any
vertex in G. Let Gs and GR

s be respectively the flowgraphs with start vertex s, D and DR

their dominator trees, and N and NR the non-trivial dominators in D and DR. Then vertex
v 6= s is a strong articulation point in G if and only if v ∈ N ∪NR.

Proof. We first prove that if v is a strong articulation point in G, v 6= s, then v must be a
non-trivial dominator either in D or in DR. Assume not: namely, assume that v is a strong
articulation point in G, v 6= s, but v 6∈ N ∪NR. Since v is a strong articulation point in G,
then G \ {v} is not strongly connected. As a consequence, there must be a vertex w in G,
w 6= s, w 6= v, such that the following is true: w is in the same strongly connected component
as s in G, but w is not in the same strongly connected component as s in G \ {v}. Namely,
v 6= s, v 6= w, and either (a) there is a path from s to w in G, but there is no path from s

to w in G \ {v}, or (b) there is a path from w to s in G, but there is no path from w to s
in G \ {v}. If we are in case (a), then all the paths from s to w in G must contain vertex
v. This is equivalent to saying that v is a non-trivial dominator of w in the flowgraph Gs,
which clearly contradicts our assumption that v 6∈ N . If we are in case (b), then all the paths
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from w to s in G must contain vertex v. This is equivalent to saying that v is a non-trivial
dominator of w in the flowgraph GR

s , which contradicts our assumption that v 6∈ NR. This
shows that if v is a strong articulation point in G, then v must be in N or in NR.

To prove the converse, let v be any vertex such that v ∈ N or v ∈ NR. If v ∈ N , v
is a non-trivial dominator in Gs, and thus v must be a strong articulation point in G by
Lemma 1. Analogously, if v ∈ NR, again by Lemma 1 v must be a strong articulation point
in GR, and thus in G. This completes the proof of the theorem. J

Note that Theorem 3 provides no information on whether vertex s is a strong articulation
point. However, this can be easily checked in linear time, yielding the following theorem.

I Theorem 4 ([26]). All the strong articulation points of a directed graph G can be computed
in O(m+ n) time in the worst case.

The strong bridges of a directed graph can be found in an analogous fashion, giving rise
to the following theorem:

I Theorem 5 ([26]). All the strong bridges of a directed graph G can be computed in O(m+n)
time in the worst case.

A more sophisticated usage of dominator trees, combined with other properties, gives rise
to efficient algorithms for computing the 2-edge-connected and 2-vertex-connected blocks
and components of a directed graph, as stated in the remainder of this section.

In particular, Georgiadis et al. [16] gave a linear-time algorithms for computing the
2-edge-connected blocks of a digraph. Their approach hinges on two different algorithms.
The first is a simple iterative algorithm that builds the 2-edge-connected blocks by removing
one strong bridge at a time. The second algorithm is more involved and recursive: the
main idea is to consider simultaneously how different strong bridges partition vertices with
the help of dominator trees. Although both algorithms run in O(mn) time in the worst
case, Georgiadis et al. [16] showed that a sophisticated combination of the iterative and the
recursive method is able to achieve a linear-time bound, as shown in the following theorem.

I Theorem 6 ([16]). The 2-edge-connected blocks of a directed graph G can be computed in
O(m+ n) time in the worst case.

Using the linear-time algorithm for computing the 2-edge-connected blocks, one can
preprocess a digraph in linear time, and then can answer in constant time queries on whether
any two vertices are 2-edge-connected. Additionally, when two query vertices v and w are
not 2-edge-connected, one can produce in constant time a “witness” of this property, by
exhibiting an edge that is contained in all paths from v to w or in all paths from w to v. As
a consequence of the linear-time algorithm of Theorem 6, one can also compute in linear
time a sparse certificate for 2-edge-connected blocks, i.e., a subgraph of the input graph that
has O(n) edges and maintains the same 2-edge-connected blocks as the input graph. The
interested reader is referred to [16] for all the details.

Following the high-level approach of [16] for finding the 2-edge-connected blocks, Geor-
giadis et al. [17] were able to prove that also the 2-vertex-connected blocks of a digraph can
be computed in linear time. The algorithm for computing the 2-vertex-connected blocks is
much more involved than the 2-edge connectivity algorithm required several novel ideas and
more sophisticated techniques to achieve the claimed bounds. Moreover, differently from
2-edge connectivity, 2-vertex connectivity in digraphs is plagued with several degenerate
special cases, which are not only more tedious but also more cumbersome to deal with. For
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instance, the algorithm in [16] exploits implicitly the property that two vertices v and w are
2-edge-connected if and only if the removal of any edge leaves v and w in the same strongly
connected component. Unfortunately, this property no longer holds for 2-vertex connectivity,
as for instance two mutually adjacent vertices are always left in the same strongly connected
component by the removal of any other vertex, but they are not necessarily 2-vertex-connected.
This is summarized in the following theorem.

I Theorem 7 ([17]). The 2-vertex-connected blocks of a directed graph G can be computed
in O(m+ n) time in the worst case.

Similary to the case of 2-edge connectivity, other side results can be obtained as an
application of this algorithm. In particular, one can construct an O(n)-space data structure
that reports in constant time if two vertices are 2-vertex-connected. by exhibiting a vertex
(i.e., a strong articulation point) or an edge (i.e., a strong bridge) that separates them. Once
again, one can also compute in linear time a sparse certificate for 2-vertex connectivity,
i.e., a subgraph of the input graph that has O(n) edges and maintains the same 2-vertex
connectivity properties.

We now turn to the problem of computing the 2-edge- and 2-vertex-connected components
of a digraph. In this case, Henzinger et al. [23], presented fast algorithms for computing
the 2-edge- and 2-vertex-connected components of a directed graph. The main idea behind
their algorithm is a hierarchical graph sparsification that was introduced by Henzinger et
al. [22] for undirected graphs and extended to directed graphs in [5]. Roughly speaking,
this sparsification technique allows one to replace the m in the O(mn) running times by an
n, yielding O(n2) running times in place of O(mn). Henzinger et al. [23] were able to find
structural properties of 2-edge and 2-vertex connectivity in directed graphs that allow one to
apply this technique starting from the simple-minded O(mn) algorithms and a clever use of
dominators. Those bounds are summarized in the following theorem.

I Theorem 8 ([23]). The 2-edge- and 2-vertex-connected components of a directed graph G
can be computed in O(n2) time in the worst case.

Additionally, Henzinger et al. [23] presented an O(m2/ logn) time algorithm for computing
the 2-edge-connected components, which provides a small improvement for sparse graphs,
i.e., m = O(n). The same approach can be extended to k-edge- and k-vertex-connected
components, for any constant k, with a running time of O(n2 logn) for k-edge connectivity
and O(n3) for k-vertex connectivity.

Finally, we mention that Georgiadis et al. [19] initiated the study of the dynamic
maintenance of 2-edge-connectivity relationships in directed graphs. In particular, they
presented an algorithm that can update the 2-edge-connected blocks of a digraph G with
n vertices through a sequence of m edge insertions in a total of O(mn) time. After each
insertion, one can answer the following queries in asymptotically optimal time:

Test in constant time if two query vertices v and w are 2-edge-connected. Moreover, if v
and w are not 2-edge-connected, one can produce in constant time a “witness” of this
property, by exhibiting an edge that is contained in all paths from v to w or in all paths
from w to v.
Report in O(n) time all the 2-edge-connected blocks of G.

I Theorem 9 ([19]). The 2-edge-connected blocks of a digraph with n vertices can be main-
tained through a sequence of edge insertions in O(mn) time, where m is the total number of
edges in G after all insertions.
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We remark that this is the first known dynamic algorithm for 2-connectivity problems on
digraphs, and it matches the best known bounds for simpler problems, such as incremental
transitive closure [25].

5 Sparse Subgraphs Preserving 2-Connectivity in Directed Graphs

Other problems that were considered in the area of 2-connectivity for directed graphs are
related to the computation of a minimum spanning subgraph (i.e., a subgraph with minimum
number of edges) that maintains certain 2-connectivity requirements in addition to strong
connectivity. More specifically, one problem that has been investigated is finding a smallest
strongly connected spanning subgraph of a digraph G that has the same 2-edge- (respectively,
2-vertex-) connectivity properties as G. Both for 2-edge- and for 2-vertex connectivity, this
problem is known to be NP-hard [13, 18]. We next review some of the algorithms proposed
in the literature respectively for edge and for vertex connectivity.

Laekhanukit et al. [29] gave a randomized (1+1/k)-approximation algorithm for computing
the smallest k-edge-connected spanning subgraph of a k-edge-connected graph. Georgiadis
et al. [18] used the algorithm in [29] to compute a 3/2-approximate minimum spanning
subgraph that has the same 2-edge-connected components and additionally presented a faster
2-approximation algorithm that runs in linear time. Let G be a strongly connected graph.
Jaberi [27] considered the problem of computing a smallest subgraph that has the same
2-edge-connected blocks (or the same 2-vertex-connected blocks) as G. Unfortunately, the
approximation ratio in Jaberi’s algorithms is O(n) in the worst case. Georgiadis et al. [18]
improved this result by presenting a linear-time 4-approximation algorithm for computing the
smallest strongly connected spanning subgraph that has the same 2-edge-connected blocks
as G. Additionally, they presented a linear-time algorithm for the problem of computing
the smallest subgraph that has both the same 2-edge-connected components and the same
2-edge-connected blocks as G. The algorithms in [18] that compute spanning subgraphs with
the same 2-edge-connected components as G run in linear time once the 2-edge-connected
components of G are available (we remark that the currently best known bound for computing
the 2-edge-connected components is O(n2) [23]).

For the smallest k-vertex-connected spanning subgraph, Cheriyan and Thurimella [6], gave
a (1 + 1/k)-approximation algorithm that runs in O(km2) time. For k = 2, Georgiadis [14]
presented a linear time algorithm with approximation ratio 3. Based on the algorithm from
[14], the running time of Cheriyan and Thurimella’s algorithm was improved to O(m

√
n+n2)

for k = 2. Let G be a strongly connected graph. Georgiadis et al. [15] presented a constant-
factor approximation algorithm for the problem of computing the smallest subgraph that
preserves the 2-vertex-connected blocks of G. More specifically, they gave a linear-time
6-approximation algorithm for this problems, and further extended this algorithm to compute
a sparse subgraph with the same approximation gurantee that has both the same 2-vertex-
connected components and the same 2-vertex-connected blocks as G. The algorithm that
computes a sparse subgraph that preserves both the 2-vertex-connected blocks and the
2-vertex-connected components of the input graph G runs in linear time, once the 2-vertex-
connected components of G are available (we remark that the currently best known bound
for computing the 2-vertex-connected components is O(n2) [23]). Finally, in [15] Georgiadis
et al. presented a 6-approximation algorithm for computing a strongly connected spanning
subgraph of G that preserves all the 2-connectivity relations, i.e., both the 2-edge- and the
2-vertex-connected components and the 2-edge- and the 2-vertex-connected blocks. Once
again, this algorithm runs in linear time, provided that the 2-edge- and the 2-vertex-connected
components of G are available.

ESA 2016
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We remark that references [15, 18] provide efficient implementations of all those approx-
imation algorithms that run very fast in practice. Additionally, they also present several
heuristics that improve the quality (i.e., the number of edges) of the computed spanning
subgraphs, and assess how all these algorithms perform in practical scenarios by conducting
a thorough experimental study.

6 Conclusions and Open Problems

We have surveyed some very recent results on 2-edge and 2-vertex connectivity problems
in directed graphs, which revealed to be harder than their counterparts on undirected
graphs. Experimental studies for algorithms that compute dominators, strong bridges, strong
articulation points, 2-edge- and 2-vertex-connected blocks are presented in [8, 10, 20]. Those
experimental results are very promising, as they show that the corresponding fast algorithms
given in [11, 16, 17, 26] perform very well in practice even on very large graphs.

This recent bulk of work has raised some interesting and perhaps intriguing questions. In
particular, the main open problem is whether the 2-edge-connected or the 2-vertex-connected
components of a digraph can be computed in linear time. Moreover, the dynamic maintenance
of 2-edge and 2-vertex connectivity in directed graphs deserves further investigation. Finally,
we have described in Section 5 linear-time constant-factor approximation algorithms for
computing minimum spanning subgraphs that preserve the 2-edge- and 2-vertex-connected
blocks of a graph [15, 18]. The trade-offs between running times and approximation guarantees
need further study. In particular, can the approximation guarantees in [15, 18] be improved
while still maintaining linear running times? Can they match the corresponding approximation
ratios for computing the 2-edge- and 2-vertex-connected spanning subgraphs of 2-edge- and
2-vertex-connected graphs [6, 29], respectively?
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