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Abstract
In the Multi-Level Aggregation Problem (MLAP), requests arrive at the nodes of an edge-weighted
tree T , and have to be served eventually. A service is defined as a subtree X of T that contains its
root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this
service is equal to the total weight of X. Each request also incurs waiting cost between its arrival
and service times. The objective is to minimize the total waiting cost of all requests plus the total
cost of all service subtrees. MLAP is a generalization of some well-studied optimization problems;
for example, for trees of depth 1, MLAP is equivalent to the TCP Acknowledgment Problem,
while for trees of depth 2, it is equivalent to the Joint Replenishment Problem. Aggregation
problem for trees of arbitrary depth arise in multicasting, sensor networks, communication in
organization hierarchies, and in supply-chain management. The instances of MLAP associated
with these applications are naturally online, in the sense that aggregation decisions need to be
made without information about future requests.

Constant-competitive online algorithms are known for MLAP with one or two levels. How-
ever, it has been open whether there exist constant competitive online algorithms for trees of
depth more than 2. Addressing this open problem, we give the first constant competitive online
algorithm for networks of arbitrary (fixed) number of levels. The competitive ratio is O(D42D),
where D is the depth of T . The algorithm works for arbitrary waiting cost functions, including
the variant with deadlines. We include several additional results in the paper. We show that
a standard lower-bound technique for MLAP, based on so-called Single-Phase instances, cannot
give super-constant lower bounds (as a function of the tree depth). This result is established by
giving an online algorithm with optimal competitive ratio 4 for such instances on arbitrary trees.
We also study the MLAP variant when the tree is a path, for which we give a lower bound of 4
on the competitive ratio, improving the lower bound known for general MLAP. We complement
this with a matching upper bound for the deadline setting.
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1 Introduction

Certain optimization problems can be formulated as aggregation problems. They typically
arise when expensive resources can be shared by multiple agents, who incur additional
expenses for accessing a resource. For example, costs may be associated with waiting until
the resource is accessible, or, if the resource is not in the desired state, a costly setup or
retooling may be required.

1-level aggregation

A simple example of an aggregation problem is the TCP Acknowledgment Problem (TCP-AP),
where control messages (“agents”) waiting for transmission across a network link can be
aggregated and transmitted in a single packet (“resource”). Such aggregation can reduce
network traffic, but it also results in undesirable delays. A reasonable compromise is to
balance the two costs, namely the number of transmitted packets and the total delay, by
minimizing their weighted sum [15]. Interestingly, TCP-AP is equivalent to the classical Lot
Sizing Problem studied in the operations research literature since the 1950s. (See, for example,
[30].) In the offline variant of TCP-AP, that is when all arrival times of control messages are
known beforehand, an optimal schedule for aggregated packets can be computed with dynamic
programming in time O(n logn) [1]. In practice, however, packet aggregation decisions must
be done on the fly, without any information about future message releases. This scenario is
captured by the online variant of TCP-AP that has also been well studied; it is known that
the optimal competitive ratio is 2 in the deterministic case [15] and e/(e− 1) ≈ 1.582 in the
randomized case [17, 11, 28].

2-level aggregation

Another optimization problem involving aggregation is the Joint Replenishment Problem
(JRP), well-studied in operations research. JRP models tradeoffs that arise in supply-chain
management. One such scenario involves optimizing shipments of goods from a supplier to
retailers, through a shared warehouse, in response to their demands. In JRP, aggregation
takes place at two levels: items addressed to different retailers can be shipped together to
the warehouse, at a fixed cost, and then multiple items destined to the same retailer can
be shipped from the warehouse to this retailer together, also at a fixed cost, which can be
different for different retailers. Pending demands accrue waiting cost until they are satisfied
by a shipment. The objective is to minimize the sum of all shipment costs and all waiting
costs.

JRP is known to be NP-hard [2], and even APX-hard [25, 5]. The currently best approxi-
mation, due to Bienkowski et al. [6], achieves a factor of 1.791, improving on earlier work by
Levi et al. [21, 23, 24]. In the deadline variant of JRP, denoted JRP-D, there is no cost for
waiting, but each demand needs to be satisfied before its deadline. As shown in [5], JRP-D
can be approximated with ratio 1.574.

For the online variant of JRP, Buchbinder et al. [10] gave a 3-competitive algorithm using
a primal-dual scheme (improving an earlier bound of 5 in [9]) and proved a lower bound of
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2.64, that was subsequently improved to 2.754 [6]. The optimal competitive ratio for JRP-D
is 2 [6].

Multiple-level aggregation

TCP-AP and JRP can be thought of as aggregation problems on edge-weighted trees of depth
1 and 2, respectively. In TCP-AP, this tree is just a single edge between the sender and the
recipient. In JRP, this tree consists of the root (supplier), with one child (warehouse), and
any number of grandchildren (retailers). A shipment can be represented by a subtree of this
tree and edge weights represent shipping costs. These trees capture the general problem
on trees of depth 1 and 2, as the children of the root can be considered separately (see
Section 2).

This naturally extends to trees of any depth D, where aggregation is allowed at each
level. Multi-level message aggregation has been, in fact, studied in communication networks
in several contexts. In multicasting, protocols for aggregating control messages (see [8, 3],
for example) can be used to reduce the so-called ack-implosion, the proliferation of control
messages routed to the source. A similar problem arises in energy-efficient data aggregation
and fusion in sensor networks [16, 31]. Outside of networking, tradeoffs between the cost of
communication and delay arise in message aggregation in organizational hierarchies [26]. In
supply-chain management, multi-level variants of lot sizing have been studied [14, 19]. The
need to consider more tree-like (in a broad sense) supply hierarchies has also been advocated
in [20].

These applications have inspired research on offline and online approximation algorithms
for multi-level aggregation problems. Becchetti et al. [4] gave a 2-approximation algorithm for
the deadline case. (See also [9].) Pedrosa [27] showed, adapting an algorithm of Levi et al. [22]
for the multi-stage assembly problem, that there is a (2 + ε)-approximation algorithm for
general waiting cost functions, where ε can be made arbitrarily small.

In the online case, Khanna et al. [18] gave a rent-or-buy solution (that serves a group
of requests once their waiting cost reaches the cost of their service) and showed that their
algorithm is O(logα)-competitive, where α is defined as the sum of all edge weights. However,
they assumed that each request has to wait at least one time unit. This assumption is crucial
for their proof, as demonstrated by Brito et al. [9], who showed that the competitive ratio
of a rent-or-buy strategy is Ω(D), even for paths with D edges. The same assumption of a
minimal cost for a request and a ratio dependent on the edge-weights is also essential for
Vaya [29], who studies a variant of the problem with bounded bandwidth (the number of
packets that can be served by a single edge in a single service).

The existence of a primal-dual (2 + ε)-approximation algorithm [27, 22] for the offline
problem suggests the possibility of constructing an online algorithm along the lines of [11].
Nevertheless, despite substantial effort of many researchers, the online multi-level setting
remains wide open. This is perhaps partly due to impossibility of direct emulation of the
cleanup phase in the primal-dual offline algorithms in the online setting, as this cleanup is
performed in the “reverse time” order.

The case when the tree is just a path has also been studied. An offline polynomial-time
algorithm that computes an optimal schedule was given in [7]. For the online variant, Brito
et al. [9] gave an 8-competitive algorithm. This result was improved by Bienkowski et al. [7]
who showed that the competitive ratio of this problem is between 2 + φ ≈ 3.618 and 5.
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Table 1 Previous and current bounds on the competitive ratios for MLAP for trees of various
depths. Ratios written in bold are shown in this paper. Unreferenced results are either immediate
consequences of other entries in the table or trivial observations. Asterisked ratios represent results
for MLAP with arbitrary waiting cost functions, which, though not explicitly stated in the respective
papers, are straightforward extensions of the corresponding results for MLAP-L.

MLAP and MLAP-L MLAP-D
upper lower upper lower

depth 1 2∗ [15] 2 [15] 1 1
rand. alg. for depth 1 1.582∗ [17] 1.582 [28] 1 1

depth 2 3 [10] 2.754 [6] 2 [6] 2 [6]
fixed depth D ≥ 2 O(D42D) 2.754 D22D 2

paths of arbitrary depth 5∗ [7] 3.618 [7], 4 4 4

1.1 Our Contributions

We study online competitive algorithms for multi-level aggregation. Minor technical differ-
ences notwithstanding, our model is equivalent to those studied in [9, 18], also extending the
deadline variant in [4] and the assembly problem in [22]. We have decided to choose a more
generic terminology to emphasize general applicability of our model and techniques.

Formally, our model consists of a tree T with positive weights assigned to edges, and
a set of requests R that arrive in the nodes of T over time. These requests are served by
subtrees rooted at the root of T . Such a subtree X serves all requests pending at the nodes
of X at cost equal to the total weight of X. Each request incurs a waiting cost, defined by
a non-negative and non-decreasing function of time, which may be different for each request.
The objective is to minimize the sum of the total service and waiting costs. We call this the
Multi-Level Aggregation Problem (MLAP).

In most earlier papers on aggregation problems, the waiting cost function is linear, that
is, it is assumed to be simply the delay between the times when a request arrives and when
it is served. We denote this version by MLAP-L. However, most of the algorithms for this
model extend naturally to arbitrary cost functions. Another variant is MLAP-D, where each
request is given a certain deadline, has to be served before or at its deadline, and there is no
penalty associated with waiting. This can be modeled by the waiting cost function that is 0
up to the deadline and +∞ afterwards.

In this paper, we mostly focus on the online version of MLAP, where an algorithm needs
to produce a schedule in response to requests that arrive over time. When a request appears,
its waiting cost function is also revealed. At each time t, the online algorithm needs to decide
whether to generate a service tree at this time, and if so, which nodes should be included in
this tree.

The main result of our paper is an O(D42D)-competitive algorithm for MLAP for trees
of depth D, presented in Section 4. A simpler D22D-competitive algorithm for MLAP-D is
presented in Section 3. No competitive algorithms have been known so far for online MLAP
for arbitrary depth trees, even for the special case of MLAP-D on trees of depth 3.

For both results we use a reduction of the general problem to the special case of trees with
fast decreasing weights. For such trees we then provide an explicit competitive algorithm.
While our algorithm is compact and elegant, it is not a straightforward extension of the
2-level algorithm. (In fact, we have been able to show that naïve extensions of the latter
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algorithm are not competitive.) It is based on carefully constructing a sufficiently large
service tree whenever it appears that an urgent request must be served. The specific structure
of the service tree is then heavily exploited in an amortization argument that constructs a
mapping from the algorithm’s cost to the cost of the optimal schedule. We believe that these
three new techniques: the reduction to trees with fast decreasing weights, the construction
of the service trees, and our charging scheme, will be useful in further studies of online
aggregation problems.

In Section 5 we study a version of MLAP, that we refer to as Single-Phase MLAP (or
1P-MLAP), in which all requests arrive at the beginning, but they also have a common
expiration time that we denote by θ. Any request not served by time θ pays waiting cost at
time θ and does not need to be served anymore. In spite of the expiration-date feature, it
can be shown that 1P-MLAP can be represented as a special case of MLAP. 1P-MLAP is a
crucial tool in all the lower bound proofs in the literature for competitive ratios of MLAP,
including those in [10, 7], as well as in our lower bounds in Section 6. It also has a natural
interpretation in the context of JRP (2-level MLAP), if we allow all orders to be canceled,
say, due to changed market circumstances. In the online variant of 1P-MLAP all requests are
known at the beginning, but the expiration time θ is unknown. For this version we give an
online algorithm with competitive ratio 4, matching the lower bound. Since 1P-MLAP can
be expressed as a special case of MLAP, our result implies that the techniques from [10, 7]
cannot be used to prove a lower bound on the competitive ratio for MLAP larger than 4,
and any study of the dependence of the competitive ratio on the depth D will require new
insights and techniques.

In Section 6 we consider MLAP on paths. For this case, we give a 4-competitive algorithm
for MLAP-D and we provide a matching lower bound. We show that the same lower bound
of 4 applies to MLAP-L as well, improving the previous lower bound of 3.618 from [7].

Due to the page limit, most of the proofs will be given in the full version of the paper.

2 Preliminaries

Let T be a tree with root r. For any set of nodes Z ⊆ T and a node x, Zx denotes the set
of all descendants of x in Z; in particular, Tx is the subtree of T rooted at x. The parent
of a node x is denoted parent(x). The depth of x, denoted depth(x), is the number of edges
on the simple path from r to x. In particular, r is at depth 0. The depth D of T is the
maximum depth of a node of T .

We will deal with weighted trees in this paper. For x 6= r, by `x or `(x) we denote the
weight of the edge connecting node x to its parent. We assume that all these weights are
positive. We extend this notation to r by setting `r = 0. If Z is any set of nodes of T , then
the weight of Z is `(Z) =

∑
x∈Z `x.

Definition of MLAP

A request ρ is specified by a triple ρ = (σρ, aρ, ωρ), where σρ is the node of T in which ρ is
issued, aρ is the arrival time of ρ, and ωρ is the waiting cost function of ρ. We assume that
ωρ(t) = 0 for t ≤ aρ and ωρ(t) is non-decreasing for t ≥ aρ. MLAP-L is the variant of MLAP
with linear waiting costs; that is, for each request ρ we have ωρ(t) = t− aρ, for t ≥ aρ. In
MLAP-D, the variant with deadlines, we have ωρ(t) = 0 for t ≤ dρ and ωρ(t) =∞ for t > dρ,
where dρ is called the deadline of request ρ.

In our algorithms for MLAP with general costs we will be assuming that all waiting cost
functions are continuous. This is only for technical convenience and we discuss more general
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waiting cost functions in the full version of the paper; we also show there that MLAP-D
can be considered a special case of MLAP, and that our algorithms can be extended to the
discrete-time model.

A service is a pair (X, t), where X is a subtree of T rooted at r and t is the time of this
service. We will occasionally refer to X as the service tree (or just service) at time t, or even
omit t altogether if it is understood from context.

An instance J = 〈T ,R〉 of the Multi-Level Aggregation Problem (MLAP) consists of a
weighted tree T with root r and a set R of requests arriving at the nodes of T . A schedule
is a set S of services. For a request ρ, let (X, t) be the service in S with minimal t such
that σρ ∈ X and t ≥ aρ. We then say that (X, t) serves ρ and the waiting cost of ρ in S is
defined as wcost(ρ,S) = ωρ(t). Furthermore, the request ρ is called pending at all times in
the interval [aρ, t]. Schedule S is called feasible if all requests in R are served by S.

The cost of a feasible schedule S, denoted cost(S), is defined by

cost(S) = scost(S) + wcost(S),

where scost(S) is the total service cost and wcost(S) is the total waiting cost, that is

scost(S) =
∑

(X,t)∈S

`(X) and wcost(S) =
∑
ρ∈R

wcost(ρ,S).

The objective of MLAP is to compute a feasible schedule S for J with minimum cost(S).

Online algorithms

We use the standard and natural definition of online algorithms and the competitive ratio.
We assume the continuous time model. The computation starts at time 0 and from then on
the time gradually progresses. At any time t new requests can arrive. If the current time is t,
the algorithm has complete information about the requests that arrived up until time t, but
has no information about any requests whose arrival times are after time t. The instance
includes a time horizon H that is not known to the online algorithm, which is revealed only
at time t = H. At time H, all requests that are still pending must be served. (In the offline
case, H can be assumed to be equal to the maximum request arrival time.)

IfA is an online algorithm and R ≥ 1, we say thatA is R-competitive if cost(S) ≤ R·opt(J )
for any instance J of MLAP, where S is the schedule computed by A on J and opt(J ) is
the optimum cost for J .

Quasi-root assumption

Throughout the paper we will assume that r, the root of T , has only one child. This is
without loss of generality, because if we have an algorithm (online or offline) for MLAP on
such trees, we can apply it independently to each child of r and its subtree. This will give us
an algorithm for MLAP on arbitrary trees with the same performance. From now on, let us
call the single child the quasi-root of T and denote it by q. Note that q is included in every
(non-trivial) service.

Reduction to L-Decreasing Trees

One basic intuition that emerges from earlier works on trees of depth 2 (see [10, 9, 6]) is
that the hardest case of the problem is when `q, the weight of the quasi-root, is much larger
than the weights of leaves. For arbitrary depth trees, the hard case is when the weights of
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nodes quickly decrease with their depth. We show that this is indeed the case, by defining
the notion of L-decreasing trees that captures this intuition and showing that MLAP reduces
to the special case of MLAP for such L-decreasing trees, increasing the competitive ratio by
a factor of at most DL. This is a general result, not limited only to algorithms in our paper.

Formally, for L ≥ 1, we say that T is L-decreasing if for each node u 6= r and each child
v of u we have `u ≥ L · `v. (The value of L used in our algorithms will be fixed later.)

I Theorem 2.1. Assume that there exists an R-competitive algorithm A for MLAP (resp.
MLAP-D) on L-decreasing trees (where R can be a function of D, the tree depth). Then there
exists a (DLR)-competitive algorithm B for MLAP (resp. MLAP-D) on arbitrary trees.

Proof. Fix the underlying instance J = (T ,R), where T is a tree and R is a sequence of
requests in T .

We start by constructing an L-decreasing tree T ′ on the same set of nodes. For any node
u ∈ T − {r}, the parent of u in T ′ will be the lowest (closest to u) ancestor w of u in T such
that `w ≥ L · `u; if no such w exists, we take w = r. Note that T ′ may violate the quasi-root
assumption, which does not change the validity of the reduction, as we may use independent
instances of the algorithm for each child of r in T ′. Since in T ′ each node u is connected to
one of its ancestors from T , it follows that T ′ is a tree rooted at r with depth at most D.
Obviously, T ′ is L-decreasing.

It follows that if a set of vertices X is a service subtree of T , then it is also a service
subtree for T ′. (Note that the actual topology of the trees induced by X in T and T ′ may
be very different.) Thus, also any schedule for J is also a schedule for J ′ = (T ′,R), which
gives us that opt(J ′) ≤ opt(J ).

The algorithm B for T is defined as follows: On a request sequence R, we simulate A
for R in T ′, and whenever A contains a service X, B issues the service X ′ ⊇ X, created
from X as follows: Start with X ′ = X. Then, for each u ∈ X − {r}, if w is the parent of u
in T ′, then add to X ′ all inner nodes on the path from u to w in T . By the construction
of T ′, for each u we add at most D − 1 nodes, each of cost less than L · `u. It follows that
`(X ′) ≤ ((D − 1)L+ 1)`(X) ≤ DL · `(X).

In total, the service cost of B is at most DL times the service cost of A. Any request
served by A is served by B at the same time or earlier, thus the waiting cost of B is at most
the waiting cost of A (resp. for MLAP-D, B produces a valid schedule for J ). Since A is
R-competitive, we obtain

cost(B,J ) ≤ DL · cost(A,J ′) ≤ DLR · opt(J ′) ≤ DLR · opt(J ),

and thus B is DLR-competitive. J

3 A Competitive Algorithm for MLAP-D

In this section we present our online algorithm for MLAP-D with competitive ratio at
most D22D. To this end, we will give an online algorithm that achieves competitive ratio
RL = (2 + 1/L)D−1 for L-decreasing trees. Taking L = D/2 and using the reduction
to L-decreasing trees from Theorem 2.1 then leads to a D22D-competitive algorithm for
arbitrary trees.

3.1 Intuitions
Consider the optimal 2-competitive algorithm for MLAP-D for trees of depth 2 [6]. Assume
that the tree is L-decreasing, for some large L. (Thus `q � `v, for each leaf v.) Whenever a
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pending request reaches its deadline, this algorithm serves a subtree X consisting of r, q and
the set of leaves with the earliest deadlines and total weight of about `q. This is a natural
strategy: We have to pay at least `q to serve the expiring request, so including an additional
set of leaves of total weight `q can at most double our overall cost. But, assuming that no new
requests arrive, serving this X can significantly reduce the cost in the future, since servicing
these leaves individually is expensive: it would cost `v + `q per each leaf v, compared to the
incremental cost of `v to include v in X.

For L-decreasing trees with three levels (that is, for D = 3), we may try to iterate this
idea. When constructing a service tree X, we start by adding to X the set of most urgent
children of q whose total weight is roughly `q. Now, when choosing nodes of depth 3, we
have two possibilities: (1) for each v ∈ X − {r, q} we can add to X its most urgent children
of combined weight `v (note that their total weight will add up to roughly `q, because of the
L-decreasing property), or (2) from the set of all children of the nodes in X − {r, q}, add to
X the set of total weight roughly `q consisting of (globally) most urgent children.

It is not hard to show that the option (1) does not lead to a constant-competitive
algorithm: The counter-example involves an instance with one node w of depth 2 having
many children with requests with early deadlines and all other leaves having requests with
very distant deadlines. Assume that `q = L2, `w = L, and that each leaf has weight 1. The
example forces the algorithm to serve the children of w in small batches of size L with cost
more than L2 per batch or L per each child of w, while the optimum can serve all the requests
in the children of w at once with cost O(1) per request, giving a lower bound Ω(L) on the
competitive ratio. (The requests at other vertices can be ignored in the optimal solution, as
we can keep repeating the above strategy, similar to the lower-bound technique for 1P-MLAP
that will be described in the full version of the paper. Reissuing requests at the vertices
other than w will not increase the cost of the optimum.) A more intricate example shows
that option (2) by itself is not sufficient to guarantee constant competitiveness either.

The idea behind our algorithm, for trees of depth D = 3, is to do both (1) and (2) to
obtain X. This increases the cost of each service by a constant factor, but it protects the
algorithm against both bad instances. The extension of our algorithm to depths D > 3
carefully iterates the process of constructing the service tree X, to ensure that for each node
v ∈ X and for each level i below v we add to X sufficiently many urgent descendants of v at
that level.

3.2 Notations
To give a formal description, we need some more notations. For any set of nodes Z ⊆ T , let
Zi denote the set of nodes in Z of depth i in tree T (recall that r has depth 0, q has depth
1, and leaves have depth at most D). Let also Z<i =

⋃i−1
j=0 Z

j and Z≤i = Z<i ∪ Zi. These
notations can be combined with the notation Zx, so, e.g., Z<ix is the set of all descendants of
x in Z whose depth in T is smaller than i.

Let f : T → R ∪ {+∞} be some function that measures urgency of nodes, so that the
nodes with smaller values of f are more urgent. (For MLAP-D, urgency is measured by
the deadlines, in which case the function f is set to dt, while for MLAP we need to use a
different measure.) For any set A of nodes in T and a real number β, let Urgent(A, β, f) be
a set of nodes obtained by choosing the nodes from A in order of urgency, until either their
total weight exceeds β or we run out of nodes. More precisely, we define Urgent(A, β, f) as a
smallest set of nodes in A such that (i) for all u ∈ Urgent(A, β, f), and v ∈ A−Urgent(A, β, f)
we have f(u) ≤ f(v), and (ii) either `(Urgent(A, β, f)) ≥ β or Urgent(A, β, f) = A.

We assume that all the deadlines in the given instance are distinct. This may be done



M.Bienkowski et al. 12:9

without loss of generality, as in case of ties we can modify the deadlines by infinitesimally
small perturbations and obtain an algorithm for the general case.

At any given time t during the computation of the algorithm, for each node v, let dt(v)
denote the earliest deadline among all requests in Tv (i.e., among all descendants of v) that
are pending for the algorithm; if there is no pending request in Tv, we set dt(v) = +∞. We
will use the function dt as the urgency of vertices at time t, i.e., a node u will be considered
more urgent than a node v if dt(u) < dt(v).

3.3 Algorithm OnlTreeD
At any time t when some request expires, that is when t = dt(r), the algorithm serves
a subtree X constructed by first initializing X = {r, q}, and then incrementally augmenting
X according to the following pseudo-code:

for each depth i = 2, . . . , D
Zi ← set of all children of nodes in Xi−1

for each v ∈ X<i

U(v, i, t)← Urgent(Ziv, `v, dt)
X ← X ∪ U(v, i, t)

In other words, at depth i, we restrict our attention to Zi, the children of all the nodes in
Xi−1, i.e., of the nodes that we have previously selected to X at level i− 1. (We start with
i = 2 and X1 = {q}.) Then we iterate over all v ∈ X<i and we add to X the set U(v, i, t) of
vertices from T iv (descendants of v at depth i) whose parents are in X, one by one, in the
order of increasing deadlines, stopping when either their total weight exceeds `v or when we
run out of such vertices. Note that these sets do not need to be disjoint.

The constructed set X is a service tree, as we are adding to it only nodes that are children
of the nodes already in X.

Let ρ be the request triggering the service at time t, i.e., satisfying dρ = t. (By the
assumption about different deadlines, ρ is unique.) Naturally, all the nodes u on the path
from r to σρ have dt(u) = t and qualify as the most urgent, thus the node σρ is included in
X. Therefore every request is served before its deadline.

Intuitively, it should be clear that the described algorithm cannot have a better competitive
ratio than `(X)/`q: If all requests are in q, the optimum will serve only q, while our algorithm
uses a set X with many nodes that turn out to be useless. As we will show, via an iterative
charging argument, the ratio `(X)/`q is actually achieved by the algorithm.

Recall that RL = (2 + 1/L)D−1. We now prove a bound on the cost of the service tree.

I Lemma 3.1. Let X be the service tree produced by Algorithm OnlTreeD at time t. Then
`(X) ≤ RL · `q.

Proof. We prove by induction that `(X≤i) ≤ (2 + 1/L)i−1`q for all i ≤ D.
The base case of i = 1 is trivial, as X≤1 = {r, q} and `r = 0. For i ≥ 2, Xi is

a union of the sets U(v, i, t) over all nodes v ∈ X<i. Since T is L-decreasing, each node
in the set U(v, i, t) has weight at most `v/L. Thus the total weight of U(v, i, t) is at most
`(U(v, i, t)) ≤ `v + `v/L = (1 + 1/L)`v. Therefore, by the inductive assumption, we get that

`(X≤i) ≤ (1 + (1 + 1/L)) · `(X<i)
≤ (2 + 1/L) · (2 + 1/L)i−2`q = (2 + 1/L)i−1`q ,

proving the induction step and completing the proof that `(X) ≤ RL · `q. J
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3.4 Analysis
The competitive analysis uses a charging scheme. Fix some optimal schedule S∗. Consider a
service (X, t) of Algorithm OnlTreeD. We will identify in X a subset of “critically overdue”
nodes (to be defined shortly) of total weight at least `q ≥ `(X)/RL, and we will show that for
each such critically overdue node v we can charge the portion `v of the service cost of X to
an earlier service in S∗ that contains v. Further, any node in service of S∗ will be charged at
most once. This implies that the total cost of our algorithm is at most RL times the optimal
cost, giving us an upper bound of RL on the competitive ratio for L-decreasing trees.

In the proof, by opttv we denote the time of the first service in S∗ that includes v and is
strictly after time t; we also let opttv = +∞ if no such service exists. For a service (X, t) of
the algorithm, we say that a node v ∈ X is overdue at time t if dt(v) < opttv. Servicing of
such v is delayed in comparison to S∗, because S∗ must have served v before (or at) time t.
Note also that r and q are overdue at time t, as dt(r) = dt(q) = t by the choice of the service
time. We define v ∈ X to be critically overdue at time t if (i) v is overdue at t, and (ii) there
is no other service of the algorithm in the time interval (t, opttv) in which v is overdue.

We are now ready to define the charging for a service (X, t). For each v ∈ X that is
critically overdue, we charge its weight `v to the last service of v in S∗ before or at time t.
This charging is well-defined as, for each overdue v, there must exist a previous service of
v in S∗. The charging is obviously one-to-one because between any two services in S∗ that
involve v there may be at most one service of the algorithm in which v is critically overdue.
The following lemma shows that the total charge from X is large enough.

I Lemma 3.2. Let (X, t) be a service of Algorithm OnlTreeD and suppose that v ∈ X is
overdue at time t. Then the total weight of critically overdue nodes in Xv at time t is at
least `v.

Proof. The proof is by induction on the depth of Tv, the subtree rooted at v.
The base case is when Tv has depth 0, that is when v is a leaf. We show that in this case v

must be critically overdue, which implies the conclusion of the lemma. Towards contradiction,
suppose that there is some other service at time t′ ∈ (t, opttv) in which v is overdue. Since v
is a leaf, after the service at time t there are no pending requests in Tv = {v}. This would
imply that there is a request ρ with σρ = v such that t < aρ ≤ dρ < opttv. But this is
not possible, because S∗ does not serve v in the time interval (t, opttv). Thus v is critically
overdue and the base case holds.

Assume now that v is not a leaf, and that the lemma holds for all descendants of v. If v
is critically overdue, the conclusion of the lemma holds.

Thus we can now assume that v is not critically overdue. This means that there is
a service (Y, t′) of Algorithm OnlTreeD with t < t′ < opttv which contains v and such that
v is overdue at t′. Thus opttv = optt′v .

Let ρ be the request with dρ = dt
′(v), i.e., the most urgent request in Tv at time t′.

We claim that aρ ≤ t, i.e., ρ arrived no later than at time t. Indeed, since v is overdue at
time t′, it follows that dρ < optt′v = opttv. The optimal schedule S∗ cannot serve ρ after time
t, as S∗ has no service from v in the interval (t, dρ] . Thus S∗ must have served ρ before or
at t, and hence aρ ≤ t, as claimed.

Now consider the path from σρ to v in Y . (See Figure 1.) As ρ is pending for the
algorithm at time t and ρ is not served by (X, t), it follows that σρ 6∈ X. Let w be the last
node on this path in Y − X. Then w is well-defined and w 6= v, as v ∈ X. Let i be the
depth of w. Note that the parent of w is in X<i

v , so w ∈ Zi in the algorithm when X is
constructed.
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Figure 1 Illustration of the proof of Lemma 3.2.

The node σρ is in Tw and ρ is pending at t, thus we have dt(w) ≤ dρ. Since w ∈ Zi but
w was not added to X at time t, we have that `(U(v, i, t)) ≥ `v and each x ∈ U(v, i, t) is at
least as urgent as w. This implies that such x satisfies

dt(x) ≤ dt(w) ≤ dρ < optt
′

v = opttv ≤ opttx,

thus x is overdue at time t. By the inductive assumption, the total weight of critically
overdue nodes in each subtree Xx is at least `x. Adding these weights over all x ∈ U(v, i, t),
we obtain that the total weight of critically overdue nodes in Xv is least `(U(v, i, t)) ≥ `v,
completing the proof. J

Now consider a service (X, t) of the algorithm. The quasi-root q is overdue at time t, so
Lemmas 3.2 and 3.1 imply that the charge from (X, t) is at least `q ≥ `(X)/RL. Since each
node in any service in S∗ is charged at most once, we conclude that Algorithm OnlTreeD
is RL-competitive for any L-decreasing T .

From the previous paragraph, using Theorem 2.1, we now obtain that there exists a
DLRL = DL(2 + 1/L)D−1-competitive algorithm for general trees. For D ≥ 2, choosing
L = D/2 yields a competitive ratio bounded by 1

2D
22D−1 · (1 + 1/D)D ≤ 1

4D
22D · e ≤ D22D.

(For D = 1 there is a trivial 1-competitive algorithm for MLAP-D.) Summarizing, we obtain
the following result.

I Theorem 3.3. There exists a D22D-competitive online algorithm for MLAP-D.

4 A Competitive Algorithm for MLAP

In this section we give an online algorithm for MLAP that achieves a constant competitive
ratio for trees of bounded depth. Specifically, for trees of depth D the competitive ratio of
this algorithm is at most O(D42D). As before, Theorem 2.1 allows us to assume that the
tree in the instance is L-decreasing.

4.1 Preliminaries and notations
We use some of the notation introduced in Section 3 and introduce some more.

Recall that ωρ(t) is the waiting cost function of a request ρ which is assumed to be
continuous. We will overload this notation, so that we can talk about the waiting cost

ESA 2016



12:12 Online Algorithms for Multi-Level Aggregation

function for a set of requests or a set of vertices. Specifically, for a set P of requests and a
set Z of nodes, let

ωP (Z, t) =
∑

ρ∈P :σρ∈Z
ωρ(t).

Thus ωP (Z, t) is the total waiting cost of the requests from P that are issued in Z.

Maturity time

In the algorithm for MLAP-D, the times of services and the urgency of nodes are both
naturally determined by the deadlines. For MLAP with continuous waiting costs there are no
hard deadlines; however, we can still introduce a useful notion of maturity time of a node,
which is, roughly speaking, the time when some subtree rooted at this node has its waiting
cost equal to its service cost; this subtree is then called mature. This turns out to be natural
both for the quasi-root as the time to service it and for the other vertices as a measure of
their urgency in the algorithm. We proceed to define these notions.

Consider some time t and any set P ⊆ R of requests. A subtree Z of T (not necessarily
rooted at r) is called P -mature at time t if ωP (Z, t) ≥ `(Z). Also, let µP (Z) denote the
minimal time τ such that ωP (Z, τ) = `(Z); we let µP (Z) =∞ if such τ does not exist. In
other words, µP (Z) is the earliest τ at which Z is P -mature. Since ωP (Z, 0) = 0 and ωP (Z, t)
is non-decreasing and continuous function of t, µP (Z) is well-defined.

For a node v, let the P -maturity time of v, denoted MP (v), be the minimum of values
µP (Z) over all subtrees Z of T rooted at v. The tree Z that achieves this minimum will be
denoted CP (v) and called the P -critical tree rooted at v; if there are more such trees, choose
one arbitrarily.

The following simple lemma guarantees that the maturity time of any node in the
P -critical tree CP (v) is at most the maturity time of v.

I Lemma 4.1. Let u ∈ CP (v) and let Y = (CP (v))u be the subtree of the CP (v) rooted at u.
Then MP (u) ≤ µP (Y ) ≤MP (v).

Proof. The first inequality is trivial. To show the second inequality, we proceed by con-
tradiction. If the second inequality does not hold, then u 6= v and ωP (Y,MP (v)) < `(Y ).
Take Y ′ = CP (v) \ Y , which is a tree rooted at v. Since ωP (CP (v),MP (v)) = `(CP (v)), we
have that ωP (Y ′,MP (v)) = ωP (CP (v),MP (v))− ωP (Y,MP (v)) > `(CP (v))− `(Y ) = `(Y ′).
This in turn implies that µP (Y ′) < MP (v), which is a contradiction with the definition of
MP (v). J

Most of the references to maturity of a node or to its critical set will be made with
respect to the set of requests pending for our algorithm at a given time. (In particular, if the
algorithm schedules a service at some time t, the maturity times are computed with respect
to the requests that are pending at time t before the service is executed.) Thus, for any
time t, we will use notation M t(v) and Ct(v) to denote the time MP (v) and the P -critical
tree CP (v), where P is the set of requests pending for the algorithm at time t. Note that in
general it is possible that M t(v) < t. However, our algorithm will maintain the invariant
that for the quasi-root q we will have M t(q) ≥ t at each time t.

4.2 Algorithm
We now describe our algorithm. A service will occur at any maturity time of the quasi-root
q, that is at a time t for which t = M t(q). At such a time, the algorithm chooses a service
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that contains the critical tree C of q and an extra set E, whose service cost is not much more
expensive than that of C. The extra set is constructed similarly as in OnlTreeD, where
the urgency of nodes is now measured by their maturity time. As before, this extra set will
be a union of a system of sets U(v, i, t) for i = 2, . . . , D, and v ∈ C<i ∪E<i, except that now
the sets U(v, i, t) will be mutually disjoint and also disjoint from C.

Algorithm OnlTree

At any time t such that t = M t(q), serve the set X = C ∪ E constructed according to the
following pseudo-code:

C ← Ct(q) ∪ {r}
E ← ∅
for each depth i = 2, . . . , D

Zi ← set of all nodes in T i \ C whose parent is in C ∪ E
for each v ∈ (C ∪ E)<i

U(v, i, t)← Urgent(Ziv, `v,M t)
E ← E ∪ U(v, i, t)
Zi ← Zi \ U(v, i, t)

At the end of the instance (when t = H, the time horizon) issue the last service that contains
all vertices v with a pending request in Tv.

The analysis of the algorithm will be given in the full version of the paper. We obtain:

I Theorem 4.2. There exists an O(D42D)-competitive algorithm for MLAP on trees of
depth D.

5 Single-Phase MLAP

We now consider a restricted variant of MLAP that we refer to as Single-Phase MLAP, or
1P-MLAP. In 1P-MLAP all requests arrive at the beginning, at time 0. The instance also
includes a parameter θ representing the common expiration time for all requests. We do not
require that all requests are served. Any unserved request pays only the cost of waiting until
the expiration time θ.

In the online variant of 1P-MLAP, all requests, including their waiting cost functions, are
known to the online algorithm at time 0. The only unknown is the expiration time θ.

Although not explicitly named, variants of 1P-MLAP have been considered in [10, 7],
where they were used to show lower bounds on competitive ratios for MLAP. These proofs
consist of two steps, first showing a lower bound for online 1P-MLAP and then arguing that, in
the online scenario, 1P-MLAP can be expressed as a special case of MLAP. (A corresponding
property holds in the offline case as well, but is quite trivial.)

Since most lower bounds on competitive ratio of online algorithms for variants of MLAP
use Single-Phase instances, a natural approach is to try such a construction in an attempt to
construct super-constant lower bounds for MLAP. We show that this approach cannot be
successful in the context of MLAP.

I Theorem 5.1. There exists a 4-competitive algorithm for the Single-Phase MLAP.

A detailed description of the algorithm will be given in the full version of the paper.
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6 MLAP on Paths

We now consider the case when the tree is just a path. For simplicity we will assume
a generalization to the continuous case, that we refer to as the MLAP problem on the line,
when the path is represented by the half-line [0,∞); that is the requests can occur at any
point x ∈ [0,∞). Then the point 0 corresponds to the root, each vertex is a point x ∈ [0,∞),
and each service is an interval of the form [0, x]. We say that an algorithm delivers from x if
it serves the interval [0, x].

We provide several results for the MLAP problem on the line. We first prove that the
competitive ratio of MLAP-D (the variant with deadlines) on the line is exactly 4, by providing
matching upper and lower bounds. Then later we will show that the lower bound of 4 can
be modified to work for MLAP-L (that is, for linear waiting costs).

Algorithm OnlLine

The algorithm creates a service only when a deadline of a pending request is reached. If
a deadline of a request at x is reached, then OnlLine delivers from 2x.

I Theorem 6.1. Algorithm OnlLine is 4-competitive for MLAP-D on the line.

Proof. The proof uses a charging strategy. We represent each adversary service, say when
the adversary delivers from a point y, by an interval [0, y]. The cost of each service of
OnlLine is then charged to a segment of one of those adversary service intervals.

Consider a service triggered by a deadline t of a request ρ at some point x; that is,
OnlLine delivered from 2x. The adversary must have served ρ between its arrival time
and its deadline t. Fix the last such service of the adversary, where at a time t′ ≤ t the
adversary delivered from a point x′ ≥ x. We charge the cost 2x of the algorithm’s service to
the segment [x/2, x] of the adversary’s service interval [0, x′] at time t′.

We now claim that no part of the adversary’s service is charged twice. To justify this
claim, suppose that there are two services of OnlLine, at times t1 < t2, triggered by requests
from points x1 and x2, respectively, that both charge to an adversary’s service from x′ at
time t′ ≤ t1. By the definition of charging, the request at x2 was already present at time
t′. As x2 was not served by OnlLine’s service at t1, it means that x2 > 2x1, and thus the
charged segments [x1/2, x1] and [x2/2, x2] of the adversary service interval at time t′ are
disjoint.

Summarizing, for any adversary service interval [0, y], its charged segments are disjoint.
Any charged segment receives the charge equal to 4 times its length. Thus this interval
receives the total charge at most 4y. This implies that the competitive ratio is at most 4. J

Lower bounds

We now show lower bounds of 4 for MLAP-D and MLAP-L on the line. In both proofs we
show the bound for the corresponding variant of 1P-MLAP, using a reduction from the online
bidding problem [13, 12]. Roughly speaking, in online bidding, for a given universe U of real
numbers, the adversary chooses a secret value u ∈ U and the goal of the algorithm is to find
an upper-bound on u. To this end, the algorithm outputs an increasing sequence of numbers
x1, x2, x3, . . .. The game is stopped after the first xk that is at least u and the bidding ratio
is then defined as

∑k
i=1 xi/u.

Chrobak et al. [12] proved that the optimal bidding ratio is exactly 4, even if it is restricted
to sets U of the form {1, 2, . . . , B}, for some integer B. More precisely, they proved the
following result.
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I Lemma 6.2. For any R < 4, there exists B, such that any sequence of integers 0 = x0 <

x1 < x2 < . . . < xm−1 < xm = B has an index k ≥ 1 with
∑k
i=0 xi > R · (xk−1 + 1).

I Theorem 6.3. There is no online algorithm for MLAP-D on the line with competitive ratio
smaller than 4.

Proof. We show that no online algorithm for 1P-MLAP-D (the deadline variant of 1P-MLAP)
on the line can attain competitive ratio smaller than 4. Assume the contrary, i.e., that there
exists a deterministic algorithm Alg that is R-competitive, where R < 4. Let B be the
integer whose existence is guaranteed by Lemma 6.2. We create an instance of 1P-MLAP-D,
where for every x ∈ {1, . . . , B} there is a request at x with deadline x.

Without loss of generality, Alg issues services only at integer times 1, 2, ..., B. The strategy
of Alg can be now defined as a sequence of services at times t1 < t2 < . . . < tm, where at
time ti it delivers from xi ∈ {ti, ti + 1, ..., B}. Without loss of generality, x1 < x2 < . . . < xm.
We may assume that xm = B (otherwise the algorithm is not competitive at all); we also
add a dummy service from x0 = 0 at time t0 = 0.

The adversary now chooses k ≥ 1 and stops the game at the expiration time that is right
after the algorithm’s kth service, say θ = tk + 1

2 . Alg’s cost is then
∑k
i=0 xi. The request at

xk−1 + 1 is not served at time tk−1, so, to meet the deadline of this request, the schedule
of Alg must satisfy tk ≤ xk−1 + 1. This implies that θ < xk−1 + 2, that is, all requests at
points xk−1 + 2, xk−1 + 3, ..., B expire before their deadlines and do not need to be served.
Therefore, to serve this instance, the optimal solution may simply deliver from xk−1 + 1 at
time 0. Hence, the competitive ratio of Alg is at least

∑k
i=0 xi/(xk−1 + 1). By Lemma 6.2,

it is possible to choose k such that this ratio is strictly greater than R, a contradiction with
R-competitiveness of Alg. J

Next, we show that the same lower bound applies to MLAP-L, the version of MLAP where
the waiting cost function is linear. This improves the lower bound of 3.618 from [7].

I Theorem 6.4. There is no online algorithm for MLAP-L on the line with competitive ratio
smaller than 4.

Proof. Similarly to the proof of Theorem 6.3, we create an instance of 1P-MLAP-L (the
variant of 1P-MLAP with linear waiting cost functions) that does not allow a better than
4-competitive online algorithm. Fix any online algorithm Alg for 1P-MLAP-L and, towards a
contradiction, suppose that it is R-competitive, for some R < 4. Again, let B be the integer
whose existence is guaranteed by Lemma 6.2. In our instance of 1P-MLAP-L, there are 6B−x
requests at x for any x ∈ {1, 2, . . . , B}.

Without loss of generality, we make the same assumptions as in the proof of Theorem 6.3:
algorithm Alg is defined by a sequence of services at times 0 = t0 < t1 < t2 < . . . < tm,
where at each time ti it delivers from some point xi. Without loss of generality, we can
assume that 0 = x0 < x1 < . . . < xm = B.

Again, the strategy of the adversary is to stop the game at some expiration time θ that
is right after some time tk, say θ = tk + ε, for some small ε > 0. The algorithm pays

∑k
i=0 xi

for serving the requests. The requests at xk−1 + 1 waited for time tk in Alg’s schedule and
hence Alg’s waiting cost is at least 6B−xk−1−1 · tk.

The adversary delivers from point xk−1 + 1 at time 0. The remaining, unserved requests
at points xk−1 +2, xk−1 +3, . . . , B pay time θ each for waiting. There are

∑B
j=xk−1+2 6B−j ≤

1
5 · 6

B−xk−1−1 such requests and hence the adversary’s waiting cost is at most 1
5 · 6

B−xk−1−1 ·
(tk + ε).
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Therefore, the algorithm-to-adversary ratio on the waiting costs is at least 5tk/(tk + ε).
For any k we can choose a sufficiently small ε so that this ratio is larger than 4. By Lemma 6.2,
it is possible to choose k for which the ratio on servicing cost is strictly greater than R. This
yields a contradiction to the R-competitiveness of Alg. J

We point out that the analysis in the proof above gives some insight into the behavior
of any 4-competitive algorithm for 1P-MLAP-L (we know such an algorithm exists, by the
results in Section 5), namely that, for the type of instances used in the above proof, its
waiting cost must be negligible compared to the service cost.
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