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Abstract
We present KADABRA, a new algorithm to approximate betweenness centrality in directed and
undirected graphs, which significantly outperforms all previous approaches on real-world complex
networks. The efficiency of the new algorithm relies on two new theoretical contributions, of
independent interest.

The first contribution focuses on sampling shortest paths, a subroutine used by most al-
gorithms that approximate betweenness centrality. We show that, on realistic random graph
models, we can perform this task in time |E| 12 +o(1) with high probability, obtaining a significant
speedup with respect to the Θ(|E|) worst-case performance. We experimentally show that this
new technique achieves similar speedups on real-world complex networks, as well.

The second contribution is a new rigorous application of the adaptive sampling technique.
This approach decreases the total number of shortest paths that need to be sampled to compute
all betweenness centralities with a given absolute error, and it also handles more general problems,
such as computing the k most central nodes. Furthermore, our analysis is general, and it might
be extended to other settings, as well.
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1 Introduction

In this work we focus on estimating the betweenness centrality, which is one of the most
famous measures of centrality for nodes and edges of real-world complex networks [19, 30].
The rigorous definition of betweenness centrality has its roots in sociology, dating back to the
Seventies, when Freeman formalized the informal concept discussed in the previous decades
in different scientific communities [6, 40, 39, 17, 13], although the definition already appeared
in [4]. Since then, this notion has been very successful in network science [44, 31, 22, 30].

A probabilistic way to define the betweenness centrality1 bc(v) of a node v in a graph
G = (V,E) is the following. We choose two nodes s and t, and we go from s to t through a
shortest path π; if the choices of s, t and π are made uniformly at random, the betweenness
centrality of a node v is the probability that we pass through v.

∗ This work was done while the authors were visiting the Simons Institute for the Theory of Computing.
1 As explained in Section 2, to simplify notation we consider the normalized betweenness centrality.
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In a seminal paper [14], Brandes showed that it is possible to exactly compute the
betweenness centrality of all the nodes in a graph in time O(mn), where n is the number of
nodes and m is the number of edges. A corresponding lower bound was proved in [10]: if we
are able to compute the betweenness centrality of a single node in time O(mn1−ε) for some
ε > 0, then the Strong Exponential Time Hypothesis [23] is false.

This result further motivates the rich line of research on computing approximations of
betweenness centrality, with the goal of trading precision with efficiency. The main idea
is to define a probability distribution over the set of all paths, by choosing two uniformly
random nodes s, t, and then a uniformly distributed st-path π, so that Pr(v ∈ π) = bc(v).
As a consequence, we can approximate bc(v) by sampling paths π1, . . . ,πτ according to this
distribution, and estimating b̃(v) := 1

τ

∑τ
i=1Xi(v), where Xi(v) = 1 if v ∈ πi (and v 6= s, t),

0 otherwise.
The tricky part of this approach is to provide probabilistic guarantees on the quality of this

approximation: the goal is to obtain a 1− δ confidence interval I(v) = [b̃(v)− λL, b̃(v) + λU ]
for bc(v), which means that Pr(∀v ∈ V,bc(v) ∈ I(v)) ≥ 1 − δ. Thus, the research for
approximating betweenness centrality has been focusing on obtaining, as fast as possible, the
smallest possible I.

Our Contribution

In this work, we propose a new and faster algorithm to approximate betweenness centrality in
directed and undirected graphs, named KADABRA. In the standard task of approximating
betweenness centralities with absolute error at most λ, we show that, on average, the new
algorithm is more than 100 times faster than the previous ones, on graphs with approximately
10 000 nodes. Moreover, differently from previous approaches, our algorithm can perform
more general tasks, since it does not need all confidence intervals to be equal. As an example,
we consider the computation of the k most central nodes: all previous approaches compute
all centralities with an error λ, and use this approximation to obtain the ranking. Conversely,
our approach allows us to use small confidence interval only when they are needed, and allows
bigger confidence intervals for nodes whose centrality values are “well separated”. This way,
we can compute for the first time an approximation of the k most central nodes in networks
with millions of nodes and hundreds of millions of edges, like the Wikipedia citation network
and the IMDB actor collaboration network.

Our results rely on two main theoretical contributions, which are interesting in their own
right, since their generality naturally extends to other applications.

Balanced bidirectional breadth-first search. By leveraging on recent advanced results,
we prove that, on many realistic random models of real-world complex networks, it is
possible to sample a random path between two nodes s and t in time m 1

2 +o(1) if the degree
distribution has finite second moment, or m

4−β
2 +o(1) if the degree distribution is power law

with exponent 2 < β < 3. The models considered are the Configuration Model [9], and all
Rank-1 Inhomogeneous Random Graph models [42, Chapter 3], such as the Chung-Lu model
[29], the Norros-Reittu model [32], and the Generalized Random Graph [42, Chapter 3]. Our
proof techniques have the merit of adopting a unified approach that simultaneously works in
all models considered. These models well represent metric properties of real-world networks
[11]: indeed, our results are confirmed by practical experiments.

The algorithm used is simply a balanced bidirectional BFS (bb-BFS): we perform a
BFS from each of the two endpoints s and t, in such a way that the two BFSs are likely
to explore about the same number of edges, and we stop as soon as the two BFSs “touch
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each other”. Rather surprisingly, this technique was never implemented to approximate
betweenness centrality, and it is rarely used in the experimental algorithm community. Our
theoretical analysis provides a clear explanation of the reason why this technique improves
over the standard BFS: this means that many state-of-the-art algorithm for real-world
complex networks can be improved by the bb-BFS.

Adaptive sampling made rigorous. To speed up the estimation of the betweenness centrality,
previous work make use of the technique of adaptive sampling, which consists in testing
during the execution of the algorithm whether some condition on the sample obtained so
far has been met, and terminating the execution of the algorithm as soon as this happens.
However, this technique introduces a subtle stochastic dependence between the time in which
the algorithm terminates and the correctness of the given output, which previous papers
claiming a formal analysis of the technique did not realize (see Section 3 for details). With an
argument based on martingale theory, we provide a general analysis of such useful technique.
Through this result, we do not only improve previous estimators, but we also make it possible
to define more general stopping conditions, that can be decided “on the fly”: this way, with
little modifications, we can adapt our algorithm to perform more general tasks than previous
ones.

To better illustrate the power of our techniques, we focus on the unweighted, static graphs,
and to the centrality of nodes. However, our algorithm can be easily adapted to compute
the centrality of edges, to handle weighted graphs and, since its core part consists merely in
sampling paths, we conjecture that it may be coupled with the existing techniques in [8] to
handle dynamic graphs.

Related Work

Computing Betweenness Centrality. With the recent event of big data, the major short-
coming of betweenness centrality has been the lack of efficient methods to compute it [14]. In
the worst case, the best exact algorithm to compute the centrality of all the nodes is due to
Brandes [14], and its time complexity is O(mn): the basic idea of the algorithm is to define
the dependency δs(v) =

∑
t∈V

σst(v)
σst

, which can be computed in time O(m), for each v ∈ V
(we denote by σst(v) the number of shortest paths from s to t passing through v, and by σst
the number of st-shortest paths). In [10], it is also shown that Brandes algorithm is almost
optimal on sparse graphs: an algorithm that computes the betweenness centrality of a single
vertex in time O(mn1−ε) falsifies widely believed complexity assumptions, such as the Strong
Exponential Time Hypothesis [23], the Orthogonal Vector conjecture [2], or the Hitting
Set conjecture [45]. Corresponding results in the dense, weighted case are available in [1]:
computing the betweenness centrality exactly is as hard as computing the All Pairs Shortest
Path, and computing an approximation with a given relative error is as hard as computing
the diameter. For both these problems, there is no algorithm with running-time O(n3−ε),
for any ε > 0. This shows that, for dense graphs, having an additive approximation rather
than a multiplicative one is essential for a provably fast algorithm to exist. These negative
results further motivates the already rich line of research on approaches that overcome this
barrier. A first possibility is to use heuristics, that do not provide analytical guarantees on
their performance [38, 21, 43]. Another line of research has defined variants of betweenness
centrality, that might be easier to compute [15, 33, 18]. Finally, a third line of research
has investigated approximation algorithms, which trade accuracy for speed [24, 16, 22, 26].
Our work follows the latter approach. The first approximation algorithm proposed in the
literature [24] adapts Eppstein and Wang’s approach for computing closeness centrality [20],

ESA 2016
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using Hoeffding’s inequality and the union bound technique. This way, it is possible to obtain
an estimate of the betweenness centrality of every node that is correct up to an additive error
λ with probability δ, by sampling O(D

2

λ2 log n
δ ) nodes, where D is the diameter of the graph.

In [22], it is shown that this can lead to an overestimation. Riondato and Kornaropoulos
improve this sampling-based approach by sampling single shortest paths instead of the whole
dependency of a node [36], introducing the use of the VC-dimension. As a result, the number
of samples is decreased to c

λ2 (blog2(VD−2)c+ 1 + log( 1
δ )), where VD is the vertex diameter,

that is, the minimum number of nodes in a shortest path in G (it can be different from D+ 1
if the graph is weighted). This use of the VC-dimension is further developed and generalized
in [37]. Finally, many of these results were adapted to handle dynamic networks [8, 37].

Approximating the top-k betweenness centrality set. Let us order the nodes v1, ..., vn
such that bc(v1) ≥ ... ≥ bc(vn) and define TOP (k) = {(vi, bc(vi)) : i ≤ k}. In [36]
and [37], the authors provide an algorithm that, for any given δ, ε, with probability 1 − δ
outputs a set T̃OP (k) = {(vi, b̃(vi))} such that: i) If v ∈ TOP (k) then v ∈ T̃OP (k) and
|bc(v) − b̃(v)| ≤ εbc(v); ii) If v ∈ T̃OP (k) but v 6∈ TOP (k) then b̃(v) ≤ (bk − ε)(1 + ε)
where bk is the k-th largest betweenness given by a preliminary phase of the algorithm.

Adaptive sampling. In [5, 37], the number of samples required is substantially reduced
using the adaptive sampling technique introduced by Lipton and Naughton in [28, 27]. Let
us clarify that, by adaptive sampling, we mean that the termination of the sampling process
depends on the sample observed so far (in other cases, the same expression refers to the
fact that the distribution of the new samples is a function of the previous ones [3], while
the sample size is fixed in advance). Except for [34], previous approaches tacitly assume
that there is little dependency between the stopping time and the correctness of the output:
indeed, they prove that, for each fixed τ , the probability that the estimate is wrong at time τ
is below δ. However, the stopping time τ is a random variable, and in principle there might
be dependency between the event τ = τ and the event that the estimate is correct at time τ .
As for [34], they consider a specific stopping condition and their proof technique does not
seem to extend to other settings. For a more thorough discussion of this issue, we defer the
reader to Section 3.

Bidirectional BFS. The possibility of speeding up a breadth-first search for the shortest-
path problem by performing, at the same time, a BFS from the final end-point, has been
considered since the Seventies [35]. Unfortunately, because of the lack of theoretical results
dealing with its efficiency, the bidirectional BFS has apparently not been considered a
fundamental heuristic improvement [25]. However, in [36] (and in some public talks by M.
Riondato), the bidirectional BFS was proposed as a possible way to improve the performance
of betweenness centrality approximation algorithms.

Structure of the Paper

In Section 2, we describe our algorithm, and in Section 3 we discuss the main difficulty of
the adaptive sampling, and the reasons why our techniques are not affected. In Section 4, we
define the balanced bidirectional BFS, and we sketch the proof of its efficiency on random
graphs. In Section 5, we show that our algorithm can be adapted to compute the k most
central nodes. In Section 6 we experimentally show the effectiveness of our new algorithm.
Finally, all our proofs are in the appendix.
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2 Algorithm Overview

To simplify notation, we always consider the normalized betweenness centrality of a node v,
which is defined by:

bc(v) = 1
n(n− 1)

∑
s6=v 6=t

σst(v)
σst

where σst is the number of shortest paths between s and t, and σst(v) is the number of
shortest paths between s and t that pass through v. Furthermore, to simplify the exposition,
we use bold symbols to denote random variables, and light symbols to denote deterministic
quantities. On the same line of previous works, our algorithm samples random paths
π1, . . . ,πτ , where πi is chosen by selecting uniformly at random two nodes s, t, and then
selecting uniformly at random one of the shortest paths from s to t. Then, it estimates bc(v)
with b̃(v) := 1

τ

∑τ
i=1Xi(v), where Xi(v) = 1 if v ∈ πi, 0 otherwise. By definition of πi,

E
[
b̃(v)

]
= bc(v).

The tricky part is to bound the distance between b̃(v) and its expected value. With a
straightforward application of Hoeffding’s inequality (see Appendix B of the full version
[12]), it is possible to prove that Pr

(∣∣b̃(v)− bc(v)
∣∣ ≥ λ) ≤ 2e−2τλ2 . A direct application

of this inequality considers a union bound on all possible nodes v, obtaining Pr(∃v ∈
V, |b̃(v)− bc(v)| ≥ λ) ≤ 2ne−2τλ2 . This means that the algorithm can safely stop as soon as
2ne−2τλ2 ≤ δ, that is, after τ = 1

2λ2 log( 2n
δ ) steps.

In order to improve this idea, we can start from the Chernoff bound (see Appendix B of the
full version [12]), instead of Hoeffding inequality, obtaining that Pr

(∣∣b̃(v)− bc(v)
∣∣ ≥ λ) ≤

2 exp(− τλ2

2(bc(v)+λ/3) ).
If we assume the error λ to be small, this inequality is stronger than the previous one for

all values of bc(v) < 1
4 (a condition which holds for almost all nodes, in almost all graphs

considered). However, in order to apply this inequality, we have to deal with the fact that we
do not know bc(v) in advance, and hence we do not know when to stop. Intuitively, to solve
this problem, we make a “change of variable”, and we rewrite the previous inequality as

Pr
(
bc(v) ≤ b̃(v)− f

)
≤ δ(v)

L and Pr
(
bc(v) ≥ b̃(v) + g

)
≤ δ(v)

U , (1)

for some functions f = f(b̃(v), δ(v)
L , τ), g = g(b̃(v), δ(v)

U , τ). Our algorithm fixes at the
beginning the values δ(v)

L , δ
(v)
U for each node v, and, at each step, it tests if f(b̃(v), δ(v)

L , τ)
and g(b̃(v), δ(v)

U , τ) are small enough. If this condition is satisfied, the algorithm stops. Note
that this approach lets us define very general stopping conditions, that might depend on the
centralities computed until now, on the single nodes, and so on.
I Remark. Instead of fixing the values δ(v)

L , δ
(v)
U at the beginning, one might want to decide

them during the algorithm, depending on the outcome. However, this is not formally correct,
because of dependency issues (for example, (1) does not even make sense, if δ(v)

L , δ
(v)
U are

random). Finding a way to overcome this issue is left as a challenging open problem (more
details are provided in Section 3).

In order to implement this idea, we still need to solve an issue: (1) holds for each fixed
time τ , but the stopping time of our algorithm is a random variable τ , and there might
be dependency between the value of τ and the probability in (1). To this purpose, we use
Mcdiarmid’s inequality (see Appendix B of the full version [12]), that holds even if τ is a
random variable. However, to use this inequality, we need to assume that τ < ω for some
deterministic ω: in our algorithm, we choose ω = c

λ2

(
blog2(VD−2)c+ 1 + log

( 2
δ

))
, because,

ESA 2016
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by the results in [36], after ω samples, the maximum error is at most λ, with probability
1− δ

2 . Furthermore, also f and g should be modified, since they now depend on the value of
ω. The pseudocode of the algorithm obtained is available in Algorithm 1 (as was done in
previous approaches, we can easily parallelize the while loop in Line 5).

Algorithm 1: our algorithm for approximating betweenness centrality.
Input : a graph G = (V,E)
Output : for each v ∈ V , an approximation b̃(v) of bc(v) such that

Pr
(
∀v, |b̃(v)− bc(v)| ≤ λ

)
≥ 1− δ

1 ω ← c
λ2

(
blog2(VD−2)c+ 1 + log

(
2
δ

))
;

2 (δ(v)
L , δ

(v)
U )← computeDelta();

3 τ ← 0;
4 foreach v ∈ V do b̃(v)← 0;
5 while τ < ω and not haveToStop (b̃, δL, δU , ω, τ) do
6 π = samplePath();
7 foreach v ∈ π do b̃(v)← b̃(v) + 1;
8 τ ← τ + 1;
9 end

10 foreach v ∈ V do b̃(v)← b̃(v)/τ ;
11 return b̃

Algorithm 2: the function computeDelta.
Input : a graph G = (V,E), and two values λ(v)

L , λ
(v)
U for each v ∈ V

Output : for each v ∈ V , two values δ(v)
L , δ

(v)
U

1 α← ω
100 ;

2 ε← 0.0001;
3 foreach i ∈ [1, α] do
4 π = samplePath();
5 foreach v ∈ π do b̃(v)← b̃(v) + 1;
6 end
7 foreach v ∈ V do
8 b̃(v)← b̃(v)/α;
9 cL(v)← 2b̃(v)ω

(λ(v)
L

)2
;

10 cU (v)← 2b̃(v)ω
(λ(v)
U

)2
;

11 end
12 Binary search to find C such that

∑
v∈V exp

(
− C
cL(v)

)
+ exp

(
− C
cU (v)

)
= δ

2 − εδ;
13 foreach v ∈ V do
14 δ

(v)
L ← exp

(
− C
cL(v)

)
+ εδ

2n ;
15 δ

(v)
U ← exp

(
− C
cU (v)

)
+ εδ

2n ;
16 end
17 return b;

The correctness of the algorithm follows from the following theorem, which is the base of
our adaptive sampling, and which we prove in Section 2.1 (where we also define the functions
f and g).

I Theorem 1. Let b̃(v) be the output of Algorithm 1, and let τ be the number of samples at
the end of the algorithm. Then, with probability 1− δ, the following conditions hold:

if τ = ω, |b̃(v)− bc(v)| < λ for all v;
if τ < ω, −f(τ , b̃(v), δ(v)

L , ω) ≤ bc(v)− b̃(v) ≤ g(τ , b̃(v), δ(v)
U , ω) for all v.
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Algorithm 3: The function haveToStop to compute the top-k nodes.
Input : for each node v, the values of b̃(v), δ(v)

L , δ
(v)
U , and the values of ω and τ

Output :True if the algorithm should stop, False otherwise
1 Sort nodes in decreasing order of b̃(v), obtaining v1, . . . , vn;
2 for i ∈ [1, . . . , k] do
3 if f(b̃(vi), δ(vi)

L , ω, τ) > λ or g(b̃(vi), δ(vi)
U , ω, τ) > λ then

4 if b̃(vi−1)− f(b̃(vi−1), δ(vi−1)
L , ω, τ) < b̃(vi) + g(b̃(vi), δ(vi)

U , ω, τ) or
b̃(vi)− f(b̃(vi), δ(vi)

L , ω, τ) < b̃(vi+1) + g(b̃(vi+1), δ(vi+1)
U , ω, τ) then

5 return False;
6 end
7 end
8 end
9 for i ∈ [k + 1, . . . , n] do

10 if f(b̃(vi), δ(vi)
L , ω, τ) > λ or g(b̃(vi), δ(vi)

U , ω, τ) > λ then
11 if b̃(vk)− f(b̃(vk), δ(vk)

L , ω, τ) < b̃(vi) + g(b̃(vi), δ(vi)
U , ω, τ) then

12 return False;
13 end
14 end
15 end
16 return True;

I Remark. This theorem says that, at the beginning of the algorithm, we know that, with
probability 1− δ, one of the two conditions will hold when the algorithm stops, independently
of the final value of τ . This is essential to avoid the stochastic dependence that we discuss
in Section 3.

In order to apply this theorem, we choose λ such that our goal is reached if all centralities
are known with error at most λ. Then, we choose the function haveToStop in a way that
our goal is reached if the stopping condition is satisfied. This way, our algorithm is correct,
both if τ = ω and if τ < ω. For example, if we want to compute all centralities with
bounded absolute error, we simply choose λ as the bound we want to achieve, and we plug
the stopping condition f, g ≤ λ in the function haveToStop. Instead, if we want to compute
an approximation of the k most central nodes, we need a different definition of f and g,
which is provided in Section 5.

To complete the description of this algorithm, we need to specify the following functions.
computeDelta: The algorithm works for any choice of the δ(v)

L , δ
(v)
U s, but a good choice yields

better running times. We adopt the heuristic given in Algorithm 2, which we discuss in
Appendix D of the full version.

samplePath: In order to sample a path between two random nodes s and t, we use a balanced
bidirectional BFS (see Appendix E of the full version [12] for a detailed description).

2.1 Proof of Theorem 1

In our algorithm, we sample τ shortest paths πi, where τ is a random variable such that
τ = τ can be decided by looking at the first τ paths sampled (see Algorithm 1). Furthermore,
thanks to Eq. (3) in [36], we assume that τ ≤ ω for some fixed ω ∈ R+ such that, after ω
steps, Pr(∀v, |b̃(v) − bc(v)| ≤ λ) ≥ 1 − δ

2 . When the algorithm stops, our estimate of the
betweenness is b̃(v) := 1

τ

∑τ
i=1Xi(v), where Xi(v) is 1 if v belongs to πi, 0 otherwise.

To estimate the error, we use the following theorem.

ESA 2016
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I Theorem 2. For each node v and for every fixed real numbers δL, δU , it holds

Pr
(
bc(v) ≤ b̃(v)− f

(
b̃(v), δL, ω, τ

))
≤ δL and

Pr
(
bc(v) ≥ b̃(v) + g

(
b̃(v), δU , ω, τ

))
≤ δU ,

where

f
(
b̃(v), δL, ω, τ

)
= 1
τ

log 1
δL

1
3 −

ω

τ
+

√√√√(1
3 −

ω

τ

)2
+ 2b̃(v)ω

log 1
δL

 and (2)

g
(
b̃(v), δU , ω, τ

)
= 1
τ

log 1
δU

1
3 + ω

τ
+

√√√√(1
3 + ω

τ

)2
+ 2b̃(v)ω

log 1
δU

 . (3)

Before proving Theorem 2, let us see how this theorem implies Theorem 1. To simplify
notation, we often omit the arguments of the function f and g.

Proof of Theorem 1. Let E1 be the event (τ = ω ∧ ∃v ∈ V, |b̃(v)− bc(v)| > λ), and let E2
be the event (τ < ω ∧ (∃v ∈ V,−f ≥ bc(v)− b̃(v) ∨ bc(v)− b̃(v) ≥ g)). Let us also denote
b̃τ (v) = 1

τ

∑τ
i=1Xi(v) (note that b̃τ (v) = b̃(v)).

By our choice of ω and Eq. (3) in [36],

Pr(E1) ≤ Pr(∃v ∈ V, |b̃ω(v)− bc(v)| > λ) ≤ δ

2

where b̃ω(v) is the approximate betweenness of v after ω samples. Furthermore, by Theorem 2,

Pr(E2) ≤
∑
v∈V

Pr(τ < ω ∧ −f ≥ bc(v)− b̃(v)) + Pr(τ < ω ∧ bc(v)− b̃(v) ≤ g)

≤
∑
v∈V

δ
(v)
L + δ

(v)
U ≤ δ

2 .

By a union bound, Pr(E1 ∨E2) ≤ Pr(E1) + Pr(E1) ≤ δ, concluding the proof of Theorem 1.
J

Thus, it remains to prove Theorem 2.

Proof of Theorem 2. Since this theorem deals with a single node v, let us simply write
bc = bc(v), b̃ = b̃(v),Xi = Xi(v). Let us consider Y τ =

∑τ
i=1 (Xi − bc) (we recall that

Xi = 1 if v is in the i-th path sampled, Xi = 0 otherwise). Clearly, Y τ is a martingale, and
τ is a stopping time for Y τ : this means that also Zτ = Y min(τ ,τ) is a martingale.

Let us apply Mcdiarmid’s inequality (see e.g. Theorem 8 in Appendix B of the full version
[12]) to the martingales Z and −Z: for each fixed λL, λU > 0 we have

Pr (Zω ≥ λL) = Pr
(
τ b̃− τ bc ≥ λL

)
≤ exp

(
− λ2

L

2 (ω bc +λL/3)

)
= δL and (4)

Pr (−Zω ≥ λU ) = Pr
(
τ b̃− τ bc ≤ −λU

)
≤ exp

(
− λ2

U

2 (ω bc +λU/3)

)
= δU . (5)

We now show how to prove (2) from (4). The way to derive (3) from (5) is analogous.
If we express λL as a function of δL we get

λ2
L = 2 log 1

δL

(
ω bc +λL

3

)
⇐⇒ λ2

L −
2
3λL log 1

δL
− 2ω bc log 1

δL
= 0,
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which implies that

λL = 1
3 log 1

δL
±

√
1
9

(
log 1

δL

)2
+ 2ω bc log 1

δL
.

Since (4) holds for any positive value λL, it also holds for the value corresponding to the
positive solution of this equation, that is,

λL = 1
3 log 1

δL
+

√
1
9

(
log 1

δL

)2
+ 2ω bc log 1

δL
.

Plugging this value into (4), we obtain

Pr

τ b̃− τ bc ≥ 1
3 log 1

δL
+

√
1
9

(
log 1

δL

)2
+ 2ω bc log 1

δL

 ≤ δL. (6)

By assuming b̃− bc ≥ 1
3τ log( 1

δL
), the event in (6) can be rewritten as

(τ bc)2 − 2 bc
(
τ 2b̃+ ω log 1

δL
− 1

3τ log 1
δL

)
− 2

3 log 1
δL
τ b̃+

(
τ b̃
)2 ≥ 0.

By solving the previous quadratic equation w.r.t. bc we get

bc ≤ b̃+ log 1
δL

 ω

τ 2 −
1

3τ −

√√√√( b̃

log 1
δL

+ ω

τ 2 −
1

3τ

)2

−

(
b̃

log 1
δL

)2

+ 2
3τ

b̃

log 1
δL

 ,

where we only considered the solution which upper bounds bc, since we assumed b̃− bc ≥
1
3τ log( 1

δL
). After simplifying the terms under the square root in the previous expression, we

get

bc ≤ b̃+ log 1
δL

 ω

τ 2 −
1

3τ −

√√√√( ω

τ 2 −
1

3τ

)2
+ 2b̃ω
τ 2 log 1

δL

 ,

which means that

Pr
(
bc ≤ b̃− f

(
b̃, δL, ω, τ

))
≤ δL,

concluding the proof. J

3 Adaptive Sampling

In this section, we highlight the main technical difficulty in the formalization of adaptive
sampling, which previous works claiming analogous results did not address. Furthermore, we
sketch the way we overcome this difficulty: our argument is quite general, and it could be
easily adapted to formalize these claims.

As already said, the problem is the stochastic dependence between the time τ in which
the algorithm terminates and the event Aτ = “at time τ , the estimate is within the required
distance from the true value”, since both τ and Aτ are functions of the same random sample.
Since it is typically possible to prove that Pr(¬Aτ ) ≤ δ for every fixed τ , one may be tempted
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to argue that also Pr(¬Aτ ) ≤ δ, by applying these inequalities at time τ . However, this is
not correct: indeed, if we have no assumptions on τ , τ could even be defined as the smallest
τ such that Aτ does not hold!

More formally, if we want to link Pr(¬Aτ ) to Pr(¬Aτ ), we have to use the law of total
probability, that says that:

Pr(¬Aτ ) =
∞∑
τ=1

Pr(¬Aτ | τ = τ) Pr(τ = τ) (7)

= Pr(¬Aτ | τ < τ) Pr(τ < τ) + Pr(¬Aτ | τ ≥ τ) Pr(τ ≥ τ). (8)

Then, if we want to bound Pr(¬Aτ ), we need to assume that

Pr(¬Aτ | τ = τ) ≤ Pr(¬Aτ ) or that Pr(¬Aτ | τ ≥ τ) ≤ Pr(¬Aτ ), (9)

which would allow to bound (7) or (8) from above. The equations in (9) are implicitly
assumed to be true in previous works adopting adaptive sampling techniques. Unfortunately,
because of the stochastic dependence, it is quite difficult to prove such inequalities, even if
some approaches managed to overcome these difficulties [34].

For this reason, our proofs avoid dealing with such relations: in the proof of Theorem 1,
we fix a deterministic time ω, we impose that τ ≤ ω, and we apply the inequalities with
τ = ω. Then, using martingale theory, we convert results that hold at time ω to results that
hold at the stopping time τ (see Section 2.1).

4 Balanced Bidirectional BFS

A major improvement of our algorithm, with respect to previous counterparts, is that we
sample shortest paths through a balanced bidirectional BFS, instead of a standard BFS. In
this section, we describe this technique, and we bound its running time on realistic models of
random graphs, with high probability. The idea behind this technique is very simple: if we
need to sample a uniformly random shortest path from s to t, instead of performing a full
BFS from s until we reach t, we perform at the same time a BFS from s and a BFS from t,
until the two BFSs touch each other (if the graph is directed, we perform a “forward” BFS
from s and a “backward” BFS from t).

More formally, assume that we have visited up to level ls from s and to level lt from
t, let Γls(s) be the set of nodes at distance ls from s, and similarly let Γlt(t) be the set of
nodes at distance lt from t. If

∑
v∈Γls (s) deg(v) ≤

∑
v∈Γlt (t) deg(v), we process all nodes in

Γls(s), otherwise we process all nodes in Γlt(t) (since the time needed to process level ls is
proportional to

∑
v∈Γls (s) deg(v), this choice minimizes the time needed to visit the next

level). Assume that we are processing the node v ∈ Γls(s) (the other case is analogous). For
each neighbor w of v we do the following:

if w was never visited, we add w to Γls+1(s);
if w was already visited in the BFS from s, we do not do anything;
if w was visited in the BFS from t, we add the edge (v, w) to the set Π of candidate edges
in the shortest path.

After we have processed a level, we stop if Γls(s) or Γlt(t) is empty (in this case, s and t
are not connected), or if Π is not empty. In the latter case, we select an edge from Π, so that
the probability of choosing the edge (v, w) is proportional to σsvσwt (we recall that σxy is
the number of shortest paths from x to y, and it can be computed during the BFS as in [16]).
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Then, the path is selected by considering the concatenation of a random path from s to v,
the edge (v, w), and a random path from w to t. These random paths can be easily chosen
by backtracking, as shown in [36] (since the number of paths might be exponential in the
input size, in order to avoid pathological cases, we assume that we can perform arithmetic
operations in O(1) time).

4.1 Analysis on Random Graph
In order to show the effectiveness of the balanced bidirectional BFS, we bound its running
time in several models of random graphs: the Configuration Model (CM, [9]), and Rank-1
Inhomogeneous Random Graph models (IRG, [42, Chapter 3]), such as the Chung-Lu model
[29], the Norros-Reittu model [32], and the Generalized Random Graph [42, Chapter 3]. In
these models, we fix the number n of nodes, and we give a weight ρu to each node. In the CM,
we create edges by giving ρu half-edges to each node u, and pairing these half-edges uniformly
at random; in IRG we connect each pair of nodes (u, v) independently with probability close
to ρuρv/

∑
w∈V ρw. With some technical assumptions discussed in Appendix E of the full

version [12], we prove the following theorem.

I Theorem 3. Let G be a graph generated through the aforementioned models. Then, for
each fixed ε > 0, and for each pair of nodes s, t, w.h.p., the time needed to compute an
st-shortest path through a bidirectional BFS is O(n 1

2 +ε) if the degree distribution λ has finite
second moment, O(n

4−β
2 + ε) if λ is a power law distribution with 2 < β < 3.

Sketch of proof. The idea of the proof is that the time needed by a bidirectional BFS is
proportional to the number of visited edges, which is close to the sum of the degrees of the
visited nodes, which are very close to their weights. Hence, we have to analyze the weights
of the visited edges: for this reason, if V ′ is a subset of V , we define the volume of V ′ as
ρV ′ =

∑
v∈V ′ ρv.

Our visit proceeds by “levels” in the BFS trees from s and t: if we never process a level
with total weight at least n 1

2 +ε, since the diameter is O(logn), the volume of the set of
processed vertices is O(n 1

2 +ε logn), and the number of visited edges cannot be much bigger
(for example, this happens if s and t are not connected). Otherwise, assume that, at some
point, we process a level ls in the BFS from s with total weight n 1

2 +ε: then, the corresponding
level lt in the BFS from t has also weight n 1

2 +ε (otherwise, we would have expanded from t,
because weights and degrees are strongly correlated). We use the “birthday paradox”: levels
ls + 1 in the BFS from s, and level lt + 1 in the BFS from t are random sets of nodes with
size close to n 1

2 +ε, and hence there is a node that is common to both, w.h.p.. This means
that the time needed by the bidirectional BFS is proportional to the volume of all levels in
the BFS tree from s, until ls, plus the volume of all levels in the BFS tree from t, until lt
(note that we do not expand levels ls + 1 and lt + 1). All levels except the last have volume
at most n 1

2 +ε, and there are O(logn) such levels because the diameter is O(logn): it only
remains to estimate the volume of the last level.

By definition of the models, the probability that a node v with weight ρv belongs to the
last level is about

ρvρΓls−1(s)
M ≤ ρvn

− 1
2 +ε: hence, the expected volume of Γls(s) is at most∑

v∈V ρv Pr(v ∈ Γls−1(s)) ≤
∑
v∈V ρ

2
vn
− 1

2 +ε. Through standard concentration inequalities,
we prove that this random variable is concentrated: hence, we only need to compute this
expected value. If the degree distribution has finite second moment, then

∑
v∈V ρ

2
v = O(n),

concluding the proof. If the degree distribution is power law with 2 < β < 3, then we have
to consider separately nodes v such that ρv < n

1
2 and such that ρv > n

1
2 . In the first case,∑

ρv<n
1
2
ρ2
v ≈

∑n
1
2

d=0 nd
2λ(d) ≈

∑n
1
2

d=0 nd
2−β ≈ n1+ 3−β

2 . In the second case, we prove that
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the volume of the set of nodes with weight bigger than n 1
2 is at most n

4−β
2 . Hence, the total

volume of Γls(s) is at most n− 1
2 +εn1+ 3−β

2 + n
4−β

2 ≈ n
4−β

2 . J

5 Computing the k Most Central Nodes

Differently from previous works, our algorithm is more flexible, making it possible to compute
the betweenness centrality of different nodes with different precision. This feature can be
exploited if we only want to rank the nodes: for instance, if v is much more central than
all the other nodes, we do not need a very precise estimation on the centrality of v to say
that it is the top node. Following this idea, in this section we adapt our approach to the
approximation of the ranking of the k most central nodes: as far as we know, this is the
first approach which computes the ranking without computing a λ-approximation of all
betweenness centralities, allowing significant speedups. Clearly, we cannot expect our ranking
to be always correct, otherwise the algorithm does not terminate if two of the k most central
nodes have the same centrality. For this reason, the user fixes a parameter λ, and, for each
node v, the algorithm does one of the following:

it provides the exact position of v in the ranking;
it guarantees that v is not in the top-k;
it provides a value b̃(v) such that | bc(v)− b̃(v)| ≤ λ.

In other words, similarly to what is done in [36], the algorithm provides a set of k′ ≥ k
nodes containing the top-k nodes, and for each pair of nodes v, w in this subset, either we
can rank correctly v and w, or v and w are almost even, that is, | bc(v)− bc(w)| ≤ 2λ. In
order to obtain this result, we plug into Algorithm 1 the aforementioned conditions in the
function haveToStop (see Algorithm 3 in the appendix).

Then, we have to adapt the function computeDelta to optimize the δ(v)
L s and the δ(v)

U s
to the new stopping condition: in other words, we have to choose the values of λ(v)

L and
λ

(v)
U that should be plugged into the function computeDelta (we recall that the heuristic

computeDelta chooses the δ(v)
L s so that we can guarantee as fast as possible that b̃(v)−λ(v)

L ≤
bc(v) ≤ b̃(v) + λ

(v)
U ). To this purpose, we estimate the betweenness of all nodes with

few samples and we sort all nodes according to these approximate values b̃(v), obtaining
v1, . . . , vn. The basic idea is that, for the first k nodes, we set λ(vi)

U = b̃(vi−1)−b̃(vi)
2 , and

λ
(vi)
L = b̃(vi)−b̃(vi+1)

2 (the goal is to find confidence intervals that separate the betweenness of
vi from the betweenness of vi+1 and vi−1). For nodes that are not in the top-k, we choose
λ

(v)
L = 1 and λ(v)

U = b̃(vk) − λ(vk)
L − b̃(vi) (the goal is to prove that vi is not in the top-k).

Finally, if b̃(vi)− b̃(vi+1) is small, we simply set λ(vi)
L = λ

(vi)
U = λ

(vi+1)
L = λ

(vi+1)
U = λ, because

we do not know if bc(vi+1) > bc(vi), or viceversa.

6 Experimental Results

In this section, we test the four variations of our algorithm on several real-world networks, in
order to evaluate their performances. The platform for our tests is a server with 1515 GB
RAM and 48 Intel(R) Xeon(R) CPU E7-8857 v2 cores at 3.00GHz, running Debian GNU
Linux 8. The algorithms are implemented in C++, and they are compiled using gcc 5.3.1.
The source code of our algorithm is available at https://sites.google.com/a/imtlucca.
it/borassi/publications.

https://sites.google.com/a/imtlucca.it/borassi/publications
https://sites.google.com/a/imtlucca.it/borassi/publications
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Figure 1 The time needed by the different algorithms, on all the graphs of our dataset.

Comparison with the State of the Art

The first experiment compares the performances of our algorithm KADABRA with the state of
the art. The first competitor is the RK algorithm [36], available in the open-source NetworKit
framework [41]. This algorithm uses the same estimator as our algorithm, but the stopping
condition is different: it simply stops after sampling k = c

ε2

(
blog2(VD−2)c+ 1 + log

( 1
δ

))
,

and it uses a heuristic to upper bound the vertex diameter. Following suggestions by the
author of the NetworKit implementation, we set to 20 the number of samples used in the
latter heuristic [7].

The second competitor is the ABRA algorithm [37], available at http://matteo.rionda.
to/software/ABRA-radebetw.tbz2. This algorithm samples pairs of nodes (s, t), and it
adds the fraction of st-paths passing from v to the approximation of the betweenness of v,
for each node v. The stopping condition is based on a key result in statistical learning theory,
and there is a scheduler that decides when it should be tested. Following the suggestions
by the authors, we use both the automatic scheduler ABRA-Aut, which uses a heuristic
approach to decide when the stopping condition should be tested, and the geometric scheduler
ABRA-1.2, which tests the stopping condition after (1.2)ik iterations, for each integer i.

The test is performed on a dataset made by 15 undirected and 15 directed real-world
networks, taken from the datasets SNAP (snap.stanford.edu/), LASAGNE (piluc.dsi.
unifi.it/lasagne), and KONECT (http://konect.uni-koblenz.de/networks/). As in
[37], we have considered all values of λ ∈ {0.03, 0.025, 0.02, 0.015, 0.01, 0.005}, and δ = 0.1.
All the algorithms have to provide an approximation b̃(v) of bc(v) for each v such that
Pr
(
∀v,
∣∣b̃(v)− bc(v)

∣∣ ≤ λ) ≥ 1− δ. In Figure 1, we report the time needed by the different
algorithms on every graph for λ = 0.005 (the behavior with different values of λ is very
similar). More detailed results are reported in Appendix F of the full version [12].

From the figure, we see that KADABRA is much faster than all the other algorithms,
on all graphs: on average, our algorithm is about 100 times faster than RK in undirected
graphs, and about 70 times faster in directed graphs; it is also more than 1 000 times faster
than ABRA. The latter value is due to the fact that the ABRA algorithm has large running
times on few networks: in some cases, it did not even conclude its computation within one
hour. The authors confirmed that this behavior might be due to some bugs in the code,
which seems to affect it only on specific graphs: indeed, in most networks, the performances
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Figure 2 The exponent α such that the average number of edges visited during a bidirectional
BFS is nα.
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Figure 3 The average number of samples needed by the different algorithms.

of ABRA are better than those of the RK algorithm (but, still, not better than KADABRA).
In order to explain these data, we take a closer look at the improvements obtained

through the bidirectional BFS, by considering the average number of edges mavg that the
algorithm visits in order to sample a shortest path (for all our competitors, mavg = m, since
they perform a full BFS). In Figure 2, for each graph in our dataset, we plot α = log(mavg)

log(m)
(intuitively, this means that the average number of edges visited is mα).

The figure shows that, apart from few cases, the number of edges visited is close to
n

1
2 , confirming the results in Section 4. This means that, since many of our networks have

approximately 10 000 edges, the bidirectional BFS is about 100 times faster than the standard
BFS. Finally, for each value of λ, we report in Figure 3 the number of samples needed by all
the algorithms, averaged over all the graphs in the dataset.

From the figure, KADABRA needs to sample the smallest amount of shortest paths,
and the average improvement over RK grows when λ tends to 0, from a factor 1.14 (resp.,
1.14) if λ = 0.03, to a factor 1.79 (resp., 2.05) if λ = 0.005 in the case of undirected (resp.,
directed) networks. Again, the behavior of ABRA is highly influenced by the behavior on
few networks, and as a consequence the average number of samples is higher. In any case,
also in the graphs where ABRA has good performances, KADABRA still needs a smaller
number of samples.
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Figure 4 The total time of computation of KADABRA on increasing snapshots of the IMDB
graph.

Computing Top-k Centralities

In the second experiment, we let KADABRA compute the top-k betweenness centralities of
large graphs, which were unfeasible to handle with the previous algorithms.

The first set of graph is a series of temporal snapshots of the IMDB actor collaboration
network, in which two actors are connected if they played together in a movie. The
snapshots are taken every 5 years from 1940 to 2010, including a last snapshot in 2014, with
1 797 446 nodes and 145 760 312 edges. The graphs are extracted from the IMDB website
(http://www.imdb.com), and they do not consider TV-series, awards-shows, documentaries,
game-shows, news, realities and talk-shows, in accordance to what was done in http:
//oracleofbacon.org.

The other graph considered is the Wikipedia citation network, whose nodes are Wikipedia
pages, and which contains an edge from page p1 to page p2 if the text of page p1 contains a
link to page p2. The graph is extracted from DBPedia 3.7 (http://wiki.dbpedia.org/),
and it consists of 4 229 697 nodes and 102 165 832 edges.

We have run our algorithm with λ = 0.0002 and δ = 0.1: as discussed in Section 5, this
means that either two nodes are ranked correctly, or their centrality is known with precision
at most λ. As a consequence, if two nodes are not ranked correctly, the difference between
their real betweenness is at most 2λ. The full results are available in Appendix G of the full
version [12].

All the graphs were processed in less than one hour, apart from the Wikipedia graph,
which was processed in approximately 1 hour and 38 minutes. In Figure 4, we plot the
running times for the actor graphs: from the figure, it seems that the time needed by
our algorithm scales slightly sublinearly with respect to the size of the graph. This result
respects the results in Section 4, because the degrees in the actor collaboration network are
power law distributed with exponent β ≈ 2.13 (http://konect.uni-koblenz.de/networks/
actor-collaboration). Finally, we observe that the ranking is quite precise: indeed, most
of the times, there are very few nodes in the top-5 with the same ranking, and the ranking
rarely contains significantly more than 10 nodes.
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