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Abstract
We consider data-structures for answering reachability and distance queries on constant-treewidth
graphs with n nodes, on the standard RAM computational model with wordsize W = Θ(logn).
Our first contribution is a data-structure that after O(n) preprocessing time, allows (1) pair
reachability queries in O(1) time; and (2) single-source reachability queries in O( n

logn ) time.
This is (asymptotically) optimal and is faster than DFS/BFS when answering more than a
constant number of single-source queries. The data-structure uses at all times O(n) space. Our
second contribution is a space-time tradeoff data-structure for distance queries. For any ε ∈
[ 1

2 , 1], we provide a data-structure with polynomial preprocessing time that allows pair queries
in O(n1−ε · α(n)) time, where α is the inverse of the Ackermann function, and at all times uses
O(nε) space. The input graph G is not considered in the space complexity.
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1 Introduction

In this work we consider two of the most classic graph algorithmic problems, namely the
reachability and distance problems, on low-treewidth graphs. We consider the case where the
input is a graph G with n nodes and a tree-decomposition Tree(G) of G with b = O(n) bags
and width t. The computational model is the standard RAM with wordsize W = Θ(logn).

Low-treewidth graphs. A very well-known concept in graph theory is the notion of tree-
width of a graph, which is a measure of how similar a graph is to a tree (a graph has
treewidth 1 precisely if it is a tree) [30]. The treewidth of a graph is defined based on
a tree decomposition of the graph [24], see Section 2 for a formal definition. Beyond the
mathematical elegance of the treewidth property for graphs, there are many classes of graphs
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28:2 Reachability and Distance queries in Constant-Treewidth Graphs

which arise in practice and have low (even constant) treewidth. An important example is
that the control flow graph for goto-free programs for many programming languages are of
constant treewidth [32]. Also many chemical compounds have treewidth 3 [34]. For many
other applications see the surveys [11, 10]. Given a tree decomposition of a graph with
low treewidth t, many problems on the graph become complexity-wise easier (i.e., many
NP-complete problems for arbitrary graphs can be solved in time polynomial in the size of
the graph, but exponential in t, given a tree decomposition [3, 7, 8]). Even for problems that
can be solved in polynomial time, faster algorithms can be obtained for low-treewidth graphs,
for example, for the distance (or the shortest path) problem [16]. The constant treewidth
of control flow graphs has also been shown to lead to faster algorithms for interprocedural
analysis [14], quantitative verification [15], and analysis of concurrent programs [13].

Reachability/distance problems. The pair reachability (resp., distance) problem is one of
the most classic graph algorithmic problems that, given a pair of nodes u, v, asks to compute
if there is a path from u to v (resp., the weight of the shortest path from u to v). The
single-source variant problem given a node u asks to solve the pair problem u, v for every
node v. Finally, the all pairs variant asks to solve the pair problem for each pair u, v. While
there exist many classic algorithms for the distance problem, such as A∗-algorithm (pair) [26],
Dijkstra’s algorithm (single-source) [19], Bellman-Ford algorithm (single-source) [5, 23, 28],
Floyd-Warshall algorithm (all pairs) [22, 33, 31], and Johnson’s algorithm (all pairs) [27] and
others for various special cases, there exist in essence only two different algorithmic ideas for
reachability: Fast matrix multiplication (all pairs) [21] and DFS/BFS (single-source) [18].

Previous results. The algorithmic question of the distance (pair, single-source, all pairs)
problem for low-treewidth graphs has been considered extensively in the literature, and
many data-structures have been presented [2, 16, 29, 1, 4, 17]. The previous results are
incomparable, in the sense that the best data-structure depends on the treewidth and the
number of queries. The pair query reachability for low-treewidth graphs has been considered
in [35]. Despite many results for constant (or low) treewidth graphs, none of them improves
the complexity for the basic single-source reachability problem, i.e., the bound for DFS/BFS
has not been improved in any of the previous works.

Our results. Our algorithms take as input a graph G with n nodes. Our main contributions
are as follows (summarized in Table 1 and Table 2):
1. Our first contribution is a data-structure that supports reachability queries in G. The

computational complexity we achieve is as follows: (i) O(n·t2) preprocessing (construction)
time; (ii) O(n · t) space; (iii) O(dt/ logne) pair-query time; and (iv) O(n · t/ logn) time
for single-source queries. Note that for constant-treewidth graphs, the data-structure is
optimal in the sense that it only uses linear preprocessing time, and supports answering
queries in the size of the output (the output for single-source queries requires one bit per
node, and thus has size Θ(n/W ) = Θ(n/ logn)). Moreover, also for constant-treewidth
graphs, the data-structure answers single-source queries faster than DFS/BFS, after
linear preprocessing time (which is asymptotically the same as for DFS/BFS). Thus there
exists a constant c0 such that the total of the preprocessing and querying time of the
data-structure is smaller than that of DFS/BFS for answering at least c0 single-source
queries.

2. Second, we present a space-time tradeoff data-structure that supports distance pair
queries in G and given a number ε ∈ [ 1

2 , 1]. The weights of G come from the set of



K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis 28:3

Table 1 Data-structures for pair and single-source reachability queries, on a directed graph G
with n nodes, m edges, and a treewidth t. The model of computation is the standard RAM model
with wordsize W = Θ(logn). Space usage refers to the total space used during the preprocessing
and query phase. Rows 1 and 2 are previous results, and row i is the result of this paper.

Row Preprocessing time Space usage Pair query time Single-source query time From
1 O(n · logn) O(n · logn) O(logn) O(n · logn) a) [35] b)

2 – O(dn/ logne) O(m) O(m) DFS/BFS [18]
i O(n · t2) O(n · t) O(

⌈
t

logn

⌉
) O( n·t

logn ) Theorem 6

a) Obtained by multiplying the time for a pair query by n.
b) The result is only stated for constant treewidth.

Table 2 Data-structures for pair and single-source distance queries, on a weighted directed graph
G with n nodes, m edges, and a tree decomposition of width O(1) and height h. The number ε can
be any fixed number in [ 1

2 , 1] and α(n) is the inverse Ackermann function. Space usage refers to the
total space used during the preprocessing and query phase. When measuring space complexity, we
do not count the input size. Rows 1-6 are previous results, and row i is the result of this paper.

Row Preprocessing time Space usage Pair query time Single-source query time From
1 O(n2) O(n2) O(1) O(n) [29] a)

2 O(n) O(n) O(α(n)) O(n) [16]
3 O(n · log h) O(n) O(log logn) O(n · log logn) b) [2]
4 O(n · log2 n) O(n · logn) O(logn) O(n · logn)b) [1]
5 O(n · logn) O(n · logn) O(log2 n) O(n · log2 n) b) [4, 17]
6 Not given O(nε · log2 n) c) O(n1−ε · logn) – d) [2] e)

i polynomial O(nε) O(n1−ε · α(n)) – d) Theorem 13

a) This data-structure solves the all pairs problem in the given time and space bounds.
b) Obtained by multiplying the time for a pair query by n.
c) This is the space usage after preprocessing.
d) Not given/supported since the size of the output is larger than the data-structure.
e) Note that [2] does not explicitly state the tradeoff given (they only state linear space), but it

follows from their technique by picking other values for their variable k. Also, note that [2]
requires a tree-decomposition to be part of the input, whereas our data-structure only requires
that the graph G is part of the input.

integers Z, but we do not allow negative cycles. For constant-treewidth graphs, our
data-structure requires (i) polynomial preprocessing time; (ii) O(nε) working space; and
(iii) O(n1−ε · α(n)) time for pair queries.

The graph G is considered part of the input, and is not counted towards the space complexity.

Technical contributions. Our results rely on three key technical contributions:
1. For pair reachability queries, the key idea is to store reachability information from

each node to O(logn) other nodes. For single-source queries, for some nodes this
reachability information might be of size Θ(n), but on average remains O(logn). Our
data-structure computes reachability information in such a way that allows for compact
representation and fast retrieval using word tricks, which for constant-treewidth graphs
leads to asymptotically optimal preprocessing and query (both pair and single-source)
bounds. The idea of storing O(logn) information per node has appeared before ([35, 16])
however those algorithms follow different approaches, where word tricks do not seem to
be applicable (at least not without significantly modifying the algorithms).

2. For distance queries, we devise a procedure for shrinking a tree-decomposition of size
O(n) to one of size O(n1−ε), by partitioning the tree-decomposition to components of
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28:4 Reachability and Distance queries in Constant-Treewidth Graphs

sufficient size. A key property of this partitioning is that each component has only a
constant number of neighbor components. We show how this shrank tree-decomposition
can be preprocessed for answering pair distance queries in the stated bounds.

2 Preliminaries

Graphs. We consider weighted directed graphs G = (V,E,wt) where V is a set of n nodes,
E ⊆ V × V is an edge relation of m edges, and wt : E → Z is a weight function where
Z is the set of integers. In the sequel we write graphs for directed graphs, and explicitly
mention if the graph is undirected. Given a set X ⊆ V , we denote by G[X] the subgraph
(X,E ∩ (X ×X)) of G induced by the set of nodes X. A path P : u v is a sequence of
nodes (x1, . . . , xk) such that u = x1, v = xk, and for all 1 ≤ i ≤ k− 1 we have (xi, xi+1) ∈ E.
The path P is simple if every node appears at most once in P . The length of P is k− 1, and
a single node is by itself a 0-length path. We denote by E∗ ⊆ V × V the transitive closure
of E, i.e., (u, v) ∈ E∗ iff there exists a path P : u  v. Given a path P , a node u, and a
set of nodes A, we use the set notation u ∈ P to denote that u appears in P , and A ∩ P to
refer to the set of nodes that appear in both P and A. The weight function is extended to
paths, and the weight of a path P = (x1, . . . , xk) is wt(P ) =

∑k−1
i=1 wt(xi, xi+1) if k > 1, else

wt(P ) = 0. For u, v ∈ V , the distance from u to v is defined as d(u, v) = minP :u v wt(P ),
where P ranges over simple paths in G (and d(u, v) =∞ if no such path exists). We consider
that G does not have negative cycles.

Trees. A (rooted) tree T = (VT , ET ) is an undirected graph with a distinguished node r
which is the root such that there is a unique simple path P vu : u v for each pair of nodes
u, v. The size of T is |VT |. Given a tree T with root r, the level Lv(u) of a node u is the
length of the simple path P ru from u to the root r, and every node in P ru is an ancestor of u.
If v is an ancestor of u, then u is a descendant of v. Note that a node u is both an ancestor
and descendant of itself. For a pair of nodes u, v ∈ VT , the lowest common ancestor (LCA)
of u and v is the common ancestor of u and v with the largest level. The parent u of v is
the unique ancestor of v in level Lv(v)− 1, and v is a child of u. A leaf of T is a node with
no children. For a node u ∈ VT , we denote by T (u) the subtree of T rooted in u (i.e., the
tree consisting of all descendants of u). The tree T is binary if every node has at most two
children. The height of T is maxu Lv(u) (i.e., it is the length of the longest path P ru), and T
is balanced if its height is O(log |VT |). Given a tree T , a connected component C ⊆ VT of T
is a set of nodes of T such that for every pair of nodes u, v ∈ C, the unique simple path P vu
in T visits only nodes in C.

Tree decompositions. Given a graph G, a tree-decomposition Tree(G) = (VT , ET ) is a tree
with the following properties.
T1: VT = {B1, . . . , Bb : for all 1 ≤ i ≤ b. Bi ⊆ V } and

⋃
Bi∈VT

Bi = V .
T2: For all (u, v) ∈ E there exists Bi ∈ VT such that u, v ∈ Bi.
T3: For all Bi, Bj and any bag Bk that appears in the simple path Bi  Bj in Tree(G), we

have Bi ∩Bj ⊆ Bk.
The sets Bi which are nodes in VT are called bags. The width of a tree-decomposition Tree(G)
is the size of the largest bag minus 1, and the treewidth of G is the width of a minimum-width
tree decomposition of G. Let G be a graph, T = Tree(G), and B0 be the root of T . For
u ∈ V , we say that a bag B is the root bag of u if B is the bag with the smallest level among
all bags that contain u. By definition, for every node u there exists a unique bag which is
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the root of u. We often write Bu for the root bag of u, i.e., Bu = arg minBi∈VT : u∈Bi Lv (Bi),
and denote by Lv(u) = Lv (Bu). A bag B is said to introduce a node u ∈ B if either B is
a leaf, or u does not appear in any child of B. In this work we consider only binary tree
decompositions (if not, a tree decomposition can be made binary by a standard process that
increases its size by a constant factor while keeping the width the same). The following
lemma states a well-known “separator property” of tree decompositions.

I Lemma 1. Consider a graph G = (V,E), a binary tree-decomposition T = Tree(G), and a
bag B of T . Let (Ci)1≤i≤3 be the components of T created by removing B from T , and let
Vi be the set of nodes that appear in bags of component Ci. For every i 6= j, nodes u ∈ Vi,
v ∈ Vj and path P : u  v, we have that P ∩ B 6= ∅ (i.e., all paths between u and v go
through some node in B).

Using Lemma 1, we prove the following stronger version of the separator property, which
will be useful throughout the paper.

I Lemma 2. Consider a graph G = (V,E) and a tree-decomposition Tree(G). Let u, v ∈
V , and consider two distinct bags B1 and Bj such that u ∈ B1 and v ∈ Bj. Let P ′ :
B1, B2, . . . , Bj be the unique simple path in T from B1 to Bj. For each i ∈ {2, . . . , j} and
for each path P : u v, there exists a node xi ∈ (Bi−1 ∩Bi ∩ P ).

Proof. Let T = Tree(G). Fix a number i ∈ {2, . . . , j}. We argue that for each path P : u v,
there exists a node xi ∈ (Bi−1∩Bi∩P ). We construct a tree T ′, which is similar to T except
that instead of having an edge between bag Bi−1 and bag Bi, there is a new bag B, that
contains the nodes in Bi−1 ∩Bi, and there is an edge between Bi−1 and B and one between
B and Bi. It is easy to see that T ′ satisfies the properties T1-T3 of a tree-decomposition
of G. By Lemma 1, each bag B′ in the unique path P ′′ : B1, . . . , Bi−1, B,Bi, . . . , Bj in T ′
separates u from v in G. Hence, each path u v must go through some node in B, and the
result follows. J

The following lemma states that for nodes that appear in bags B, B′ of the tree-
decomposition T = Tree(G), their distance can be written as a sum of distances d(xi, xi+1)
between pairs of nodes (xi, xi+1) that appear in bags Bi that constitute the unique B  B′

path in T .

I Lemma 3. Consider a weighted graph G = (V,E,wt) and a tree-decomposition Tree(G).
Let u, v ∈ V , and P ′ : B1, B2, . . . , Bj be a simple path in T such that u ∈ B1 and v ∈ Bj . Let
A = {u} ×

(∏
1<i≤j (Bi−1 ∩Bi)

)
× {v}. Then d(u, v) = min(x1,...,xj+1)∈A

∑j
i=1 d(xi, xi+1).

Proof. Consider a witness path P : u v such that wt(P ) = d(u, v). By Lemma 2, there
exists some node xi ∈ (Bi−1 ∩ Bi ∩ P ), for each i ∈ {1, . . . , j}. It easily follows that
d(u, v) =

∑j
i=1 d(xi, xi+1) with x1, . . . xj+1 ∈ A. J

Small tree decompositions. A tree-decomposition T = Tree(G) = (VT , ET ) is called small
if |VT | = O(nt ).

I Lemma 4. Given a tree decomposition Tree(G) of G of width O(t) and O(n) bags, a
small, binary tree decomposition Tree′(G) of width O(t) can be constructed in O(n · t) time.
Moreover, if Tree(G) is balanced, then so is Tree′(G).

Proof. Let k = O(t) be the width of Tree(G). The construction is achieved using the
following steps.
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28:6 Reachability and Distance queries in Constant-Treewidth Graphs

1. Following the steps of [9, Lemma 2.4], we turn Tree(G) to a smooth tree-decomposition
T1 = (V1, E1), which has the properties that (i) for every bag B ∈ V1 we have |B| = k+ 1,
and (ii) for every pair of bags (B1, B2) ∈ E1 we have |B1 ∩B2| = k. The process of [9,
Lemma 2.4] can be performed O(n · t) time and increases the height by at most a factor
2, hence if Tree(G) is balanced, T1 is also balanced, and by [9, Lemma 2.5], we have
|V1| = O(n).

2. We turn T1 to a binary tree-decomposition T2 = (V2, E2), by a standard tree-binarization
process [16, Fact 3], which increases the size and the height of T2 by at most a factor 2.

3. We construct a tree-decomposition T3 = (V3, E3) by partitioning T2 to disjoint connected
components of size between k

2 and k each (the last component might have size less than
k
2 ) and contracting each such component to a single bag in T3. Since T2 is smooth, the
number of nodes in the union of the bags of each component is at most 2 · k. Hence the
width of T3 is O(k). The partitioning is done as follows. We traverse T2 bottom-up and
group bags into components in a greedy way. In particular, given that the traversal is
on a current bag B, we keep track of the number of bags iB below B (not including B)
that have not been grouped to a component yet. The first time we find iB ≥ t, let B′
be the child of B with the largest number iB′ among the children of B. We group B′
and its ungrouped descendants into a new component C, and continue with the traversal.
Observe that the size of C is k

2 ≤ |C| < k.
4. Finally, we construct Tree′(G) by turning T3 to a binary tree-decomposition as in Step 2.
Note that all steps above require O(n · t) time. The desired result follows. J

I Lemma 5 ([16]). Given a weighted graph G = (V,E,wt) of treewidth t and a tree-
decomposition T = (VT , ET ) of G of width O(t), we can compute for all bags B ∈ VT a local
distance map LDB : B ×B → Z with LDB(u, v) = d(u, v) in total time O(|VT | · t3) and space
O(|VT | · t2).

Model and word tricks. We consider the standard RAMmodel with word sizeW = Θ(logn),
where poly(n) is the size of the input. Our reachability algorithm (in Section 3) uses so called
“word tricks” heavily. We use constant-time LCA queries which also use word tricks [25, 6].

3 Optimal Reachability for Low-Treewidth Graphs

In this section we present algorithms for building and querying a data-structure Reachability,
which handles single-source and pair reachability queries over an input a graph G of n nodes
and treewidth t. In particular, we establish the following.

I Theorem 6. Given a graph G of n nodes and treewidth t, let T (G) be the time and S(G)
be the space required for constructing a balanced tree-decomposition Tree(G) of O(n) bags
and width O(t) on the standard RAM with wordsize W = Θ(logn). The data-structure
Reachability correctly answers reachability queries and requires
1. O(T (G) + n · t2) preprocessing time;
2. O(S(G) + n · t) preprocessing space;
3. O

(⌈
t

logn

⌉)
pair query time; and

4. O
(
n·t

logn

)
single-source query time.

For constant-treewidth graphs we have that T (G) = O(n) and S(G) = O(n) ([12,
Lemma 2]), and thus along with Theorem 6 we obtain the following corollary.
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I Corollary 7. Given a graph G of n nodes and constant treewidth, the data-structure
Reachability requires O(n) preprocessing time and space, and correctly answers (i) pair
reachability queries in O(1) time, and (ii) single-source reachability queries in O

(
n

logn

)
time.

Intuition. Informally, the preprocessing consists of first obtaining a small, balanced and
binary tree-decomposition T of G, and computing the local reachability information in
each bag B (i.e., the pairs (u, v) ∈ E∗ with u, v ∈ B) using Lemma 5. Then, the whole of
preprocessing is done on T , by constructing two types of sets, which are represented as bit
sequences and packed into words of length W = Θ(logn). Initially, every node u receives an
index iu, such that for every bag B, the indices of nodes whose root bag is in T (B) form a
contiguous interval. Additionally, for every appearance of node u in a bag B, the node u
receives a local index lBu in B. For brevity, a sequence (A0, A1, . . . Ak) will be denoted by
(Ai)0≤i≤k. When k is implied, we simply write (Ai)i. The following two types of sets are
constructed.
1. Sets that store information about subtrees. Specifically, for every node u, the set Fu

stores the relative indices of nodes v that can be reached from u, and whose root bag is
in T (Bu). These sets are used to answer single-source queries.

2. Sets that store information about ancestors. Specifically, for every node u, two sequences
of sets are stored (Fiu)0≤i≤Lv(u), (Tiu)0≤i≤Lv(u), such that Fiu (resp., Tiu) contains the local
indices of nodes v in the ancestor bag Biu of Bu at level i, such that (u, v) ∈ E∗ (resp.,
(v, u) ∈ E∗). These sets are used to answer pair queries.

The sets of the first type are constructed by a bottom-up pass, whereas the sets of the second
type are constructed by a top-down pass. Both passes are based on the separator property of
tree decompositions (recall Lemma1 and Lemma 2), which informally states that reachability
properties between nodes in distant bags will be captured transitively, through nodes in
intermediate bags.

Reachability Preprocessing. We now give a formal description of the preprocessing of
Reachability that takes as input a graph G of n nodes and treewidth t, and a balanced tree-
decomposition T = Tree(G) of width O(t). After the preprocessing, Reachability supports
single-source and pair reachability queries. We say that we “insert” set A to set A′ meaning
that we replace A′ with A ∪ A′. Sets are represented as bit sequences where 1 denotes
membership in the set, and the operation of inserting a set A “at the i-th position” of a set
A′ is performed by taking the bit-wise logical OR between A and the segment [i, i+ |A|] of
A′. The preprocessing consists of the following steps.
1. Turn T to a small, balanced binary tree-decomposition of G of width O(t), using Lemma 4.
2. Preprocess T to answer LCA queries in O(1) time [25].
3. Compute the local distance map LDB : B × B → Z for every bag B w.r.t reachability,

i.e., for any bag B and nodes u, v ∈ B, we have LDB(u, v) = 1 iff (u, v) ∈ E∗.
4. Apply a pre-order traversal on T , and assign an incremental index iu to each node u at

the time the root bag B of u is visited. If there are multiple nodes u for which B is the
root bag, assign the indices to those nodes in some arbitrary order. Additionally, store
the number su of nodes whose root bag is in T (B) and have index at least iu. Finally, for
each bag B and u ∈ B, assign a unique local index lBu to u, and store in B the number
of nodes (with multiplicities) aB contained in all ancestors of B, and the number bB of
nodes in B.

5. For every node u, initialize a bit set Fu of length su, pack it into words, and set the first
bit to 1.
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28:8 Reachability and Distance queries in Constant-Treewidth Graphs

6. Traverse T bottom-up, and for every bag B execute the following step. For every pair of
nodes u, v ∈ B such that B is the root bag of v and iu < iv and LDB(u, v) = 1, insert
Fv to the segment [iv − iu, iv − iu + sv] of Fu (the nodes reachable from v now become
reachable from u, through v).

7. For every node u initialize two sequences of bit sets (Tiu)0≤i≤Lv(u), (Fiu)0≤i≤Lv(u), and
pack them into consecutive words. Each set Tiu and Fiu has size bBi

u
, where Biu is the

ancestor of Bu at level i.
8. Traverse T top-down, and for B the bag currently visited, for every node x ∈ B, maintain

two sequences of bit sets (Tix)0≤i≤Lv(B) and (Fix)0≤i≤Lv(B). Each set Tix and Fix has
size bBi , where Bi is the ancestor of B at level i. Initially, B is the root of T (hence
Lv(B) = 0), and set the position lBw of F0

x (resp., T0
x) to 1 for every node w such that

LDB(x,w) = 1 (resp., LDB(w, x) = 1). For each other bag B encountered in the traversal,
do as follows. Let S = B ∩B′, where B′ is the parent of B in T , and let x range over S.
a. For each node x, create a set Tx (resp., Fx) of 0s of length bB, and for every w ∈ B

such that LDB(x,w) = 1 (resp., LDB(w, x) = 1), set the lBw -th bit of Fx (resp., Tx)
to 1. Append the set Tx (resp., Fx) to (Tix)i (resp., (Fix)i). Now each set sequence
(Tix)i and (Fix)i has size aB + bB .

b. For each u ∈ B whose root bag is B, initialize set sequences (Fiu)i and (Tiu)i with 0s
of length aB + bB each, and set the bit at position lBu of FLv(B)

u and TLv(B)
u to 1. For

every w ∈ B with LDB(u,w) = 1 (resp., LDB(w, u) = 1), insert (Fiw)i to (Fiu)i (resp.,
(Tiw)i to (Tiu)i). Finally, set (Fiu)i equal to (Fiu)i (resp., (Tiu)i equal to (Tiu)i).

Figure 1 illustrates the constructed sets on a small example.
It is fairly straightforward that at the end of the preprocessing, the i-th position of each

set Fu is 1 only if (u, v) ∈ E∗, where v is such that iv − iu = i. The following lemma states
the opposite direction, namely that each such i-th position will be 1, as long as the path
P : u v only visits nodes with certain indices.

I Lemma 8. At the end of preprocessing, for every pair of nodes u and v with iu ≤ iv ≤ iu+su,
if there exists a path P : u v such that for every w ∈ P , we have iu ≤ iw ≤ iu + su, then
the (iv − iu)-th bit of Fu is 1.

Proof. We prove inductively the following claim. For every ancestor B of Bv, if there exists
w ∈ B and a path P1 : w  v, then exists x ∈ B ∩ P1 such that ix ≤ iv ≤ ix + sx and
the iv − ix-th bit of Fx is 1. The proof is by induction on the length of the simple path
P2 : B  Bv.
1. If |P2| = 0, the statement is true by taking x = v, since the 0-th bit of Fv is 1.
2. If |P2| > 0, examine the child B′ of B in P2. By Lemma 2, there exists x ∈ B ∩B′ ∩ P ,

and let P3 : x  v. By the induction hypothesis there exists some y ∈ B′ ∩ P3 with
iy ≤ iv ≤ iy+sy and the iv−iy-th bit of Fy is 1. If y ∈ B, we take x = y. Otherwise, B′ is
the root bag of y, and by the local distance computation of Lemma 5, it is LDB′(x, y) = 1.
By the choice of x, y we have that Bx is an ancestor of By. Thus, by construction we
have ix < iy and sx ≥ sy + iy − ix, and hence ix ≤ iv ≤ ix + sx. Then in step 5, Fy is
inserted in position iy − ix of Fx, thus the bit at position iy − ix + iv − iy = iv − ix of Fx
will be 1, and we are done.

When Bu is examined, by the above claim there exists x ∈ P such that ix ≤ iv and the
iv − ix-th bit of Fx is 1. If x = u we are done. Otherwise, by the choice of P , we have
iu < ix, which can only happen if Bu is also the root bag of x. Then in step 5, Fx is inserted
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3
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(a)

u iu Bit-set Fu
0 1 2 3 4 5 6 7 8 9

2 0 1 1 1 1 0 0 1 0 1 1
8 1 1 0 0 0 0 0 0 0 1
10 2 1 1 0 0 1 0 1 1
9 3 1 0 0 1 0 1
7 4 1 1 1 1
6 5 1 1 0
4 6 1
5 7 1
1 8 1
3 9 1

(b)

8, 9, 10

1, 8, 9

2, 8, 10

2, 3, 10

7, 8, 9

6, 7, 9

4, 6, 9 5, 6, 7

(c)

i = 0 i = 1 i = 2 i = 3
v 2 8 10 8 9 10 7 8 9 6 7 9
l
Bi

6
v 0 1 2 0 1 2 0 1 2 0 1 2

(Fi6)i 1 1 1 1 1 1 0 1 1 1 0 1
(Ti6)i 0 0 0 0 0 0 1 0 0 1 1 0

(d)

Figure 1 a, c: A graph G and a tree-decomposition Tree(G). b: The sets Fu constructed from
step 5 to answer single-source queries. The j-th bit of a set Fu is 1 iff (u, v) ∈ E∗, where v is such
that iv − iu = j. d: The set sequences (Fiu)i and (Tiu)i constructed from step 6 to answer pair
queries, for u = 6. For every i ∈ {0, 1, 2, 3} and ancestor Bi6 of B6 at level i, every node v ∈ Biu is
assigned a local index lB

i
6

v . The j-th bit of set Fi6 (resp. Ti6) is 1 iff (6, v) ∈ E∗ (resp. (v, 6) ∈ E∗),
where v is such that lB

i
6

v = j.

in position ix − iu of Fu, and hence the bit at position ix − iu + iv − ix = iv − iu of Fx will
be 1, as desired. J

Similarly, given a node u and an ancestor bag Biu of Bu at level i, the j-th position of
the set Fiu (resp., Tiu) is 1 only if (u, v) ∈ E∗ (resp., (v, u) ∈ E∗), where v ∈ Biu is such that
l
Bi

u
v = j. The following lemma states that the inverse is also true.

I Lemma 9. At the end of preprocessing, for every node u, for every v ∈ Biu where Biu is
the ancestor of Bu at level i, we have that if (u, v) ∈ E∗ (resp., (v, u) ∈ E∗), then the lB

i
u

v -th
bit of Fiu (resp., Tiu) is 1 .

I Lemma 10. Given a graph G with n nodes and treewidth t, let T (G) be the time and S(G)
be the space required for constructing a balanced tree-decomposition of G with O(n) bags and
width O(t). The preprocessing phase of Reachability on G requires O(T (G) + n · t2) time and
O(S(G) + n · t) space.

Proof. First, we construct a balanced tree-decomposition T = Tree(G) of G in T (G) time
and S(G) space. We establish the complexity of each preprocessing step separately.
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1. Using Lemma 4, this step requires O(n ·t) time. From this point on, T consists of b = O(nt )
bags, has height h = O(logn), and width t′ = O(t).

2. By a standard construction for balanced trees, preprocessing T to answer LCA queries in
O(1) time requires O(b) = O(nt ) time.

3. By Lemma 5, this step requires O(b · t′3) = O(nt · t
3) = O(n · t2) time and O(b · t′2) =

O(nt · t
2) = O(n · t) space.

4. Every bag B is visited once, and each operation on B takes constant time. We make O(t′)
such operations in B, hence this step requires O(b · t′) = O(n) time in total.

5–6. The space required in this step is the space for storing all the sets Fu of size su each,
packed into words of length W :

∑
u∈V

⌈ su
W

⌉
=

h∑
i=0

∑
u:Lv(u)=i

⌈ su
W

⌉
≤

h∑
i=0

∑
u:Lv(u)=i

( su
W

+ 1
)

= 1
W
·
h∑
i=0

∑
u:Lv(u)=i

su +
h∑
i=0

∑
u:Lv(u)=i

1 ≤ 1
W
·
h∑
i=0

n · (t′ + 1) + n = O(n · t)

since h = O(logn), t′ = O(t) and W = Θ(logn). Note that we have
∑
u:Lv(u)=i su ≤

n · (t′+ 1) because |
⋃
u Fu| ≤ n (as there are n nodes) and every element of

⋃
u Fu belongs

to at most t′ + 1 such sets Fu (i.e., for those u that share the same root bag at level
i). The time required in this step is O(n · t) in total for iterating over all pairs of nodes
(u, v) in each bag B such that B is the root bag of either u or v, and O(n · t2) for the set
operations, by amortizing O(t) operations per word used.

7. The time and space required for storing each sequence of the sets (Fiu)0≤i≤Lv(u) and
(Tiu)0≤i≤Lv(u) is:

∑
u∈V

2 ·
⌈
aBu + bBu

W

⌉
≤ 2 · n ·

⌈
(t′ + 1) · h

W

⌉
= O(n · t)

since aBu
+ bBu

≤ (t′ + 1) · h, h = O(logn) and W = Θ(logn).
8. The space required is the space for storing the set sequences (Tiv)i and (Fiv)i, which

is O(t2) by a similar argument as in the previous item. The time required is O(t) for
initializing every new set sequence (Tiu)i and (Fiu)i and this will happen once for each
node u at its root bag Bu, hence the total time is O(n · t). J

Reachability Querying. We now turn our attention to the querying phase.
Pair query. Given a pair query (u, v), find the LCA B of bags Bu and Bv. Obtain the sets

FLv(B)
u and TLv(B)

v of size bB. Each set starts in bit position aB of the corresponding
sequence (Fiu)i and (Tiv)i. Return True iff the logical-AND of FLv(B)

u and TLv(B)
v contains

an entry which is 1.
Single-source query. Given a single-source query u, create a bit set A of size n, initially all

0s. For every node x ∈ Bu with ix ≤ iu, if the lBu
x -th bit of FLv(u)

u is 1, insert Fx to the
segment [ix, ix + sx] of A. Then traverse the path from Bu to the root of T , and let Biu
be the ancestor of Bu at level i < Lv(Bu). For every node x ∈ Biu, if the l

Bi
u

x -th bit of
Fiu is 1, set the ix-th bit of A to 1. Additionally, if Biu has two children, let B be the
child of Biu that is not ancestor of Bu, and jmin and jmax the smallest and largest indices,
respectively, of nodes whose root bag is in T (B). Insert the segment [jmin − ix, jmax − ix]
of Fx to the segment [jmin, jmax] of A. Report that the nodes v reached from u are those
v for which the iv-th bit of A is 1.
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The following lemma establishes the correctness and complexity of the query phase.

I Lemma 11. After the preprocessing phase of Reachability, pair and single-source reachability
queries are answered correctly in O

(⌈
t

logn

⌉)
and O

(
n·t

logn

)
time respectively.

Proof. Let t′ = O(t) be the width of the small tree-decomposition constructed in Step 1.
The correctness of the pair query comes immediately from Lemma 9 and Lemma 1, which
implies that every path u v must go through the LCA of Bu and Bv. The time complexity
follows from the O

(⌈
t
W

⌉)
word operations on the sets FLv(B)

u and TLv(B)
v of size O(t) each.

Now consider the single-source query from a node u and let v be any node such that
there is a path P : u v. Let B be the LCA of Bu, Bv, and by Lemma 1, there is a node
y ∈ B ∩P . Let x be the last such node in P , and let P ′ : x v be the suffix of P from x. It
follows that P ′ is a path such that for every w ∈ P ′ we have ix ≤ iw ≤ ix + sx.
1. If Bv is an ancestor of Bu, then necessarily x = v, and by Lemma 9, the lBv -th bit of

FLv(B)
u is 1. Then the algorithm sets the iv-th bit of A to 1.

2. Else, Bx is an ancestor of Bv (recall that a bag is an ancestor of itself), and by Lemma 8,
the (iv − ix)-th bit of Fx is 1.
a. If B is Bu, the algorithm will insert Fx to the segment [ix, ix + sx] of A, thus the
ix + iv − ix = iv-th bit of A is set to 1.

b. If B is not Bu, it can be seen that jmin ≤ iv ≤ jmax, where jmin and jmax are the
smallest and largest indices of nodes whose root bag is in T (B′), with B′ the child of
B that is not ancestor of Bu. Since the (iv − ix)-th bit of Fx is 1, the (iv − jmin)-th
bit of the [jmin, jmax] segment of Fx is 1, thus the jmin + iv − jmin = iv-th bit of A is
set to 1.

Regarding the time complexity, the algorithm performs O(h · t′) = O(h · t) set insertions to
A. For every position j of A, the number of such set insertions that overlap on j is at most
t′ + 1 (once for every node in the LCA of Bu and Bv, where v is such that iv = j). Hence if
Hi is the size of the i-th insertion in A, we have

∑
iHi ≤ n · (t′ + 1). Since the insertions are

word operations, the total time spent for the single source query is

h∑
i=0

⌈
Hi

W

⌉
≤ h+

h∑
i=0

Hi

W
≤ h+ n · (t′ + 1)

W
= O

(
n · t
logn

)
since h = O(logn), t′ = O(t) and W = Θ(logn). J

4 Space vs Query Time Tradeoff for Sub-linear Space

In this section we present the data-structure LowSpDis, for low-space distance queries. Our
results make use of the following lemma.

I Lemma 12 ([16]). Consider a weighted graph G = (V,E,wt) of n nodes and constant-
treewidth, and a tree-decomposition T of G of O(n) nodes and constant width be given. There
exists a data-structure DistanceLP that answers distance queries on G and requires
1. O(n) preprocessing time and space; and
2. O(α(n)) pair query time.

Throughout this section we fix a constant ε ∈ [ 1
2 , 1]. The main idea is to partition the

initial tree-decomposition T to sufficiently large components, and discard all bags that don’t
appear in the boundary of their component. We use Lemma 12 to preprocess T and the
induced graph. Answering a pair query (u, v) is performed similarly as in Lemma 12, but
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requires additional time for processing the components in which u and v appear (since they
have not been preprocessed). The challenge comes in performing these computations within
the targeted space and time bounds. We establish the following theorem.

I Theorem 13. Let (1) a constant ε ∈ [ 1
2 , 1]; and (2) a weighted graph G = (V,E,wt) with

n nodes and of constant treewidth, be given. The data structure LowSpDis correctly answers
pair distance queries on G and requires
1. Polynomial in n preprocessing time;
2. O(nε) working space; and
3. O(n1−ε · α(n)) pair query time.

I Remark. The data-structure LowSpDis accesses the graph in the input space, i.e., the graph
and is not counted for the working space bound of LowSpDis.

Informal description. Here we outline the key steps required for LowSpDis to achieve the
bounds stated in Theorem 13. The preprocessing consists of the following conceptual steps.
1. A binary tree-decomposition T = Tree(G) of O(n) bags is constructed in polynomial time

and logarithmic space, using [20]. Hence, LowSpDis does not store T explicitly, but uses
the logspace construction of [20] to traverse T and access its bags.

2. A tree-partitioning algorithm LowSpTreePart is used to partition T into O(n1−ε) compo-
nents C of size O(nε) each. A key point in this construction is that every such component
C contains a constant number of bags on its boundary.

3. Given a list of components C = (C1, . . . , C`) constructed in the previous step, a tree of
bags called summary tree T is constructed. The summary tree occurs by contracting
every component Ci of T to a single bag Bi. Moreover, Bi contains precisely the nodes
that appear in the bags of the boundary of Ci. Since there are O(1) such bags for
every component, each Bi has constant size. The key point in this step is that T is a
tree-decomposition of G restricted on the nodes that appear in bags of T . Moreover, T
has size O(n1−ε) instead of O(n), which is the size of the initial tree-decomposition T .

4. Since T is a tree-decomposition, Lemma 12 applies to preprocess T in the stated bounds.
5. An algorithm LowSpLD is used to compute the distance d(u, v) between any pair of nodes

u, v that appear together in some boundary bag of a component Ci. This is achieved by
traversing T in a particular way, and applying a standard, linear-space computation on
each component Ci separately. Since |Ci| = O(nε), this requires O(nε) space. Since the
boundary bags of Ci are constantly many, the algorithm only needs to store constant-size
information per component, and thus O(n1−ε) = O(nε) information in total.

6. Finally, given a node u, it is crucial to obtain the set Vu of nodes that u can reach going
through nodes v that appear in bags of T . Moreover, this set needs to be obtained in
linear time in the size of the component, i.e., O(n1−ε). This is achieved by a graph
traversal on G starting from u, in combination with perfect hashing for testing in O(1)
time whether a node v appears in bags of T .

A query u, v is answered by LowSpDis using the following conceptual steps.
1. First, the algorithm retrieves the sets Vu and Vv. If v ∈ Vu, then the distance d(u, v) is

retrieved by constructing a tree-decomposition Tu of G[Vu], and using standard methods
for solving the problem in Tu, in O(nε) time. Similarly if u ∈ Vv.

2. If v 6∈ Vu and u 6∈ Vv, then the algorithm again constructs the tree-decompositions Tu
and Tv of G[Vu] and G[Vv] respectively. The algorithm retrieves two bags Bu and Bv of
T with Bu ⊆ Vu and Bv ⊆ Vv, and uses the standard methods of the previous item to
obtain the distances d(u, x) and d(y, v), for every node x ∈ Bu and Bv. Additionally, the
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algorithm uses Lemma 12 to obtain the distance d(x, y) between every such pair x, y.
Finally, the algorithm returns the value minx∈Bu,y∈Bv

(d(u, x) + d(x, y) + d(y, v)).

In the remaining of this section we describe in detail the above phases of LowSpDis.

Tree partitioning: The algorithm LowSpTreePart. We first describe algorithm
LowSpTreePart, which operates on a binary tree-decomposition T = (VT , ET ) of O(n) bags.
Given a constant ε, LowSpTreePart splits T to O(n1−ε) connected components C ⊆ VT of size
|C| = O(nε). Each component C is implicitly represented as a list of bags C(B1, . . . , Bk),
which mark the boundaries of C in T . The root of C(B1, . . . , Bk) is B = arg minBi Lv(Bi),
i.e., the smallest-level bag among all Bi. We will consider w.l.o.g. that B1 is always the root
bag of component C(B1, . . . , Bk). A bag B′ belongs to C iff the Lv(B′) ≥ Lv(B1) and the
unique simple path B  B1 in T does not contain any of the Bi as intermediate bags.

The algorithm traverses T in post-order, and maintains a two variables x, y ∈ N, that
represent the size of the current component C and the number of components that appear
directly below C. As the algorithm backtracks to a bag B, it updates x = x1 + x2 + 1 and
y = y1 + y2, where xi, yi is the pair corresponding to the child B′i of B (recall that T is
binary), or sets x = x1 + 1 and y = y1 if B has only one child B′1. If x ≥ nε or y ≥ 3,
the algorithm creates a new component C(B1, . . . , Bk), where B1 is the current bag B, and
B2, . . . , Bk are parents of roots of components that have been constructed already (or leaves
of T ). Finally, the algorithm sets x = 0 and y = 1, and proceeds to the parent of B.

I Lemma 14. LowSpTreePart constructs O(n1−ε) components. For every constructed com-
ponent C(B1, . . . , Bk) we have |C| ≤ 2 · nε − 1 and k ≤ 5.

Proof. If |C| > 2 · nε − 1, then, before backtracking to B1, the algorithm examined a child
B of B1 with value x ≥ j, and thus would have grouped B and B1 in different components.
It is easy to see that every root of a component appears in the same component with its
children, a contradiction. A similar argument holds for showing that k ≤ 5. We now argue
that LowSpTreePart constructs O(n1−ε) components. We say that the algorithm “performs
a type A cut” and “performs a type B cut” when it constructs a component based on the
criterion x ≥ j and y ≥ 3 respectively. Let X and Y be the number of type A and type B
cuts. Every type A cut constructs a component of size at least j, hence X = O(n1−ε).
Additionally, we have Y ≤ X, hence X + Y = O(n1−ε), as desired. To see that Y ≤ X, let
Z be a counter that counts the sum of the y values that LowSpTreePart maintains at any
point in the traversal. Observe that a type A cut increases Z by at most one, and a type B
cut decreases Z by at least one. Since Z is always non-negative, we have that there is at
least one type A cut for each type B cut, thus Y ≤ X. The desired result follows. J

We denote by Root(C) the root bag of a component C. Given two components C1, C2
constructed by LowSpTreePart, we say that C1 is the parent of C2 if Root(C1) is the lowest
ancestor of Root(C2) among all bags that appear as roots in some component. In such case,
C2 is a child of C1. Given a component C that is the parent of components C1, . . . , Ci, we
let Merge(C) = C ∪

⋃
j Cj .

The summary tree construction SummaryTree. Let C = (C1, . . . , C`) = LowSpTreePart(T )
be the list of components that LowSpTreePart returns, where each component is implicitly
represented by the bags of its boundary, i.e., Ci = Ci(Bi1, . . . , Biki

). We construct a summary
tree of bags T = SummaryTree(C) = (V ,E) as follows.
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1. V consists of bags Bi for 1 ≤ i ≤ `, where Bi = Bi1 ∪ · · · ∪Biki
, i.e., Bi is the union of all

bags in the boundary of Ci.
2. We have (Bi,Bj) ∈ E if Ci is a parent of Cj .

The following lemma follows easily from Lemma 14 and the above construction.

I Lemma 15. Let VS =
⋃
Bi∈V Bi be the set of nodes of G that appear in bags of the summary

tree T . Then T is a tree-decomposition of the graph G[VS ] induced by VS. T has O(n1−ε)
bags and constant width.

Local distance computation in low space LowSpLD. Let C = (C1, . . . , C`) =
LowSpTreePart(T ) be the list of components constructed by LowSpTreePart. We describe
algorithm LowSpLD, which computes the distance d(u, v) between any pair of nodes u, v that
appear in the root bag Root(Ci) of some component Ci. Let Ti = Tree(G)[Merge(Ci)] be the
subtree of Tree(G) restricted in the bags of component Ci and its children components, and
Vi =

⋃
B∈Merge(Ci) B the set of nodes that appear in bags of Merge(Ci). It is easy to verify

that Ti is a subtree of T , and thus a tree decomposition of the graph G[Vi] = (Vi, Ei) induced
by Vi. The algorithm LowSpLD operates as follows. For every component C, it maintains a
local distance map LDRoot(C) : Root(C)× Root(C)→ Z. Initially, LDRoot(C)(u, v) = wt(u, v)
for every component C and pair of nodes u, v ∈ Root(C). Then, LowSpLD performs the
following two passes.
1. Traverse T bottom-up, and for every encountered bag B that corresponds to component

C, let C1, . . . , Ck be the children components of C. Obtain the tree-decomposition Ti,
and construct a weight function wti : Ei → Z defined as follows:

wti(u, v) =


LDRoot(C)(u, v) if u, v ∈ Root(C)
LDRoot(Ci)(u, v) if u, v ∈ Root(Ci) for some 1 ≤ i ≤ k

wt(u, v) otherwise

and execute the local distance computation of Lemma 5 Afterwards, update LDRoot(C)
and LDRoot(Ci) for all 1 ≤ i ≤ k with the newly discovered distances.

2. Traverse T top-down, and for every encountered bag B execute the steps of Step 1.

I Lemma 16. At the end of LowSpLD, for every component C and nodes u, v ∈ Root(C) we
have LDRoot(C)(u, v) = d(u, v). Moreover, LowSpLD operates in O(nε) space and polynomial
time.

Proof. The correctness of LowSpLD follows straightforwardly from Lemma 5 and Lemma 3.
Since T has constant width, the size of each local distance map LDRoot(C) has constant size.
Hence the space used by the algorithm is asymptotically the space required for storing T ,
plus the space for constructing each tree-decomposition Ti. By Lemma 15 the former requires
O(n1−ε) space, while by Lemma 14 the latter O(nε) space. Since ε ≥ 1

2 , we conclude that
the space usage is O(nε). The polynomial time bound follows from the space bound. J

Fast component retrieval GetCompNodes. Given a node u of G, we are interested in
retrieving the set Vu of nodes that u can reach in G without going through nodes v that
appear in bags of T . The desired set Vu can be obtained in O(nε) time by a performing any
standard graph traversal on G starting from u, and making sure that the traversal never
expands a node v that appears in the bags of T . This can be done if testing whether v
appears in any of the bags of T can be performed in constant time. Let VS =

⋃
Bi∈V Bi be

the set of all such nodes, and k = |VS | = O(n1−ε). We cannot store VS as a standard bit-set
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which allows O(1) membership testing, as this would require linear space (i.e., beyond our
space bound O(nε)). The problem can be solved using standard techniques from perfect
hashing to store the set VS . In the query phase, given a node u, GetCompNodes detects that
u ∈ VS by testing whether u equals its entry in the hash table.

LowSpDis Preprocessing. We now describe the preprocessing phase of LowSpDis. The
input is a weighted graph G = (V,E,wt) of constant treewidth, and a constant ε ∈ [ 1

2 , 1].
1. Construct a binary tree-decomposition T = Tree(G) in logspace [20].
2. Use LowSpTreePart to construct a list of components C = (C1, . . . , C`) =

LowSpTreePart(T ), with ` = n1−ε (i.e., LowSpTreePart is executed with j = nε).
3. Construct the local distance maps LDRoot(C) using LowSpLD.
4. Construct the summary tree T = SummaryTree(C) = (V ,E). For every component Ci

that corresponds to Bi in T , find a node z 6∈ Bi that appears in bags of Ci, and associate
z with Bi.

5. Use Lemma 12 to build a data-structure DistanceLP on G[VS ] and T .
6. Let VS =

⋃
Bi∈V Bi be the set of nodes of G that appear in bags of the summary tree T .

Construct the data-structure GetCompNodes on VS .

LowSpDis Querying. We now turn our attention to the query phase of LowSpDis.
1. Use the data-structure GetCompNodes to construct the sets Vu and Vv.
2. Construct the tree-decompositions Tu and Tv of the graphs G[Vu] and G[Vv] induced by

Vu and Vv. This is done using some standard linear-time algorithm, e.g. [12, Lemma 2].
If u ∈ Vv, insert u to every bag of Tv, and use Lemma 5 to obtain the distance d(u, v).
Similarly if v ∈ Vu.

3. If u 6∈ Vv and v 6∈ Vu let Bu be the unique bag of T with that is associated with a node
zu ∈ Vu, and Bv the unique bag of T that is associated with a node zv ∈ Vv. Insert every
node of Bu in every bag of Tu, and every node of Bv in every bag of Tu, and use Lemma 5
to obtain the distances d(u, x) and d(y, v) for every node x ∈ Bu and y ∈ Bv. Return
the value minx∈Bu,y∈Bv

(d(u, x) + d(x, y) + d(y, v)) where for every pair x, y the distance
d(x, y) is obtained by querying DistanceLP.

Proof of Theorem 13. It is clear from Lemma 12, Lemma 14, Lemma 15 and Lemma 16
that the preprocessing of LowSpDis requires polynomial time and O(nε) space, where ε ≥ 1

2 .
In the query phase, LowSpDis uses O(nε) time and space for extracting the sets Vu and Vv,
since each has size O(nε). Using a linear time and space algorithm for constructing the
tree-decompositions Tu and Tv, this step also requires O(n1−ε) time and space. If u ∈ Vv or
v ∈ Vu, applying Lemma 5 on Tu and Tv is also done in O(n1−ε) time and space.

If u 6∈ Vv and v 6∈ Vu, note that by Lemma 15 Bu and Bv have constant size, hence after
inserting every node of Bu to every bag of Tu and every node of Bv to every bag of Tv, Tu and
Tv still have constant width. Hence all distances d(u, x) and d(v, y) can be obtained using
Lemma 5 in O(n1−ε) time and space. Finally, DistanceLP will be queried for the distances
d(x, y) of a constant number of pairs x, y, and by Lemma 12, all such queries can be served
in O(n1−ε · α(n)) time. J
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