
Counting Matchings with k Unmatched Vertices
in Planar Graphs
Radu Curticapean∗†

Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
radu.curticapean@gmail.com

Abstract
We consider the problem of counting matchings in planar graphs. While perfect matchings in
planar graphs can be counted by a classical polynomial-time algorithm [26, 33, 27], the problem of
counting all matchings (possibly containing unmatched vertices, also known as defects) is known
to be #P-complete on planar graphs [23].

To interpolate between matchings and perfect matchings, we study the parameterized problem
of counting matchings with k unmatched vertices in a planar graph G, on input G and k. This
setting has a natural interpretation in statistical physics, and it is a special case of counting perfect
matchings in k-apex graphs (graphs that become planar after removing k vertices). Starting from
a recent #W[1]-hardness proof for counting perfect matchings on k-apex graphs [12], we obtain:

Counting matchings with k unmatched vertices in planar graphs is #W[1]-hard.
In contrast, given a plane graph G with s distinguished faces, there is an O(2s · n3) time
algorithm for counting those matchings with k unmatched vertices such that all unmatched
vertices lie on the distinguished faces. This implies an f(k, s) · nO(1) time algorithm for
counting perfect matchings in k-apex graphs whose apex neighborhood is covered by s faces.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory, F.1.3 Complexity
Measures and Classes

Keywords and phrases counting complexity, parameterized complexity, matchings, planar graphs

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.33

1 Introduction

The study of the computational complexity of counting problems was introduced in a seminal
paper by Valiant [34] that established the class #P and proved that counting perfect matchings
in an unweighted bipartite graph is #P-complete. In a companion paper [35], Valiant proved
that counting all (not necessarily perfect) matchings in a graph is #P-complete as well. Even
prior to these initial complexity-theoretic results, problems related to matchings and perfect
matchings have played an important role in various scientific disciplines.

For instance, the number of perfect matchings in a bipartite graph G arises in enumerative
combinatorics and algebraic complexity as the permanent of the bi-adjacency matrix associ-
ated with G [3, 1]. In statistical physics, counting perfect matchings amounts to evaluating
the partition function of the dimer model [27, 26, 33]: The physical interpretation here is that
vertices are discrete points that are occupied by atoms, while edges are interpreted as bonds

∗ Part of this work was carried out while the author was a PhD student at Saarland University in
Saarbrücken, Germany, and while he was visiting the Simons Institute for the Theory of Computing in
Berkeley, USA. The material also appears in his PhD thesis [10].

† The author is supported by the ERC grant PARAMTIGHT, no. 280152.

© Radu Curticapean;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 33; pp. 33:1–33:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 Counting Matchings with k Unmatched Vertices in Planar Graphs

between the corresponding atoms. The partition function of G is then essentially defined
as the number of perfect matchings in G, and it encodes thermodynamic properties of the
associated system. Likewise, the problem of counting all matchings is known to statistical
physicists as the monomer-dimer model [23]; in this setting, some points may be unoccupied
by atoms. In the intersection of chemistry and computer science, the number of matchings
of a graph (representing a molecule) is known as its Hosoya index [20].

In view of these applications and the #P-hardness of counting matchings and perfect
matchings, several relaxations were considered to cope with these problems. Among these,
approximate counting and the restriction to planar graphs proved most successful. However,
once we start incorporating these relaxations, the seemingly very similar problems of counting
matchings and counting perfect matchings exhibit stark differences:

On planar graphs, perfect matchings can be counted in polynomial time by the classical
and somewhat marvelous FKT method [27, 26, 33], which reduces this problem to the
determinant. The problem of counting all matchings is however #P-complete on planar
graphs [23]. In particular, the algebraic machinery in the FKT method breaks down for
non-perfect matchings.
It was shown that the number of matchings in a graph admits a polynomial-time random-
ized approximation scheme (FPRAS) on general graphs [24]. By a substantial extension
of this approach, an FPRAS for counting perfect matchings in bipartite graphs was
obtained [25] – but despite great efforts, no FPRAS is known for general graphs.

In the present paper, we focus on the differing behavior of matchings and perfect matchings
on planar graphs. To this end, we study the problem #PlanarDefectMatch of counting
matchings with k unmatched vertices (which we call k-defect matchings) in a planar graph G,
on input G and k. This problem is clearly #P-hard under Turing reductions, as the #P-hard
number of matchings in G can be obtained as the sum of numbers of k-defect matchings in G
for k = 0, . . . , |V (G)|. On the other hand, #PlanarDefectMatch can easily be solved in time
|V (G)|O(k), as we can simply enumerate all k-subsets X ⊆ V (G) that represent potential
defects, count perfect matchings in the planar graph G−X by the FKT method, and sum
up these numbers.

1.1 Parameterized counting problems
The fact that #PlanarDefectMatch is #P-hard and polynomial-time solvable for constant k
suggests that this problem benefits from the framework of parameterized counting complexity
[15]. This area is concerned with parameterized counting problems, whose instances x come
with parameters k, such as #PlanarDefectMatch or the problem #Clique of counting k-cliques
in an n-vertex graph. Intuitively, the parameterized problem #PlanarDefectMatch considers
k-defect matchings in planar graphs with k � n, and the physical interpretation in terms
of the monomer-dimer model is that each configuration of the system admits only a small
number of “vacant” points that are not occupied by atoms.

Note that both #PlanarDefectMatch and #Clique can be solved in time nO(k) and are
hence in the so-called class XP. One important goal for such problems lies in finding
algorithms with running times f(k) · |x|O(1) for computable functions f , which renders the
problems fixed-parameter tractable (FPT) [15, 16]. If no FPT-algorithms can be found for
a given problem, one can try to show its #W[1]-hardness. This essentially boils down to
finding a parameterized reduction from #Clique, and it shows that FPT-algorithms for the
problem would imply FPT-algorithms for #Clique, which is considered unlikely.

For instance, to prove #W[1]-hardness of #PlanarDefectMatch by reduction from #Clique,
we would need to find an algorithm that counts k-cliques of an n-vertex graph in time

R. Curticapean 33:3

f(k) · nO(1) with an oracle for #PlanarDefectMatch. Additionally, the algorithm should only
invoke the oracle for counting k′-defect matchings with k′ ≤ g(k). Here, both the function f
appearing in the running time and the blow-up function g are arbitrary computable functions.

Furthermore, parameterized reductions can also be used to obtain lower bounds under
the exponential-time hypothesis #ETH, which postulates that the satisfying assignments to
formulas ϕ in 3-CNF cannot be counted in time 2o(n) [13, 21, 22]. For instance, it is known
that #Clique cannot be solved in time no(k) unless #ETH fails [5]. If we reduce from #Clique
to a target problem by means of a reduction that invokes only blow-up O(k), then #ETH
also rules out no(k) time algorithms for the target problem [29].

1.2 Perfect matchings with planar-like parameters
To put #PlanarDefectMatch into context, let us survey some parameterizations for the problem
#PerfMatch of counting perfect matchings and see how these connect to #PlanarDefectMatch.

The FKT method for planar graphs was extended [18, 30, 12] from planar graphs to
graphs of fixed genus g, resulting in O(4g · n3) time algorithms for #PerfMatch.
Polynomial-time algorithms for #PerfMatch were obtained for K3,3-free graphs [28, 38]
and K5-free graphs [32]. More generally, for every class of graphs excluding a fixed
single-crossing minor H (that is, H can be drawn in the plane with at most one crossing),
an f(H) · n4 time algorithm is known [7].
A simple dynamic programming algorithm yields a running time of 3t·nO(1) for #PerfMatch
on graphs of treewidth t. By using fast subset convolution [37], the running time can be
improved to 2t · nO(1).

Since all of the tractable classes above exclude fixed minors for fixed parameter values, one
is tempted to believe that #PerfMatch could be polynomial-time solvable on each class
of graphs excluding a fixed minor H, and possibly even admit an FPT-algorithm when
parameterized by the minimum size of an excluded minor. This last possibility was however
ruled out by the following result:1

#PerfMatch is #W[1]-hard on k-apex graphs [12]. For k ∈ N, a graph G is k-apex if
there is a set A ⊆ V (G) of size k such that G − A is planar. The vertices in A are
called apices. Since k-apex graphs exclude minors on O(k) vertices, the #W[1]-hardness
result for #PerfMatch on k-apex graphs implies #W[1]-hardness of #PerfMatch on graphs
excluding fixed minors H (when parameterized by the minimum size of such an H).

Note that #PerfMatch can be solved in time nO(k) on k-apex graphs by brute-force in a
similar way as #PlanarDefectMatch. To cope with the #W[1]-hardness of #PerfMatch in
k-apex graphs and potentially obtain faster algorithms, we study two special cases:
1. We consider #PlanarDefectMatch, which is indeed a special case, as discussed below.
2. We consider #PerfMatch in k-apex graphs whose apices are adjacent with only a bounded

number of faces in the underlying planar graph. More in Section 1.4 of the introduction.

1.3 From k apices to k defects
To count the k-defect matchings in a planar graph G, we can equivalently count perfect
matchings in the k-apex graph G′ obtained from G by adding k independent apex vertices
adjacent to all vertices of G: Every perfect matching of G′ then corresponds to a k-defect
matching of G, and likewise, every k-defect matching of G corresponds to precisely k! perfect

1 In fact, recent unpublished work suggests the existence of constant-sized minors H such that #PerfMatch
is #P-hard on H-minor free graphs.

ESA 2016

33:4 Counting Matchings with k Unmatched Vertices in Planar Graphs

Table 1 Counting matchings under different parameterizations and input restrictions

counting matchings on planar inputs on general inputs
with k edges FPT by [17] #W[1]-complete by [6, 11]
with k defects #W[1]-hard by Thm. 1 #P-complete for k = 0 by [34]

matchings of G′. This shows that #PlanarDefectMatch reduces to #PerfMatch on k-apex
graphs, even when the apices in these latter graphs form an independent set and each
apex is adjacent with all non-apex vertices. Note that the #W[1]-hardness for the general
problem of #PerfMatch on k-apex graphs does a priori not carry over to the special case
#PlanarDefectMatch, as the edges between apices and the planar graph cannot be assumed
to be complete bipartite graphs in the general problem.

Nevertheless, we show in Section 3 that #PlanarDefectMatch is #W[1]-hard. To this
end, we reduce from #PerfMatch on k-apex graphs by means of a “truncated” polynomial
interpolation where we wish to recover only the first k coefficients from a polynomial of
degree n. The technique is comparable to that used in the first #W[1]-hardness proofs for
counting matchings with k edges [2, 6]. Interestingly enough, our reduction maps k-apex
graphs to instances of counting k-defect matchings without incurring any parameter blowup
at all. In particular, we obtain the same almost-tight lower bound under #ETH that was
known for #PerfMatch on k-apex graphs [12].

I Theorem 1. #PlanarDefectMatch is #W[1]-hard and admits no no(k/ log k) time algorithm
unless #ETH fails.

It should be noted that the “primal” problem of counting matchings with k edges is #W[1]-
hard on general graphs [6, 11], but becomes FPT on planar graphs [17]. Furthermore, recall
that counting matchings with 0 defects (that is, perfect matchings) in general graphs is
#P-hard. See also Table 1 for the complexity of counting matchings in various settings.

1.4 Few apices that also see few faces
In Section 4, we show that #PerfMatch becomes easier in k-apex graphs G when the apex
neighborhoods can all be covered by s faces of the underlying planar graph. This setting
is motivated by a structural decomposition theorem for graphs G excluding a fixed 1-apex
minor H: As shown in [14], based on [31], if G excludes a fixed 1-apex minor H, then there
is a constant cH ∈ N such that G can be obtained by gluing together (in a formalized way)
graphs that have genus ≤ cH after removing “vortices” from ≤ cH faces and a set A of ≤ cH
apex vertices, whose neighborhood in G−A is however covered by ≤ cH faces. Our setting is
a simplification of this general situation as we forbid vortices, gluing, and restrict the genus
to 0. We obtain an FPT-algorithm for this restricted case:

I Theorem 2. Given as input a graph G, a set A ⊆ V (G) of size k and a drawing of G−A
in the plane with s distinguished faces F1, . . . , Fs such that the neighborhood of A is contained
in the union of F1, . . . , Fs, we can count the perfect matchings of G in time 2O(2k·log(k)+s) ·n4.

Note that even with k = 3 and s = 1, such graphs can have unbounded genus, as witnessed
by the graphs K3,n for n ∈ N: Each graph K3,n is a 3-apex graph whose underlying planar
graph (which is an independent set) can be drawn on one single face. However, the genus of
K3,n is known to be Ω(n) [19].

To prove Theorem 2, we first consider a variant of #PlanarDefectMatch where the input
graph G is given as a planar drawing with s distinguished faces. The task in this variant is

R. Curticapean 33:5

to count k-defect matchings such that all defects are contained in the distinguished faces.
This problem is FPT, even when k is not part of the parameter.

I Theorem 3. Given as input a planar drawing of a graph G with s distinguished faces
F1, . . . , Fs, the following problem can be solved in time O(2s · n3): Count the matchings in G
for which every defect is contained in V (F1) ∪ . . . ∪ V (Fs).

To prove Theorem 3, we implicitly use the technique of combined signatures [12]: Using a
linear combination of two planar gadgets from [36], we show that counting the particular
matchings needed in Theorem 3 can be reduced to 2s instances of #PerfMatch in planar
graphs. We can phrase this result in a self-contained way that does not require the general
machinery of combined signatures. It should be noted that the case s = 1 was already solved
by Valiant [36] and that our proof of Theorem 3 is a rather simple generalization of his
construction. In a different context, this idea is also used in [9].

More effort is then required to prove Theorem 2, and we do so by reduction to Theorem 3.
To this end, we label each vertex in the planar graph G−A with its neighborhood in the
apex set A. Each k-defect matching in G−A then has a type, which is the k-element multiset
of A-neighborhoods of its k defects.2 We will be able to count k-defect matchings M of any
specified type among the (2k)k possible types, and we observe that the number of extensions
from M to a perfect matching in G depends only on its type. This will allow us to recover
the number of perfect matchings in G.

2 Preliminaries

For n ∈ N, write [n] = {1, . . . , n}. Graphs G are undirected and simple. They are unweighted
unless specified otherwise. We write NG(v) for the neighborhood of v ∈ V (G) in G.

2.1 Polynomials
We denote the degree of a polynomial p ∈ Q[x] by deg(p). If x = (x1, . . . , xt) is a list
of indeterminates, then we write Nx for the set of all monomials over x. A multivariate
polynomial p ∈ Q[x] is a polynomial p =

∑
θ∈Nx a(θ) · θ with a(θ) ∈ Q for all θ ∈ Nx, where

a has finite support. The polynomial p contains a given monomial θ ∈ Nx if a(θ) 6= 0 holds.
If x is an indeterminate from x, then we write degx(p) for the degree of x in p. This is the
maximum number k ∈ N such that p contains a monomial θ with factor xk. If y is a list of
indeterminates, then we denote the total degree of y in p as the maximum degree of any
monomial Ny that is contained as a factor of a monomial in p.

Furthermore, if p ∈ Q[x, y] is a bivariate polynomial and ξ ∈ Q is some arbitrary fixed
value, we write p(·, ξ) for the result of the substitution y ← ξ in p, and we observe that
p(·, ξ) ∈ Q[x]. Likewise, we write p(ξ, ·) for the result of substituting x← ξ.

2.2 (Perfect) matching polynomials
If G is a graph, then a set M ⊆ E(G) of vertex-disjoint edges is called a matching. We
write M[G] for the set of all matchings of G. For M ∈ M[G], we write usat(M) for the
set of unmatched vertices in M . If |usat(M)| = k for k ∈ N, we say that M is a k-defect
matching, and we write DMk[G] for the set of k-defect matchings of G. We also write
PM[G] = DM0[G] for the set of perfect matchings of G.

2 This resembles an idea from an algorithm for counting subgraphs of bounded vertex-cover number [11].

ESA 2016

33:6 Counting Matchings with k Unmatched Vertices in Planar Graphs

If G is an edge-weighted graph with edge-weights w : E(G)→ Q, then we define

#PerfMatch(G) =
∑

M∈PM[G]

∏
e∈M

w(e). (1)

On planar graphs G, we can efficiently compute #PerfMatch(G).

I Theorem 4 ([26, 33, 27]). For planar edge-weighted graphs G, the value #PerfMatch(G)
can be computed in time O(n3).

If G is a vertex-weighted graph with vertex-weights w : V (G)→ Q, we define

#MatchSum(G) =
∑

M∈M[G]

∏
v∈usat(M)

w(v). (2)

Both #PerfMatch and #MatchSum are also used in [36]. Note that zero-weights have different
semantics in the two expressions: A vertex v ∈ V (G) with w(v) = 0 is required to be matched
in all matchings M ∈ M[G] that contribute a non-zero term to #MatchSum. An edge
e ∈ E(G) with w(e) = 0 can simply be deleted from G without affecting #PerfMatch(G).

Finally, if X is a formal indeterminate, we define the defect-generating matching polyno-
mial of unweighted graphs G as

µ(G) :=
∑

M∈M[G]

X |usat(M)| =
n∑
k=0

#DMk[G] ·Xk. (3)

Note that µ(G) = #MatchSum(G′) when G′ is obtained from G by assigning weight X to
every vertex of G. In this paper, we will be interested in the first k coefficients of µ(G).
I Remark. It is known [4] that for every fixed ξ ∈ Q \ {0}, the problem of evaluating µ(G; ξ)
on input G is #P-complete, even on planar bipartite graphs G of maximum degree 3. Note
that the evaluation µ(G; 0) counts the perfect matchings of G.

2.3 Techniques from parameterized counting
Please consider Section 1.1 for an introduction to parameterized counting complexity, and [15]
for a more formal treatment. We write ≤Tfpt for parameterized (Turing) reductions between
problems (as introduced in Section 1.1). Furthermore, we write ≤lin

fpt for such parameterized
reductions that incur only linear parameter blowup, i.e., on instances x with parameter k,
they only issue queries with parameter O(k).

Given a universe Ω and several “bad” subsets of Ω, the inclusion-exclusion principle allows
us to count those elements of Ω that avoid all bad subsets, provided that we know the sizes
of intersections of bad subsets.

I Lemma 5. Let Ω be a set and let A1, . . . , At ⊆ Ω. For ∅ ⊂ S ⊆ [t], let AS :=
⋂
i∈S Ai and

define A∅ := Ω. Then we have
∣∣∣Ω \⋃i∈[t]Ai

∣∣∣ =
∑
S⊆[t](−1)|S| |AS |.

In applications of Lemma 5, the left-hand side of the equation corresponds to a quantity we
wish to determine, while the numbers |AS | for S ⊆ [t] are computed by oracle calls.

We will also generously use the technique of polynomial interpolation: if a univariate
polynomial p has degree n and we can evaluate p(ξ) at n+ 1 distinct values ξ, then we can
recover the coefficients of p. This can be generalized to multivariate polynomials: If p has n
variables, all of maximum degree d, and we are given sets Ξ1, . . . ,Ξn, all of size d+ 1, along
with evaluations of p(ξ) on all grid points ξ ∈ Ξ1 × . . . × Ξn, then we can determine the
coefficients of p in time O((d+ 1)3n).

R. Curticapean 33:7

I Lemma 6 ([8]). Let p ∈ Z[x1, . . . , xn] be a multivariate polynomial, and for i ∈ [n], let the
degree of xi in p be bounded by di ∈ N. Let Ξ = Ξ1 × . . .×Ξn ⊆ Qn with |Ξi| = di + 1 for all
i ∈ [n]. Then we can compute the coefficients of p with O(|Ξ|3) arithmetic operations when
given as input the set {(ξ, p(ξ)) | ξ ∈ Ξ}.

3 Hardness of #PlanarDefectMatch

We now prove Theorem 1: Given a planar graph G and k ∈ N, it is #W[1]-hard to count
the k-defect matchings of G. This amounts to computing the coefficient of Xk in the
matching-defect polynomial µ(G). We start from the #W[1]-hardness for the following
problem #ApexPerfMatch, which follows from Theorem 1.2 and Remark 5.6 in [12]:

I Theorem 7 ([12]). The following problem #ApexPerfMatch is #W[1]-hard: Compute the
value of #PerfMatch(G), when given as input an unweighted graph G and an independent
set A ⊆ V (G) of size k such that G − A is planar and each vertex v ∈ V (G) \ A satisfies
|NG(v) ∩ A| ≤ 1. The parameter in this problem is k. Furthermore, assuming #ETH, the
problem cannot be solved in time no(k/ log k).

In the proof of Theorem 1, we introduce an intermediate problem #RestrDefectMatch:

I Problem 8. The problem #RestrDefectMatch is defined as follows: Given as input a triple
(G,S, k) where G is a planar graph, S ⊆ V (G) is a set of vertices, and k ∈ N is an integer,
count those k-defect matchings of G whose defects all avoid S, i.e., those k-defect matchings
M with S ∩ usat(M) = ∅. The parameter is k.

The problem #RestrDefectMatch is equivalent (up to multiplication by a simple factor) to
the problem #ApexPerfMatch on graphs G whose apices A are all adjacent to a common
subset S of the planar graph G− A, and to no other vertices. Our overall reduction then
proceeds along the chain

#ApexPerfMatch ≤lin
fpt #RestrDefectMatch ≤lin

fpt #PlanarDefectMatch. (4)

3.1 From #ApexPerfMatch to #RestrDefectMatch
The first reduction in (4) follows from an application of the inclusion-exclusion principle.

I Lemma 9. We have #ApexPerfMatch ≤lin
fpt #RestrDefectMatch.

Proof of Lemma 9. We reduce from #ApexPerfMatch and wish to count perfect matchings
in an unweighted graph G with apex set A = {a1, . . . , ak} and planar base graph H = G−A.
Note that A is given as part of the input, and it is an independent set. Furthermore, by
definition of #ApexPerfMatch, the set V (H) admits a partition into V1 ∪ . . . ∪ Vk ∪W such
that all vertices v ∈ Vi for i ∈ [k] are adjacent to the apex ai and to no other apices, while no
vertex v ∈W is adjacent to any apex. In other words, each vertex v ∈ V (H) can be colored
by its unique adjacent apex, or by a neutral color if v ∈W .

Recall that DMk[H] denotes the set of k-defect matchings in H. We call a k-defect
matching M ∈ DMk[H] colorful if |usat(M) ∩ Vi| = 1 holds for all i ∈ [k], and we write C
for the set of all such M . Note that usat(M) ∩W = ∅ for M ∈ C, since none of its k defects
are left over for W .

We claim that PM[G] ' C: IfM ∈ PM[G], then N = M−A satisfies N ∈ C. Conversely,
every N ∈ C can be extended to a unique M ∈ PM[G] by matching the unique i-colored
defect to its unique adjacent apex ai.

ESA 2016

33:8 Counting Matchings with k Unmatched Vertices in Planar Graphs

Given oracle access to #RestrDefectMatch, we can determine #C by the inclusion-exclusion
principle from Lemma 5: For i ∈ [k], let Ai denote the set of those M ∈ DMk[H] whose
defects avoid color i, i.e., they satisfy usat(H,M) ∩ Vi = ∅. Then C = DMk[H] \

⋃
i∈[k]Ai.

For S ⊆ [k], write AS =
⋂
i∈S Ai and note that we can compute #AS by an oracle call to

#RestrDefectMatch on the instance (H,
⋃
i∈S Vi, k). We can hence compute #C = #PM[G]

via inclusion-exclusion (Lemma 5) and 2k oracle calls to #RestrDefectMatch. J

3.2 From #RestrDefectMatch to #PlanarDefectMatch
For the second reduction in (4), we wish to solve instances (G,S, k) to #RestrDefectMatch
when given only an oracle for counting k-defect matchings in planar graphs, without the
ability of specifying the set S. Let G, S and k be fixed in the following. Our reduction
involves manipulations on polynomials, such as a truncated version of polynomial division:

I Lemma 10. Let X be an indeterminate, and let p, q ∈ Z[X] be polynomials p =
∑m
i=0 biX

i

and q =
∑n
i=0 aiX

i with a0 6= 0. For all t ∈ N, we can compute b0, . . . , bt with O(t2)
arithmetic operations from a0, . . . , at and the first t+ 1 coefficients of the product pq.

Proof. Let c0, . . . , cn+m enumerate the coefficients of the product pq. By elementary algebra,
we have ci =

∑i
κ=0 aκbi−κ, which implies the linear system a0

...
. . .

at . . . a0


 b0

...
bt

 =

 c0
...
ct

 . (5)

As this system is triangular with a0 6= 0 on its main diagonal, it has full rank and can be
solved uniquely for b0, . . . , bt with O(t2) arithmetic operations. J

Our proof also relies upon a gadget which will allow to distinguish S from V (G) \ S.

I Definition 11. For ` ∈ N, an `-rake R` is a matching M of size `, together with an
additional vertex w adjacent to one vertex of each edge in M :

Let GS,` be the graph obtained from attaching R` to each v ∈ S. This means adding a local
copy of R` to v and identifying the copy of w with v. Please note that vertices v ∈ V (G) \ S
receive no attachments in GS,`.

It is obvious that GS,` is planar if G is. Recall the defect-generating matching polynomial µ
from (3). We first show that, for fixed ` ∈ N, the polynomial µ(GS,`) can be written as a
weighted sum over matchings M ∈M[G], where each M is weighted by an expression that
depends on the number |usat(M) ∩ S|. Ultimately, we want to tweak these weights in such a
way that only matchings with |usat(M) ∩ S| = 0 are counted.

I Lemma 12. Define polynomials r, f` ∈ Z[X] and s ∈ Z[X, `] by

r(X) = 1 +X2, s(X, `) = `+ 1 +X2, f`(X) = (1 +X2)|S|(`−1).

Then it holds that

µ(GS,`, X) = f` ·
∑

M∈M[G]

X |usat(M)| · r|S\usat(M)| · s|S∩usat(M)|. (6)

R. Curticapean 33:9

Figure 1 Possible types of extensions of the rake at v. The left case corresponds to v /∈ usat(M),
and the two right cases correspond to v ∈ usat(M).

Proof. Every matching M ∈ M[G] induces a certain set CM ⊆ M[GS,`] of matchings in
GS,`, where each matching N ∈ CM consists of M together with an extension by rake edges.
The family {CM}M∈M[G] is easily seen to partitionM[GS,`], and we obtain

µ(GS,`, X) =
∑

M∈M[G]

∑
N∈CM

X |usat(N)|

︸ ︷︷ ︸
=:e(M)

. (7)

Every matching N ∈ CM consists of M and rake edges, which are added independently at
each vertex v ∈ S. Hence, the expression e(M) in (6) can be computed from the product of
the individual extensions at each v ∈ S. To calculate the factor obtained by such an extension,
we have to distinguish whether v is unmatched in M or not. The possible extensions at v
are also shown in Figure 1.

v /∈ usat(M) : We can extend M at v by any subset of the ` rake edges not adjacent to v,
as shown in Figure 1.a. In total, these 2` extensions contribute the factor (1 +X2)` =
(1 +X2)`−1r.

v ∈ usat(M) : We have two choices for extending, shown in the right part of Figure 1:
Firstly, we can extend as in the case v /∈ usat(M), and then we obtain the factor
X(1 +X2)`. Here, the additional factor X corresponds to the unmatched vertex v. This
situation is shown in Figure 1.b. Secondly, we can match v to one of its ` incident rake
edges, say to e = vz for a rake vertex z, as in Figure 1.c. Then we can choose a matching
among the `− 1 rake edges not incident with z. This gives a factor of `X(1 +X2)`−1.
Note that v is matched, but the vertex adjacent to z is not, yielding a factor of X.
In total, if v ∈ usat(M), we obtain the factorX(1+X2)`+`X(1+X2)`−1 = X(1+X2)`−1s.

In each matching N ∈ CM , every unmatched vertex in S̄ = V (G) \ S contributes a factor
X. By multiplying the contributions of all v ∈ V (G), we have thus shown that

e(M) = f`(X) ·X |S̄∩usat(M)| · r|S\usat(M)| · (Xs)|S∩usat(M)|

= f`(X) ·X |usat(M)| · r|S\usat(M)| · s|S∩usat(M)|

and together with (7), this proves the claim. J

Due to the factor f`, the expression µ(GS,`) is not a polynomial in the indeterminates X
and `. We define a polynomial p ∈ Z[X, `] by removing this factor.

p(X, `) :=
∑

M∈M[G]

X |usat(M)| · r|S\usat(M)| · s|S∩usat(M)|. (8)

Depending upon the concrete application, we will consider p ∈ Z[X, `] as a polynomial in
the indeterminates ` and X, or as a polynomial p ∈ (Z[`])[X] in the indeterminate X with

ESA 2016

33:10 Counting Matchings with k Unmatched Vertices in Planar Graphs

coefficients from Z[`]. In this last case, we write p =
∑n
i=0 aiX

i with coefficients ai ∈ Z[`]
for i ∈ N that are in turn polynomials. Then we define

[p]k :=
k∑
i=0

aiX
i (9)

as the restriction of p to its first k + 1 coefficients. For later use, let us observe the following
simple fact about [p]k, considered as a polynomial [p]k ∈ Z[X, `].

I Fact 13. For i, j ∈ N, every monomial `iXj appearing in [p]k satisfies i ≤ j ≤ k.

Proof. Recall r and s from Lemma 12. The indeterminate ` appears in s with degree 1, but
it does not appear in r. In the right-hand side of (8), every term containing a factor st, for
t ∈ N, also contains the factor Xt, because |S ∩ usat(M)| ≤ |usat(M)| trivially holds. Hence,
whenever `iXj is a monomial in p, then i ≤ j. Since the maximum degree of X in [p]k is k
by definition, the claim follows. J

In the next lemma, we show that knowing the coefficients of [p]k allows to solve the instance
(G,S, k) to #RestrDefectMatch from the beginning of this subsection. After that, we will
show how to compute [p]k with an oracle for #PlanarDefectMatch.

I Lemma 14. Let N denote the set of (not necessarily k-defect) matchings in G with
usat(M) ∩ S = ∅. For all k ∈ N, we can compute the number of k-defect matchings in N in
polynomial time when given the coefficients of [p]k.

Proof. For ease of presentation, assume first we knew all coefficients of p rather than only
those of [p]k. We will later show how to solve the problem when given only [p]k.

Starting from p, we perform the substitution

`← −(1 +X2) (10)

to obtain a new polynomial q ∈ Z[X] from p. By definition of s (see Lemma 12), we have

s(X,−(1 +X2)) = 0, (11)

so every matching M /∈ N has zero weight in q. To see this, note that by (8), the weight
of each matching M ∈ M[G] in p contains a factor s|S∩usat(M)|. But due to (11), the
corresponding term in q is non-zero only if |S ∩ usat(M)| = 0. We obtain

q =
∑
M∈N

X |usat(M)| · (1 +X2)|S\usat(M)|.

Since every M ∈ N satisfies |S \ usat(M)| = |S|, this simplifies to

q = (1 +X2)|S| ·
∑
M∈N

X |usat(M)|

︸ ︷︷ ︸
=:q′

(12)

and we can use standard polynomial division by (1 +X2)|S| to obtain

q′ = q/(1 +X2)|S|. (13)

By (12), for all k ∈ N, the coefficient of Xk in q′ counts precisely the k-defect matchings in
N . This finishes the discussion of the idealized setting when all coefficients of p are known.

R. Curticapean 33:11

Recall the three steps involved: The substitution in (10), the polynomial division in (13),
and the extraction of the coefficient Xk from q′.

The full claim, when only [p]k rather than p is given, can be shown similarly, but some
additional care has to be taken. First, we perform the substitution (10) on [p]k rather than
p. This results in a polynomial b ∈ Z[X], for which we claim the following:

I Claim 15. We have [b]k = [q]k.

Proof. Let Θ≤i for i ∈ N denote the set of monomials in p with degree ≤ i in X. The
substitution (10) maps every monomial θ in the indeterminates X and ` to some polynomial
gθ ∈ Z[X]. Writing a(θ) ∈ Z for the coefficient of θ in p, we obtain q, b ∈ Z[X] with

q =
∑

θ∈Θ≤n

a(θ) · gθ, (14)

b =
∑

θ∈Θ≤k

a(θ) · gθ. (15)

We can conclude that

[q]k =
(14)

 ∑
θ∈Θ≤n

a(θ) · gθ


k

=

 ∑
θ∈Θ≤k

a(θ) · gθ


k

=
(15)

[b]k , (16)

where the second identity holds since, whenever θ has degree i in X, for i ∈ N, then gθ
contains a factor Xi. Hence, for θ ∈ Θ≤n \Θ≤k, no terms of the polynomial gθ appear in[∑

θ∈Θ≤n a(θ) · gθ
]
k
. This proves the claim. J

Recall the polynomial q′ from (13); it remains to apply polynomial division as in (13) to
recover [q′]k from [b]k. To this end, we observe that the constant coefficient in (1 +X2)|S| is
1, and that all coefficients of (1 +X2)|S| can be computed by a closed formula. We can thus
divide [b]k = [q]k by [(1 +X2)|S|]k via truncated polynomial division (Lemma 10) to obtain
[q′]k, whose k-th coefficient counts the k-defect matchings in N , as in the idealized setting
discussed before. J

Using a combination of truncated polynomial division (Lemma 10) and interpolation, we
compute the coefficients of [p]k with oracle access for #PlanarDefectMatch. This completes
the reduction from #RestrDefectMatch to #PlanarDefectMatch.

I Lemma 16. We can compute [p]k by a Turing fpt-reduction to #PlanarDefectMatch such
that all queries have maximum parameter k.

Proof. For ξ with 0 ≤ ξ ≤ k, let fξ ∈ Z[X] be the evaluation of the expression f` defined in
Lemma 12 at ` = ξ. Define p(k)

ξ ∈ Z[X] by

p
(k)
ξ := [µ(GS,ξ)/fξ]k . (17)

I Claim 17. We have p(k)
ξ = [p(·, ξ)]k = [p]k(·, ξ).

Proof. The first identity holds by the definition of p in (8), and by the definition of p(k)
ξ .

The second identity holds because, for all t ∈ N, the coefficient of Xt in p is a polynomial
in ` and does not depend on X. Hence we may arbitrarily interchange (i) the operation of
substituting ` by expressions not depending on X (and by numbers ξ ∈ N in particular), and
(ii) the operation of truncating to the first k coefficients. J

ESA 2016

33:12 Counting Matchings with k Unmatched Vertices in Planar Graphs

Recall that at ∈ Z[`] for t ∈ N denotes the coefficient of Xt in p, which has degree at
most k (in the indeterminate `) by Fact 13. Hence, for fixed t ∈ N, if we knew the values
at(0), . . . , at(k), we could recover the coefficients of at ∈ Z[`] via univariate polynomial
interpolation. But for 0 ≤ ξ, t ≤ k, we can obtain the value at(ξ) as the coefficient of Xt in
p

(k)
ξ . This follows from Claim 17. It remains to compute the polynomials p(k)

0 , . . . , p
(k)
k with

an oracle for #PlanarDefectMatch: First, we observe that the constant coefficient in fξ is 1
for all 0 ≤ ξ ≤ k, so we can apply the definition of p(k)

ξ from (17) and truncated polynomial
division (Lemma 10) to compute p(k)

ξ from [µ(GS,ξ)]k and fξ.
It remains only to compute [µ(GS,ξ)]k and fξ. Note that the coefficients of fξ admit a

closed expression by definition, and that [µ(GS,ξ)]k can be computed by querying the oracle
for #PlanarDefectMatch to obtain the number of matchings in GS,ξ with 0, . . . , k defects. J

We recapitulate the proof of Theorem 1 in the following.

Proof of Theorem 1. By Theorem 7, the problem #ApexPerfMatch is #W[1]-hard, and we
have reduced it to #RestrDefectMatch in Lemma 9. By Lemma 16, we can use oracle calls
to #PlanarDefectMatch with maximum parameter k to compute the polynomial [p]k, and
by Lemma 14, the coefficients of [p]k allow to recover the solution to #RestrDefectMatch in
polynomial time. These two steps establish the second reduction in (4).

Note that both reductions incur only linear blowup on the parameter. Hence, the lower
bound of nΩ(k/ log k) for #ApexPerfMatch under #ETH from Theorem 7 carries over to
#PlanarDefectMatch. J

4 Apices with few adjacent faces

We prove Theorem 2: We present an FPT-algorithm for a restricted version of the problem
#PerfMatch on graphs G with an apex set A of size k such that every apex can see only a
bounded number of faces. To this end, we first prove a stronger version of Theorem 3 that
allows us to compute #MatchSum(G) rather than just count matchings in G.

I Theorem 18. Assume we are given a drawing of a planar graph G with vertex-weights
w : V (G)→ Q and faces F1, . . . , Fs for s ∈ N such that all vertices v ∈ V (G) with w(v) 6= 0
satisfy v ∈ V (F1) ∪ . . . ∪ V (Fs). Then we can compute #MatchSum(G) in time O(2s · n3).

Proof. We first create a partition B1, . . . , Bs of
⋃
i∈[s] V (Fi) such that Bi ⊆ Fi for i ∈ [s]

and Bi ∩Bj = ∅ for i 6= j. This can be achieved trivially by assigning each vertex that occurs
in several faces Fi to some arbitrarily chosen set Bi.

Now we define a type θM ∈ {0, 1}s for each M ∈M[G]. For i ∈ [s], we define

θM (i) :=
{

1 |usat(M) ∩Bi| odd,
0 |usat(M) ∩Bi| even.

For θ ∈ {0, 1}s, letMθ[G] denote the set of matchings M ∈M[G] with θM = θ, and define

Sθ =
∑

M∈Mθ[G]

∏
v∈usat(M)

w(v).

It is clear that #MatchSum(G) =
∑
θ∈{0,1}s Sθ. We show how to compute Sθ for fixed θ in

time O(n3) by reduction to #PerfMatch in planar graphs. For this argument, we momentarily

R. Curticapean 33:13

define #MatchSum(G) on graphs that have vertex- and edge-weights w : V (G) ∪ E(G)→ Q:

#MatchSum(G) =
∑

M∈M[G]

 ∏
v∈usat(M)

w(v)

(∏
e∈M

w(e)
)
.

As shown in the proof of Theorem 3.3 in [36], and in Example 15 in [9], for every t ∈ N,
there exist explicit planar graphs D0

t and D1
t with O(t) vertices, which contain special vertices

u1, . . . , ut such that all of the following holds:
1. The graphs D0

t and D1
t can be drawn in the plane with u1, . . . , ut on their outer faces.

2. Let H be a vertex- and edge-weighted graph with distinct vertices X = {v1, . . . , vt} ⊆
V (H) and let H ′ be obtained from H by placing a disjoint copy of D0

t into H and
connecting vi to ui with an edge of weight w(vi) for all i ∈ [t]. Assign weight 0 to the
vertices vi and to all vertices of D0

t . Then

#MatchSum(H ′) =
∑

M∈M[H]
|usat(M)∩X| even

 ∏
v∈usat(M)

w(v)

(∏
e∈M

w(e)
)

(18)

3. The above statement also applies for D1
t , but the corresponding sum in (18) ranges over

those M ∈M[H] where |usat(M) ∩X| is odd rather than even.
We observe that inserting D0

t or D1
t into the face of a planar graph preserves planarity. Hence,

we can insert Dθ(i)
|Bi| at the vertices Bi along face Fi in G, for each i ∈ [s], and obtain a planar

graph Gθ. By construction, we have #MatchSum(Gθ) = Sθ. Furthermore, all vertex-weights
in Gθ are 0 by construction, so we actually have #MatchSum(Gθ) = #PerfMatch(Gθ). Since
Gθ is planar, we can evaluate #PerfMatch(Gθ) in time O(n3), thus concluding the proof. J

Note that the above theorem allows us to recover the number of k-defect matchings in
G that have all defects on fixed distinguished faces, for any k ∈ N: Let GX be obtained
from G by assigning weight X to each vertex. Then p := #MatchSum(GX) is a polynomial
of degree at most n and can be interpolated from evaluations p(0), . . . p(n), but each of
these evaluations can be computed in time O(2s · n3) by Theorem 18. As we know, the k-th
coefficient of p(X) is equal to the number of k-defect matchings in G.

In the following, we extend this argument by using a variant of multivariate polynomial
interpolation (Lemma 6) that applies when we do not require the values of all coefficients,
but rather only those in a “slice” of total degree k, for fixed k ∈ N. Here, the polynomial
p to be interpolated features a distinguished indeterminate X, and we wish to extract the
coefficient ak of Xk, which is in turn a polynomial. Under certain restrictions, this can be
achieved with f(k) · n evaluations, where n denotes the degree of X in p.

I Lemma 19. Let p ∈ Z[X,λ] be a multivariate polynomial in the indeterminates X and
λ = (λ1, . . . , λt). Consider p ∈ (Z[λ])[X] and assume that p has degree n in X, and that for
all s ∈ N, the coefficient as ∈ Z[λ] of Xs in p has total degree at most s. Let k ∈ N be a
given parameter, and let Ξ = Ξ0 × . . .× Ξt ⊆ Qt+1 with |Ξ0| = n+ 1 and |Ξi| = k + 1 for
all i > 0. Then we can compute the coefficients of the polynomial ak ∈ Z[λ] with O(|Ξ|3)
arithmetic operations when given as input the set {(ξ, p(ξ)) | ξ ∈ Ξ}.

Proof. We consider the grid Ξ′ defined by removing the first component from Ξ, that is,
Ξ′ = Ξ1 × . . .× Ξt. Observe that p(·, ξ′) ∈ Z[X] holds for ξ′ ∈ Ξ′. Write Ξ0 = {c0, . . . , cn}
and note that, for fixed ξ′ ∈ Ξ′, our input contains all evaluations

p(c0, ξ′), . . . , p(cn, ξ′),

ESA 2016

33:14 Counting Matchings with k Unmatched Vertices in Planar Graphs

so we can use univariate interpolation to determine the coefficient of Xk in p(·, ξ′). This
coefficient is equal to ak(ξ′) by definition. By performing this process for all ξ′ ∈ Ξ′, we
can evaluate ak(ξ′) on all ξ′ ∈ Ξ′, and hence interpolate the polynomial ak ∈ Z[λ] via grid
interpolation (Lemma 6). J

This brings us closer to the proof of Theorem 2. To proceed, we first consider the case
that A is an independent set; the full algorithm is obtained by reduction to this case.

I Lemma 20. Let G be an edge-weighted graph, given as input together with an independent
set A ⊆ V (G) of size k, a planar drawing of H = G−A, and faces F1, . . . , Fs that contain
all neighbors of A. Then we can compute #PerfMatch(G) in time kO(2k) · 2O(s) · n4.

I Remark. We may assume that every edge av ∈ E(G) with a ∈ A and v ∈ V (G) \ A has
weight 1: Otherwise, replace av by a path ar1r2v with fresh vertices r1, r2, together with
edges ar1 and r1r2 of unit weight, and an edge r2v of weight w(e). This clearly preserves the
apex number, the value of #PerfMatch, and ensures that every apex is only incident with
unweighted edges.

Proof. Recall that DMk[H] denotes the set of k-defect matchings in H. By Remark 4, we
can assume that all edges incident with A have unit weight. Let

C = {M ∈ DMk[H] | usat(M) ⊆ NG(A)}.

Given any matching M ∈ C, let t(M) denote its type3, which is defined as the following
multiset with precisely k elements from 2A:

t(M) = {NG(v) ∩A | v ∈ usat(M)}.

For the set of all such types, we write T = {t(M) |M ∈ C} and observe that |T | ≤ (2k)k = 2k2 .
For t ∈ T , define a graph St as follows: Create an independent set [k], corresponding to
A. Then, for each N ∈ t, create a vertex vN that is adjacent to all of N ⊆ [k]. We note
that every perfect matching M ∈ PM[G] can be decomposed uniquely as M = B(M)∪̇I(M)
with a k-defect matching B(M) ∈ C and a perfect matching I(M) ∈ PM[St(B(M))]. That is,
B(M) = M −A and I(M) = M [A ∪ usat(B(M))]. For t ∈ T , let

Ct = {M ∈ C | t(M) = t},
Pt :=

∑
N∈Ct

∏
e∈N

w(e).

It is clear that {Ct}t∈T partitions C, and this implies

#PerfMatch(G) =
∑
t∈T

Pt ·#PerfMatch(St). (19)

To see this, note that each perfect matching of type t can be obtained by extending some
matching M ∈ Ct (all of which have k defects) by a perfect matching from usat(M) to A,
which is precisely a perfect matching of St. Note that we require here that edges between
usat(M) and A have unit weight, otherwise the graphs St would have to be edge-weighted
as well and might no longer depend on t only, but would also have to incorporate the
edge-weights of G.

3 Please note that these types have no connection to those used in the proof of Theorem 18.

R. Curticapean 33:15

Since |E(St)| ≤ k2, we can compute #PerfMatch(St) in time 2O(k2) by brute force for
each t ∈ T . Hence, we can use (19) to determine #PerfMatch(G) in time |T | · 2O(k2) if
we know Pt for all t ∈ T . In the remainder of this proof, we show how to compute Pt by
using multivariate polynomial interpolation and the algorithm for #MatchSum presented
in Theorem 18. To this end, define indeterminates λ = {λR | R ⊆ A} corresponding to
subsets of the apices. Let X denote an additional distinguished indeterminate, and define the
following polynomial p ∈ Z[X,λ]. In this definition, we abbreviate w(M) :=

∏
e∈M w(e).

p(X,λ) :=
∑
M∈C

w(M) ·X |usat(M)| ·
∏

v∈usat(M)

λNG(v)∩A. (20)

For each type t ∈ T , say t = {N1, . . . , Nk}, the coefficient of Xk · λN1 · . . . · λNk in p is
equal to Pt. Hence, we can extract Pt for all t ∈ T from the coefficients of the monomials in
p that have degree exactly k in X. Let us denote these monomials by N, and observe that
each monomial ν ∈ N has total degree k in λ by the definition of p in (20).

If we can evaluate p on the elements (r, ξ) from the grid Ξ = [n+ 1]× [k + 1]2|A| , then
we can compute the coefficients of all ν ∈ N in p, and thus Pt for all t ∈ T , by sliced grid
interpolation (Lemma 19). Note that |Ξ| ≤ O(n · k2k). We compute these evaluations p(r, ξ)
as p(r, ξ) = #MatchSum(H ′), where the vertex-weighted graph H ′ = H ′(r, ξ) is obtained
from H via the weight function

w(v) :=
{

0 if v /∈ NG(A),
r · ξNG(v)∩A otherwise.

Since all vertices with non-zero weight in H ′ are contained in the faces F1, . . . , Fs, we
can compute #MatchSum(H ′) in time O(2s · n3) with Theorem 18. We obtain the values Pt
for all t ∈ T , so we obtain #PerfMatch(G) via (19) in the required time. J

It remains to lift Lemma 20 to the case that A is not an independent set. This follows easily
from the fact that, whenever E(G) = E∪̇E′, then every perfect matching M ∈ PM[G] must
match every vertex v ∈ V (G) into exactly one of the sets E or E′.

Proof of Theorem 2. Let A =M[G[A]] denote the set of (not necessarily perfect) match-
ings of the induced subgraph G[A], and note that |A| ≤ 2k2 . For M ∈ A, let aM =
#PerfMatch(GM), where GM is defined by keeping from A only usat(M), and then delet-
ing all edges between the remaining vertices of A. We can compute aM by Lemma 20,
since the remaining part of A in GM is an independent set. It is also easily verified that
#PerfMatch(G) =

∑
M∈A aM ·

∏
e∈M w(e), so we can compute #PerfMatch as a linear

combination of 2k2 values, each of which can be computed by Lemma 20. J

Acknowledgments. The author wishes to thank Dániel Marx and Holger Dell for pointing
out the connection between perfect matchings in k-apex graphs and #PlanarDefectMatch
during the Dagstuhl Seminar 10481 on Computational Counting in 2010. Furthermore,
thanks to Mingji Xia for interesting discussions about this topic. In particular, Theorem 3
was found in joint work on combined signatures back in 2013. Thanks also to Markus Bläser
for reading earlier drafts of this material as it appeared in my PhD thesis, and thanks to the
reviewers of this version for providing helpful comments.

ESA 2016

33:16 Counting Matchings with k Unmatched Vertices in Planar Graphs

References
1 Manindra Agrawal. Determinant versus permanent. In Proceedings of the 25th International

Congress of Mathematicians, ICM 2006, volume 3, pages 985–997, 2006.
2 Markus Bläser and Radu Curticapean. Weighted counting of k-matchings is #W[1]-hard.

In IPEC, pages 171–181, 2012. doi:10.1007/978-3-642-33293-7_17.
3 P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory. Number 7 in

Algorithms and Computation in Mathematics. Springer Verlag, 2000. 168 + xii pp.
4 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. A computational proof of complexity of some

restricted counting problems. In TAMC 2009, pages 138–149, 2009.
5 Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj,

and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput.,
201(2):216–231, 2005.

6 Radu Curticapean. Counting matchings of size k is #W[1]-hard. In ICALP 2013, pages
352–363, 2013. doi:10.1007/978-3-642-39206-1_30.

7 Radu Curticapean. Counting perfect matchings in graphs that exclude a single-crossing
minor. CoRR, abs/1406.4056, 2014.

8 Radu Curticapean. Block interpolation: A framework for tight exponential-time counting
complexity. In ICALP 2015, pages 380–392, 2015.

9 Radu Curticapean. Parity separation: A scientifically proven method for permanent weight
loss. CoRR, abs/1511.07480, 2015.

10 Radu Curticapean. The simple, little and slow things count: on parameterized counting
complexity. PhD thesis, Saarland University, 2015.

11 Radu Curticapean and Dániel Marx. Complexity of counting subgraphs: Only the bounded-
ness of the vertex-cover number counts. In FOCS 2014, pages 130–139, 2014.

12 Radu Curticapean and Mingji Xia. Parameterizing the permanent: Genus, apices, minors,
evaluation mod 2k. In FOCS 2015, pages 994–1009, 2015.

13 Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Exponen-
tial time complexity of the permanent and the Tutte polynomial. ACM Transactions on
Algorithms, 10(4):21, 2014.

14 Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Approxim-
ation algorithms via structural results for apex-minor-free graphs. In ICALP 2009, pages
316–327, 2009.

15 Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM
Journal on Computing, 33(4):892–922, 2004.

16 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
17 Markus Frick. Generalized model-checking over locally tree-decomposable classes. Theory

Comput. Syst., 37(1):157–191, 2004.
18 Anna Galluccio and Martin Loebl. On the theory of Pfaffian orientations. I. Perfect match-

ings and permanents. Electronic Journal of Combinatorics, 6, 1998.
19 Frank Harary. Graph theory. Addison-Wesley, 1991.
20 Haruo Hosoya. Topological index. A newly proposed quantity characterizing the topological

nature of structural isomers of saturated hydrocarbons. Bulletin of the Chemical Society
of Japan, 44(9):2332–2339, 1971.

21 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

22 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. System Sci., 63(4):512–530, 2001.

23 Mark Jerrum. Two-dimensional monomer-dimer systems are computationally intractable.
Journal of Statistical Physics, 48(1-2):121–134, 1987.

http://dx.doi.org/10.1007/978-3-642-33293-7_17
http://dx.doi.org/10.1007/978-3-642-39206-1_30

R. Curticapean 33:17

24 Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM J. Comput.,
18(6):1149–1178, 1989.

25 Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation al-
gorithm for the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697,
2004.

26 Pieter W. Kasteleyn. The statistics of dimers on a lattice: I. The number of dimer arrange-
ments on a quadratic lattice. Physica, 27(12):1209–1225, 1961.

27 Pieter W. Kasteleyn. Graph Theory and Crystal Physics. In Graph Theory and Theoretical
Physics, pages 43–110. Academic Press, 1967.

28 Charles Little. An extension of Kasteleyn’s method of enumerating the 1-factors of planar
graphs. In Combinatorial Mathematics, LNCS, pages 63–72. Springer, 1974.

29 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the Expo-
nential Time Hypothesis. Bulletin of the EATCS, 84:41–71, 2011.

30 Tullio Regge and Riccardo Zecchina. Combinatorial and topological approach to the 3d
ising model. Journal of Physics A: Mathematical and General, 33(4):741, 2000.

31 Neil Robertson and Paul D. Seymour. Graph minors. XVI. Excluding a non-planar graph.
J. Comb. Theory, Ser. B, 89(1):43–76, 2003.

32 Simon Straub, Thomas Thierauf, and Fabian Wagner. Counting the number of perfect
matchings in K5-free graphs. In CCC 2014, pages 66–77, 2014.

33 H. N. V. Temperley and Michael E. Fisher. Dimer problem in statistical mechanics – an
exact result. Philosophical Magazine, 6(68):1478–6435, 1961.

34 Leslie G. Valiant. The complexity of computing the permanent. Theoret. Comput. Sci.,
8(2):189–201, 1979.

35 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Com-
put., 8(3):410–421, 1979.

36 Leslie G. Valiant. Holographic algorithms. SIAM J. Comput., 37(5):1565–1594, 2008.
doi:10.1137/070682575.

37 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming
on tree decompositions using generalised fast subset convolution. In ESA 2009, pages 566–
577, 2009.

38 Vijay V. Vazirani. NC algorithms for computing the number of perfect matchings in K3,3-
free graphs and related problems. Inf. Comput., 80(2):152–164, 1989.

ESA 2016

http://dx.doi.org/10.1137/070682575

	Introduction
	Parameterized counting problems
	Perfect matchings with planar-like parameters
	From k apices to k defects
	Few apices that also see few faces

	Preliminaries
	Polynomials
	(Perfect) matching polynomials
	Techniques from parameterized counting

	Hardness of #PlanarDefectMatch
	From #ApexPerfMatch to #RestrDefectMatch
	From #RestrDefectMatch to #PlanarDefectMatch

	Apices with few adjacent faces

