Streaming Property Testing of Visibly Pushdown
Languages®

Nathanaél Francois!, Frédéric Magniez?, Michel de Rougemont?3,
and Olivier Serre*

Fakultit fiir Informatik, TU Dortmund, Germany

CNRS, IRIF, Univ Paris Diderot, Sorbonne Paris-Cité, France
University of Paris IT and IRIF, CNRS, France

CNRS, IRIF, Univ Paris Diderot, Sorbonne Paris-Cité, France

=W N =

—— Abstract

In the context of formal language recognition, we demonstrate the superiority of streaming prop-
erty testers against streaming algorithms and property testers, when they are not combined.
Initiated by Feigenbaum et al., a streaming property tester is a streaming algorithm recognizing
a language under the property testing approximation: it must distinguish inputs of the language
from those that are e-far from it, while using the smallest possible memory (rather than limit-
ing its number of input queries). Our main result is a streaming e-property tester for visibly
pushdown languages (VPL) with memory space poly((logn)/e).

Our construction is done in three steps. First, we simulate a visibly pushdown automaton in
one pass using a stack of small height but whose items can be of linear size. In a second step,
those items are replaced by small sketches. Those sketches rely on a notion of suffix-sampling
we introduce. This sampling is the key idea for taking benefit of both streaming algorithms and
property testers in the third step. Indeed, the last step relies on a (non-streaming) property
tester for weighted regular languages based on a previous tester by Alon et al. This tester can
directly be used for streaming testing special cases of instances of VPL that are already hard
for both streaming algorithms and property testers. We then use it to decide the correctness of
completed items, given their sketches, before removing them from the stack.
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1 Introduction

We focus on streams representing data with both a linear ordering and a hierarchically nested
matching of items. Data with such dual linear-hierarchical structure arise in various context,
e.g. in semi-structured data management when handling HTML/XML documents or in
program analysis when considering executions of recursive programs. Regular languages,
as recognized by finite state automata, revealed a natural and successful tool to express
properties of streams but lack the ability to handle the hierarchical structure. Context-
free languages easily capture the latter but turn out to be too expressive hence, quickly
lead to intractable complexity. In contrast, visibly pushdown languages (VPL) [6] while
encompassing regular languages, enjoy most of its good properties and permit to handle
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data with both a linear and a hierarchical structure. In the context of semi-structured
documents, they are closely related with regular languages of unranked trees as captured
by hedge automata: indeed, a well-known result [3] states that, when the tree is given by
its depth-first traversal, such automata correspond to visibly pushdown automata (VPA)
(see e.g. [18] for an overview on automata and logic for unranked trees). In databases, this
word encoding of XML document is known as SAX representation: the document is a linear
sequence of text characters, along with a hierarchically nested matching of open-tags with
closing tags. Numerous popular subclasses of XML documents (e.g. those satisfying a given
DTD specifications) are subclasses of VPL. In program analysis, VPA permit to capture
natural properties of execution traces of recursive finite-state programs. For such programs,
desirable specifications are expressed on the call-stack (e.g. “a module A should be invoked
only if the module B belongs to the call-stack”): such properties can be expressed in the
temporal logic of calls and returns (CaRet) [5, 4] that itself is captured by VPA. Hence, the
analysis of execution traces boils down to check membership in a VPL.

Therefore, the study of VPL is central to understand how massive semi-structured data
(e.g. large semi-structured documents or execution traces) can be analyzed by sublinear
algorithms, such as streaming algorithms and property testers.

Historically, VPL got several names such as input-driven languages or, more recently,
languages of nested words. Intuitively, a VPA is a pushdown automaton whose actions on stack
(push, pop or nothing) are solely decided by the currently read symbol. As a consequence,
symbols can be partitioned into three groups: push, pop and neutral symbols. The complexity
of VPL recognition has been addressed in various computational models. The first results go
back to the design of logarithmic space algorithms [11] as well as NC!-circuits [13]. Later on,
other models motivated by the context of massive data were considered, such as streaming
algorithms and property testers (described below).

Streaming algorithms (see e.g. [22]) have only a sequential access to their input, on which
they can perform a single pass, or sometimes a small number of additional passes. The
size of their internal (random access) memory is the crucial complexity parameter, which
should be sublinear in the input size, and even polylogarithmic if possible. The area of
streaming algorithms has experienced tremendous growth in many applications since the
late 1990s. The analysis of Internet traffic [2], in which traffic logs are queried, was one of
their first applications. Nowadays, they have found applications with big data, notably to
test graphs properties, and more recently in language recognition on very large inputs. The
streaming complexity of language recognition has been firstly considered for languages that
arise in the context of memory checking [8, 12], of databases [28, 27], and later on for formal
languages [20, 7]. However, even for simple VPL, any randomized streaming algorithm with
p passes requires memory Q(n/p), where n is the input size [17].

As opposed to streaming algorithms, (standard) property testers [9, 10, 16] have random
access to their input but in the query model. They must query each piece of the input they
need to access. They should sample only a sublinear fraction of their input, and ideally make
a constant number of queries. In order to make the task of verification possible, decision
problems need to be approximated as follows. Given a distance on words, an e-tester for a
language L distinguishes with high probability the words in L from those e-far from L, using
as few queries as possible. Property testing of regular languages was first considered for the
Hamming distance [1]. When the distance allows sufficient modifications of the input, such as
moves of arbitrarily large factors, it has been shown that any context-free language becomes
testable with a constant number of queries [19, 15]. However, for more realistic distances,
property testers for simple languages require a large number of queries, especially if they
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have one-sided error only. For example the complexity of an e-tester for well-parenthesized
expressions with two types of parentheses is between Q(n!/!1) and O(n?/3) [25], and it
becomes linear, even for one type of parentheses, if we require one-sided error [1]. The
difficulty of testing regular tree languages was also addressed when the tester can directly
query the tree structure [23, 24].

Faced by the intrinsic hardness of VPL in both streaming and property testing, we study
the complexity of streaming property testers of formal languages, a model of algorithms
combining both approaches. Such testers were historically introduced for testing specific
problems (groupedness) [14] relevant for network data. They were later studied in the
context of testing the insert/extract-sequence of a priority-queue structure [12]. We extend
these studies to classes of problems. A streaming property tester is a streaming algorithm
recognizing a language under the property testing approximation: it must distinguish inputs
of the language from those that are e-far from it, while using the smallest possible memory
(rather than limiting its number of input queries). Such an algorithm can simulate any
standard non-adaptive property tester. Moreover, we will see that, using its full scan of the
input, it can construct better sketches than in the query model.

In this paper, we consider a natural notion of distance for VPL, the balanced-edit distance,
which refines the edit distance on balanced words (where for each push symbol there is a
matching pop symbol at the same height of the stack, and conversely). It can be interpreted
as the edit distance on trees when trees are encoded as balanced words. Neutral symbols
can be deleted /inserted, but any push symbol can only be deleted/inserted together with
its matching pop symbol. Since our distance is larger than the standard edit distance, our
testers are also valid for the edit distance.

In Section 3, we first design an exact algorithm that maintains a small stack but whose
items can be of linear size as opposed to the standard simulation of a pushdown automaton
which usually has a stack of possible linear size but with constant size items. In our algorithm,
stack items are prefixes of some peaks (which we call unfinished peaks), where a peak is a
balanced factor whose push symbols appear all before the first pop symbol. Our algorithm

compresses an unfinished peak v = uyv_ when it is followed by a long enough sequence.

More precisely, the compression applies to the peak v v_ obtained by disregarding part of
the prefix of push sequence uy. Those peaks are then inductively replaced, and therefore
compressed, by the state-transition relation they define on the given automaton. The relation

is then considered as a single symbol whose weight is the size of the peak it represents.

In addition, to maintain a stack of logarithmic depth, one of the crucial properties of our
algorithm (Proposition 6) is rewriting the input word as a peak formed by potentially a
linear number of intermediate peaks, but with only a logarithmic number of nested peaks.

In Section 4, for the case of a single peak, we show how to sketch the current unfinished

peak of our algorithm. The simplicity of those instances will let us highlight our first idea.

Moreover, they are already expressive enough in order to demonstrate the superiority of
streaming testers against streaming algorithms and property testers, when they are not
combined. We first reduce the problem of streaming testing such instances to the problem of
testing regular languages in the standard model of property testing (Theorem 16). Since
our reduction induces weights on the letters of the new input word, we need a tester for
weighted regular languages. Such a property tester has previously been devised in [24]
extending constructions for unweighted regular languages [1, 23]. However, we consider a
slightly simpler construction that could be of independent interest. As a consequence we get
a streaming property tester with polylogarithmic memory for recognizing peak instances of
any given VPL (Theorem 17), a task already hard for streaming algorithms and property
testers (Fact 8).
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In Section 5, we construct our main tester for a VPL L given by some VPA. For this we
introduce a more involved notion of sketches made of a polylogarithmic number of samples.
They are based on a new notion of suffix sampling (Definition 18). This sampling consists
in a decomposition of the string into an increasing sequence of suffixes, whose weights increase
geometrically. Such a decomposition can be computed online on a data stream, and one can
maintain samples in each suffix of the decomposition using a standard reservoir sampling.
This suffix decomposition will allow us to simulate an appropriate sampling on the peaks
we compress, even if we do not yet know where they start. Our sampling can be used to
perform an approximate computation of the compressed relation by our new property tester
of weighted regular languages which we also used for single peaks. We first establish a result
of stability which basically states that we can assume that our algorithm knows in advance
where the peak it will compress starts (Lemma 22). Then we prove the robustness of our
algorithm: words that are e-far from L are rejected with high probability (Lemma 23).
As a consequence, we get a one-pass streaming e-tester for L with one-sided error n and
memory space O(m®23™" (logn)®(log 1/n)/e*), where m is the number of states of a VPa
recognizing L (Theorem 20).

2 Definitions and Preliminaries

Let N* be the set of positive integers, and for any n € N*, let [n] = {1,2,...,n}. A t-subset
of a set .S is any subset of S of size ¢t. For a finite alphabet 3 we denote the set of finite words
over ¥ by X*. We denote by u - v (or simply uv) the word obtained by concatenating u and
v. For a word u = w(1)u(2) - - - u(n), we call n the length of u, and (i) the ith letter in u. A
factor of u is a word uli,j] = w(@)u(@i+ 1) ---u(y) with 1 < i < j < n. When we mention
letters and factors of u we implicitly also mention their positions in u. We say that v is a
sub-factor of v', denoted v < v, if v = u[i, j] and v = u[i’, j'] with [i, 5] C [¢/,5']. Similarly
we say that v =" if [i,4] = [/, 5']. If i <4’ < j < j' we say that the overlap of v and v’ is
uli’, j]. If v is a sub-factor of v’ then the overlap of v and v" is v. Given two multisets of
factors S and S’, we say that S < S’ if there is an injection f : S +— S’ such that for each
factor v € S, v < f(v).

2.1 Weighted Words and Sampling

A weight function on a word u with n letters is a function A : [n] — N* on the letters of u, whose
value A(i) is called the weight of u(i). A weighted word over ¥ is a pair (u, A) where u € ¥* and
A is a weight function on u. We define |u(7)| = A(¢) and |u[é, j]| = A@) + @G+ 1) +...+ A().
The length of (u, A) is the length of u. For simplicity, we will denote by w the weighted word
(u, \). Weighted letters will be used to substitute factors of same weights.

Our algorithms will be based on sampling of small factors according to their weights. We
introduce a very specific notion adapted to our setting. For a weighted word u, we denote by
k-factor sampling on u the sampling over factors u[i, i + {] with probability |u(7)|/|u|, where
[ > 0 is the smallest integer such that |u[é,i + ]| > k if it exists, otherwise [ is such that
i+ [ is the last letter of u. More generally, we call k-factor such a factor. For the special
case of kK = 1, we call this sampling a letter sampling on u. In fact the general case k > 1
simply reduces to k£ = 1. Indeed, simply observe that k-factor sampling can be obtained
from letter sampling by sampling on the first letters of the factors and online completing any
sampled letter to produce its associated k-factor. Therefore, from now on, we only focus on
how to perform letter samplings, that we implicitly extend to samplings on k-factors when
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Algorithm 1 Reservoir Sampling

Input: Data stream w, Integer ¢>1 standing for the number of samples
Data structure:

0+ 0 // Current weight of the processed stream

S < empty multiset // Multiset of sampled letters
Code:
a < Next(u), o<+ |a
S < t copies of a
While w not finished

a < Next(u), o+ o+ |a

For each be S

Replace b by a with probability |a|/c

OQutput S

required. In particular, without further constraints, letter sampling can be implemented
using a standard reservoir sampling (see Algorithm 1).

Even if our algorithm will require several samples from a k-factor sampling, we will often
only be able to simulate this sampling by sampling either larger factors, more factors, or
both. We introduce the notion of over-sampling to formalize this:

» Definition 1. Let WW; be a sampler producing a random multiset S; of factors of some given
weighted word u. Then Wsy over-samples W if it produces a random multiset Ss of factors
of u such that for each factor v of u, we have Pr(3v’ € Sy such that v is a factor of v') >
Pr(3v’ € Sp such that v is a factor of v').

2.2 Finite State Automata and Visibly Pushdown Automata

A finite state automaton is a tuple of the form A = (Q, X, Qn, Qf, A) where @ is a finite set
of control states, X is a finite input alphabet, Q;, C @ is a subset of initial states, Qf C @
is a subset of final states and A C Q x ¥ x @ is a transition relation. We write p—q, to
mean that there is a sequence of transitions in A from p to g while processing u, and we call
(p, q) a u-transition. A word u is accepted if g;,,—q; for some gi,, € Qi and qf € Qf. The
language L(A) of A is the set of words accepted by A, and we refer to such a language as a
reqular language. For ¥’ C ¥ the ¥'-diameter (or simply diameter when ¥’ = X)) of A is the
maximum over all possible pairs (p, q) € Q2 of min{|u| : p——¢q and u € ¥'*}, whenever this
minimum is not over an empty set. We say that A is X/-closed, when p—q for some u € ¥*
if and only if le>q for some v’ € X'*.

A pushdown alphabet is a triple (3., 3_,3.) that comprises three disjoint finite alphabets:
Y+ is a finite set of push symbols, Y- is a finite set of pop symbols, and . is a finite set of
neutral symbols. For any such triple, let ¥ = X, UX_ U X.. Intuitively, a visibly pushdown
automaton [26] over (X,,X_,¥_) is a pushdown automaton restricted so that it pushes onto
the stack only on reading a push, it pops the stack only on reading a pop, and it does not
modify the stack on reading a neutral symbol. Up to coding, this notion is similar to the one
of input driven pushdown automata [21] and of nested word automata [6].

» Definition 2. A wvisibly pushdown automaton (VPA) over (X.,X_,X.) is a tuple A =
(Q,%,T, Qin, Qr, A) where @ is a finite set of states, Qs C Q is a set of initial states,
Qr C Q is a set of final states, I" is a finite stack alphabet, and A C (Q x X, x Q@ xI') U
(@ xX_xT xQ)U(Q x 2= x Q) is the transition relation.
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To represent stacks we use a special bottom-of-stack symbol | that is not in I'. A
configuration of a VPA A is a pair (o, q), where ¢ € Q and o € L -T'*. For a € ¥, there is an
a-transition from a configuration (o, q) to (¢’,¢’), denoted (o, q)—>+(0’,¢’), in the following
cases:

If a is a push symbol, then o’ = oy for some (¢, a, ¢’,7) € A, and we write g—(q’, push(7)).

If a is a pop symbol, then o = ¢’ for some (¢, a,7v,q") € A, and we write (¢, pop(7)) —¢'.

If a is a neutral symbol, then o = ¢’ and (¢,a,¢’) € A, and we write ¢—¢'.

For a finite word v = a1 ---a, € X%, if (ai,17qi,1)i>(al-,qi) for every 1 < i < n, we also
write (00, qo)—=(0n, gn). The word u is accepted by a VPA if there is (p, q) € Qi X Qy such
that (L, p)—=(L,q). The language L(A) of A is the set of words accepted by A, and we
refer to such a language as a visibly pushdown language (VPL).

At each step, the height of the stack is pre-determined by the prefix of u read so far. The
height height(u) of u € ¥* is the difference between the number of its push symbols and
of its pop symbols. A word u is balanced if height(u) = 0 and height(u[1,]) > 0 for all s.
We also say that a push symbol u(i) matches a pop symbol u(j) if height(u[i, j]) = 0 and
height(u[i, k]) > 0 for all i < k < j. By extension, the height of u(é) is height(u[l,i — 1])
when u(7) is a push symbol, and height(u[1,]) otherwise.

For all balanced words u, the property (o, p)—(o,q) does not depend on o, therefore
we simply write p—q, and say that (p, q) is a u-transition. We also define similarly to the
notions for finite automata above the X' -diameter of A (or simply diameter) and the notion
of A being ¥'-closed. These definitions only consider balanced words.

Our model is inherently restricted to input words having no prefix of negative stack
height, and we defined acceptance with an empty stack. This implies that only balanced
words can be accepted. From now on, we assume that the input is balanced as verifying this
in a streaming context is easy.

2.3 Streaming Property Testers

Assume we have, for any € > 0, a criterion to declare that an input w is e-far from a
language L. An e-tester for L accepts all inputs in L with probability 1 and rejects with
high probability all inputs e-far from L. Two-sided error testers have also been studied but
in this paper we stay with the notion of one-sided testers, that we adapt in the context of
streaming algorithm as in [14].

» Definition 3. Let ¢ > 0 and let L be a language. A streaming e-tester for L with one-sided
error n and memory s(n) is a randomized algorithm A such that, for any input u of length n
given as a data stream:

If u € L, then A accepts with probability 1;

If u is e-far from L, then A rejects with probability at least 1 — »;

A processes u within a single sequential pass while maintaining a memory

Even if we only focus on the space complexity of streaming testers, all our streaming
testers have polylogarithmic (in n/e) time per processing letter.

For a distance d between words, we say that a word u is e-far from a language L if
d(u,v) > elu| for every v € L, i.e. the e-neighborhood of u does not intersect L. Hence, any
distance on words leads to a notion of streaming property tester. Remark that any e-tester
for some distance d; turns out to be also a (ce)-tester for any other distance dy such that
dy < cdy, where ¢ > 0 is some constant.
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2.4 Balanced/Standard Edit Distance

The usual distance between words in property testing is the Hamming distance. In this work,
we consider an easier distance to manipulate in property testing but still relevant for most
applications, which is the edit distance, that we adapt to weighted words.

Given a word u, we define two possible edit operations: the deletion of a letter in position 4
with corresponding cost |u(4)|, and its converse operation, the insertion where we also select
a weight for the new u(4). Note that, for simplicity, we drop the usual substitution operation,
leading to a possible multiplicative factor of 2 in the resulting distance. This is not an issue
when designing streaming property testers as observed above. The (standard) edit distance
dist(u, v) between two weighted words v and v is defined as the minimum total cost of a
sequence of edit operations changing u to v. All letters that have not been inserted nor
deleted must keep the same weight. For a restricted set of letters ¥/, define distsy (u, v) when

insertions (but not deletions) are restricted to letters in ¥’ (this makes distyy not symmetric).

We will also consider a restricted version of this distance for balanced words, motivated by
our study of VPL. Similarly, balanced-edit operations can be deletions or insertions of letters,
but each deletion of a push symbol (resp. pop symbol) requires the deletion of the matching
pop symbol (resp. push symbol). Similarly for insertions: if a push (resp. pop) symbol is

inserted, then a matching pop (resp. push) symbol must also be inserted simultaneously.
The cost of these operations is the weight of the affected letters, as with the edit operations.

We define the balanced-edit distance bdist(u, v) between two balanced words as the total cost
of a sequence of balanced-edit operations changing u to v. Similarly to dists (u,v) we define
bdists (u,v). We omit ¥’ when ¥/ = X.

When dealing with a visibly pushdown language, we will always use the balanced-edit
distance, whereas we will use the standard-edit distance for regular languages. Note that
since balanced-edit distance is larger than the standard edit distance, our testers will also be
valid for that distance.

3 Exact Algorithm

Fix a VPA A recognizing some VPL L on ¥ = ¥, U X_ U X.. In this section, we design
an exact streaming algorithm that decides whether an input belongs to L. Algorithm 2
maintains a stack of small height but whose items can be of linear size. In Section 5, we
replace stack items by appropriate small sketches.

3.1 Notations and Algorithm Description

Call a peak a sequence of push symbols followed by an equal number of pop symbols, with
possibly intermediate neutral symbols, 4.e. an element of the language A = [J;5,((2-)" -
¥,)7 - (22)* - (- - (22)*)?. One can compress any peak v € A by the set R, = {(p,q) : p—q}
of the v-transitions, and consider R, as a new neutral symbol with weight |v|. In fact, for
the purpose of the analysis of our algorithm, we augment neutral symbols by many more
relations for which A remains YX-closed. Indeed, we allow any relation R of any weight such
that, when (p, q) € R, there is a v € A such that p—-¢, but that v could be different for every
(p,q) € R. For the rest of the paper, they will be the only symbols with weight potentially
larger than 1.

» Definition 4. Let Xg be ¥. augmented by all letters ‘R’ encoding a relation R C @ x Q
such that for every (p,q) € R there is a balanced word u € ¥* with p—¢. In addition we
allow any weight |R| > 1 for those letters. Let Ag be A where X is replaced by Xq.

43:7
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Algorithm 2 Exact Tester for a VPL

Input: Balanced data stream u
Data structure:
Stack <~ empty stack // Stack of items v with v € Prefix(Ag)
uo 0 // uo € Prefix(Ag) is a suffiz of the processed part u[l,i] of u
// with possibly some factors vE Ag replaced by R,
Riewp < {(p,0)}peo //Set of transitions for the maz. prefiz of wu[l,i] in Ag
Code:
While w not finished
a < Next(u) //Read and process a new symbol a
If a€ X, and wo has a letter in Y- // wo-a & Prefix(Ag)
Push wug on Stack, ug <+ a
Else wug <+ up-a
If uo is balanced // uo € Ag: compression
Compute Ru0 the set of wpg-transitions
If Stack =0, then Riemp ¢ Riemp 0 Ruy, uo + 0
// where o denotes the composition of relations
Else Pop v from Stack, uo < v- Ry,
Let (v1-wv2) < top(Stack) s.t. vz is maximal and balanced // vz € Ag
If |ug| > |v2|/2 // wo is big enough and vy can be replaced by R,
Compute R,, the wvs-transitions, Pop v from Stack, wug < (v1-Ru,)-Uo
If (Qin X Qf) N Rienp 0, Accept; Else Reject // Riewp = Ru

We then write piq whenever (p,q) € R, and extend A and L accordingly. Of course,
our notion of distance will be solely based on the initial alphabet 3. If R;, Rs C Q X @
are two relations on @ we define their composition Ry o Rz to be {(z,z) | Jy s.t. (z,y) €
Ry and (y,z) € Ra}.

A general balanced input instance u will consist of many nested peaks. However, we will
recursively replace each factor v € Ag by R, with weight |v|.

Denote by Prefix(Ag) the language of prefixes of words in Ag. While processing the
prefix u[l, ] of the data stream u, Algorithm 2 maintains a suffix ug € Prefix(Ag) of u[1,1],
that is an unfinished peak, with some simplifications of factors v in Ag by their corresponding
relation R,. Therefore ug consists of a sequence of push symbols and neutral symbols possibly
followed by a sequence of pop symbols and neutral symbols. The algorithm also maintains a
subset Riemp € @ x @ that is the set of transitions for the maximal prefix of u[1,4] in Ag.
When the stream is over, the set Rienp is used to decide whether u € L or not.

When a push symbol a comes after a pop sequence, ug - a is no longer in Prefix(Ag) hence,
Algorithm 2 puts ug on the stack of unfinished peaks (see lines 10 to 11 and Figure la) and
up is reset to a. In other situations, it adds a to ug. In case uy becomes a word in Ag (see
lines 13 to 17 and Figure 1b), Algorithm 2 computes the set of ugp-transitions R,, € 3¢, and
adds R,, to the previous unfinished peak that is retrieved on top of the stack and becomes
the current unfinished peak; in the special case where the stack is empty it simply updates
Rienp by taking its composition with Ry, .

3.2 Algorithm Analysis

For each factor v constructed in Algorithm 2, we define Depth(v) as the number of processed
nested peaks in v. This is formalized as follows.

» Definition 5. For each factor constructed in Algorithm 2, Depth is defined dynamically by
Depth(a) = 0 when a € 3, Depth(v) = max; Depth(v(i)) and Depth(R,) = Depth(v) + 1.
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A A
—
> >€<—> < >€ ><>
Rest of Stack Top of Stack uo Rest of Stack Top of uo
(a) Ilustration of lines 10 to 11 from Algorithm 2 Stack
A A
—
< > e > < S . < - Riormer uq .
Rest of Stack Top of Stack U Stack new ug
(b) Ilustration of lines 13 to 17 from Algorithm 2
A A
—
< U] ><— U3 —> g 4 < U > R, former ugp -
Rest of Stack Top of Stack ug Stack new g

(c) Nlustration of lines 18 to 20 from Algorithm 2

Figure 1 Illustration of Algorithm 2.

In order to bound the size of the stack, Algorithm 2 considers the maximal balanced
suffix v of the topmost element v; - vy of the stack and, whenever |ug| > |vs|/2, it computes
the relation R,, and continues with a bigger current peak starting with v; (see lines 18 to 20
and Figure 1c). A consequence of this compression is that the elements in the stack have
geometrically decreasing weight and therefore the height of the stack used by Algorithm 2 is
logarithmic in the length of the input stream. This can be proved by a direct inspection of
Algorithm 2.

» Proposition 6. Algorithm 2 accepts exactly when uw € L, while maintaining a stack of at
most log |u| items.

We state that Algorithm 2, when processing an input u of length n, considers at most

O(logn) nested peaks, that is Depth(v) = O(logn) for all factors constructed in Algorithm 2.

» Lemma 7. Let v be the factor used to compute R, at line either 14 or 20 of Algorithm 2.
Then |v(i)| < 2|v|/3, for all i. Moreover, for any factor w constructed by Algorithm 2 it holds
that Depth(w) = O(log |w]).
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4 The Special Case Of Peaks

We now consider restricted instances consisting of a single peak. For these instances, Al-
gorithm 2 never uses its stack but ug can be of linear size. We show how to replace ug by
a small random sketch in order to get a streaming property tester using polylogarithmic
memory. In Section 5, this notion of sketch will be later extended to obtain our final streaming
property tester for general instances.

4.1 Hard Peak Instances

Peaks are already hard for both streaming algorithms and property testers. Indeed, consider
the language Disj C A over alphabet ¥ = {0,1,0,1,a} and defined as the union of all
languages a* - z(1) -a* - ... z(j)-a* -y(j) -a* ... - y(1) - a*, where j > 1, z,y € {0,1}7, and
x(i)y(i) # 1 for all s.

Then Disj can be recognized by a VPA with 3 states, ¥, = {0,1}, . = {0,1} and
Y. = {a}. However, the following fact states its hardness for both models. The hardness for
non-approximation streaming algorithms comes for a standard reduction to Set-Disjointness.
The hardness for property testing algorithms is a corollary of a similar result due to [25] for
parenthesis languages with two types of parentheses.

» Fact 8. Any randomized p-pass streaming algorithm for Disj requires memory space Q(n/p),
where n is the input length. Moreover, any (non-streaming) (27°)-tester for Disj requires to
query Q(n'/™ /logn) letters of the input word.

Surprisingly, for every € > 0, we will show that languages of the form L N A, where L is a
VPL, become easy to e-test by streaming algorithms. This is mainly because, given their full
access to the input, streaming algorithms can perform an input sampling which makes the
property testing task easy, using only a single pass and little memory.

4.2 Slicing Automaton

Observe that Algorithm 2 will never use the stack in the case of a single peak. After
Algorithm 2 has processed the i-th letter of the data stream, ug contains wu[l,i] where the
eventual initial sequence of neutral symbols has been removed. We will show how to compute
R, at line 14 using a standard finite state automaton without any stack.

Indeed, for every VPL L, one can construct a regular language L such that testing
whether u € L N A is equivalent to test whether some other word u belongs to L. For this,
let T be a special symbol not in Y- encoding the relation set {(p,p) : p € Q}. For a word
v € XL, write [v,1] for the word (v(1),1) - (v(2),I) - (v(l),I), and similarly [I,v]. Consider a
weighted word of the form u = (Hle v; - ai> Vg1 (H;zj b; -wi), where a; € X4, b; € X,
and v;,w; € XX, Then the slicing of u (see Figure 2) is the word @ over the alphabet
S = (84 x 22) U (S x {T}) U ({I} x 5.) defined by @ = ( I o 1) L ws) - (as, bi)> [vis, 1],

and which has weight ( g:l A(v;) + Mw;) + 2) + A(vj41)-

» Definition 9. Let A = (Q, %, T, Qin, @y, A) be a VPA. Define Q = Q X Q, Qin = Qin X Q,
= {p :+ p € Qh The slicing of A is the finite automaton

Qr

A=(Q,%,Qin,Qf, A) where the transitions A are:
1

2

(p, q)(—g(p q') when p—%+(p’, push(v)) and (¢/, pop('y))—b>q are both transitions of A.

L . .
(p, q)(‘g(p q), resp. (p, q)(—cg(p, q'), when p—55p/, resp. ¢——¢/, is a transition of A.
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(r,m) T

- (an,bn)

', q)

(a“ b?)

(p,q)

(1), 1)

((Im,lIf) l
I

(3

Run in the VPA A on u Run in the slicing automaton Aoni

Figure 2 Slicing of a word u € A.

This construction will be later used in Section 5 for weighted languages. In that case,
we define the weight of a letter in @ by |(a,b)| = |a| + |b|, with the convention that |I| = 0.
Moreover, we write 2/323 for the alphabet obtained similarly to s using ¥ instead of X..
Note that the slicing automaton A defined on 2/122 is $-closed and has S-diameter at most
2m?2 where m = |Q|. Indeed, the slicing automaton has m? states and every letter in & has
weight at most 2, hence the shortest path from two states (when exists) has weight at most
2m?2. In particular, it directly implies the following.

~

» Proposition 10. Let v € A be such that (p,q)—=(p',q'). There is w € A such that
w| < 2m® and (p,q)—— (', ')

» Lemma 11. If A is a VPA accepting L, then A is accepts L= {u:ue LNA}.

4.3 Random Sketches

We are now ready to build a tester for L N A. To test a word u we use a property tester
for the regular language L. Regular languages are known to be e-testable for the Hamming
distance with O((log 1/¢)/e) non-adaptive queries on the input word [1], that is queries that
can all be made simultaneously. Those queries define a small random sketch of u that can
be sent to the tester for approximating R,. Since the Hamming distance is larger than
the edit distance, those testers are also valid for the latter distance. Observe also that, for
v1,v2 € Ag, we have bdist(vy,v) < 2dist(07,02). The only remaining difficulty is to provide
to the tester an appropriate sampling on u while processing u.

We will proceed similarly for the general case in Section 5, but then we will have to

consider weighted words. Therefore we show how to sketch u in that general case already.

Indeed, the tester of [1] was simplified for the edit distance in [23], and later on adapted
for weighted words in [24]. We consider here an alternative approach that we believe to be
simpler, but slightly less efficient than the tester of [24].

Our tester for weighted regular languages is based on k-factor sampling on u that we
will simulate by an over-sampling built from a letter sampling on u, that is according to the
weights of the letters of u only. This new sampling can be easily performed given a stream of
u using a standard reservoir sampling.
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u(i) P u(i+ k) u(j)  u(y’ —2k) k1 u(j’)

Figure 3 The sampling Wy (u) from Definition 12: sample is in red.

Let u € A and let u[i, i + k] be a factor that contains at least one push symbol. Call iy
(resp. i) the smallest (resp. largest) integer such that i1 > ¢ (resp. ia <@+ k) and wu(iq)
(resp. u(iz)) is a push symbol. Then the matching pop sequence of u[i,i + k] is defined as
u[j1, j2] where u(j1) (resp. u(j2)) is the matching pop symbol of u(iy) (resp. u(iz)).

» Definition 12. For a weighted word u € Ag, denote by Wy, (u) the sampling over subwords

of u constructed as follows (see Figure 3):

(1) Sample a factor u[é, i + k] of u with probability |u(i)|/|ul.

(2) If ufé, i + k] contains at least one push symbol, let u[j, '] be the matching pop sequence
of uli, i+ k], extended by the first k neutral symbols after the last pop symbol, if any.
Add w[max(j,j" — 2k), j'] to the sample (hence, some matching pops of u[i, i + k] may
not belong to u[max(j,j' — 2k), j']).

Let us stress that in the above definition the weight of letters only matter in (1), and
not in (2) which cares about matching push and pop symbols, which are of weight 1. One
consequence is that one can design a randomized streaming algorithm performing this
sampling.

» Fact 13. There is a randomized streaming algorithm with memory O(k + logn) which,
given k and u as input, samples Wi(u).

» Lemma 14. Let u be a weighted word, and let k be such that 4k < |u|. Then 4k independent
copies of Wi(u) over-sample the k-factor sampling on u.

We can now give an analogue of the property tester for weighted regular languages in
LN Ag. For that, we use the following notion of approximation.

» Definition 15. Let R C Q? and € > 0. Then R (&, X)-approzimates a balanced word
u€ (B, UB_UXg)* on A, if for all p,q € Q:

(1) If p—5q, then (p,q) € R;

(2) If (p,q) € R, there is a word v such that dists(u,v) < e|u| and p—q.

Our tester is going to be robust enough in order to consider samples that do not exactly
match the peaks we want to compress.

» Theorem 16. Let A be a VPA with m > 2 states and X-diameter d > 2. Lete >0, n > 0,
t = 2[4dm3(log1/n)/e], k = [4dm/e] and T = 4kt. There is an algorithm that, given T
random subwords z1, ...,z of some weighted word v € Ag, such that each z; comes from an
independent sampling Wy (v), outputs a set R C Q x Q that (g,X)-approzimates v on A with
bounded error n.
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u =u

Figure 4 An o suffix decomposition of u of size s. For every I, either |u'| < aju'™!|, or u' = a-u'*?

where a is a letter.

Let v’ be obtained from v by at most e|v| balanced deletions. Then, the conclusion is still
true if the algorithm is given an independent Wy (v') for each z; instead, except that R now
provides a (3¢, X)-approximation. Last, each sampling can be replaced by an over-sampling.

As a consequence we get our first streaming tester for L N A.

» Theorem 17. Let A be a VPA for L with m > 2 states, and let e, > 0. Then there is a
streaming e-tester for LN A with one-sided error n and memory space O((m®log(1/n)/?)
(m3/e +1logn)), where n is the input length.

Proof. We use Algorithm 2 where we replace the current factor ug by T' = 4kt independent
samplings Wi (up). We know that such samplings can be computed using memory space
O(k + logn) by Fact 13. By Proposition 10, the slicing automaton has $-diameter d at most
2m?2. Therefore, from Theorem 16, taking t = 4[4dm3(log1/n)/e] and k = [4dm /<] leads to
the desired conclusion. |

5 Algorithm With Sketching

5.1 Sketching Using Suffix Samplings

We now describe the sketches used by our main algorithm. They are based on the generaliz-
ation of the random sketches described in Section 4.3. Moreover, they rely on a notion of
suffix sampling, that ensures a good letter sampling on each suffix of a data stream. Recall
(see Section 2.1) that a letter sampling on a weighted word u samples a random letter ()
(with its position) with probability |u(¢)|/|u|, and that a sampling on k-factors can be derived
from a letter sampling. Therefore we will sample k-factors using an («, t)-suffix sampling.

» Definition 18. Let u be a weighted word and let o > 1. An «a-suffix decomposition of u of
size s (see Figure 4) is a sequence of suffixes (u');<;<, of u such that: u! = u, u* is the last
letter of u, and for all [, u!*! is a strict suffix of u! and if |u!| > a|u'*!| then u! = a - u!*!
where a is a single letter.

An (a,t)-suffix sampling on u of size s is an a-suffix decomposition of u of size s with ¢
letter samplings on each suffix of the decomposition.

We observe that (a,t)-suffix samplings can be either concatenated or compressed as
stated below.

» Proposition 19. Given an («a,t)-suffix sampling D,, on u of size s, and another one D, on
v of size s,, there is an algorithm Concatenate(D,,, D,) computing an («, t)-suffix sampling
on the concatenated word u - v of size at most S, + Sy in time O(sy).

43:13

ESA 2016



43:14

w

'S

~

0

Streaming Property Testing of Visibly Pushdown Languages

Data Structure 3 Sketch for an unfinished peak

Parameters: real ¢ >0, integers T >1 and k> 1.
Data structure for a weighted word wv € Prefix(Ag)
Weights of v and of its first letter v(1)
Height of wv(1)
Boolean indicating whether v contains a pop symbol

(1—|—5’)—suffix decomposition vl,...,v of v encoded for [=1,...,s by
‘

s

Estimates |vl|1ow and \vl|high of |v
T independent samplings S, on k-factors of v' //See details

below with corresponding weights and heights

Moreover, given an («,t)-suffix sampling D, on u of size s,, there is an algorithm
Simplify(D,,) computing an («,t)-suffix sampling on u of size at most 2[log|u|/log o]
in time O(sy,).

Proof. For Concatenate, it suffices to do the following. For each suffix u! of D,,: (1) replace
u! by u! - v; and (2) replace the i-th sampling of u! by the i-th sampling of v with probability
[v]/(|u] + |v]), fori=1,... ¢t

For Simplify, do the following. For each suffix u! of D,,, from | = s, (the smallest one)
to [ =1 (the largest one): (1) replace all suffixes u!~, u'=2 ... u™ by the largest suffix u™
such that |u™| < a|u'|; and (2) suppress all samples from deleted suffixes. <

Using this proposition, one can easily design a streaming algorithm constructing online
a suffix decomposition of polylogarithmic size. Starting with an empty suffix-sampling .5,
simply concatenate S with the next processed letter a of the stream, and then simplify it.

5.2 Final Algorithm

Our final algorithm is a modification of Algorithm 2: in particular it approximates relations
R, (in the spirit of Definition 15) by elements in ¥, instead of exactly computing them.
Let us stress that even if some R, is approximated by an R that does not correspond to any
R,, one has R € ¥¢, which means that for any (p,q) € R, there is a balanced word v € ¥*
depending on (p, q) with p—=q.

To mimic Algorithm 2 we need to encode (compactly) each unfinished peak v of the
stack and wug: for that we use the data structure described in Data Structure 3. Our final
algorithm, Algorithm 4, is simply Algorithm 2 with this new data structure and corresponding
adapted operations, where ¢’ = ¢/(6logn), T = 4608m422m” (log?n)(log1/n)/e* and k =
24m2am” (logm)/e.

The methods are described in Algorithm 4, where we implicitly assume that each letter
processed by the algorithm comes with its respective height and (exact or approximate)
weight. They use functions Concatenate and Simplify described in Proposition 19, while
adapting them.

In the next section, we show that the samplings S, are close enough to an (1 + )-suffix
sampling on v!. This lets us build an over-sampling of an (1 4 ¢’)-suffix sampling. We also
show that it only requires a polylogarithmic number of samples. Then, we explain how to
recursively apply the tester from Theorem 16 (with €’) in order to obtain the compressions
at line 14 and 20 while keeping a cumulative error below €. We now state our main result
whose proof relies on Lemmas 22 and 23.
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Algorithm 4 Adaptation of Algorithm 2 using sketches

Run Algorithm 2 using Data structure 3 with the following adaptations:
Adaption of functions from Proposition 19
Concatenate(D,,D,) with an exact estimate of |v| is modified s.t.
the replacement probability is now |v|/(|t|nign + [v])
and |u'-v|, < |u'|; + |v], for z=low,high
Simplify(D,) with a=1+¢ has now relaxed condition |[u™|nign < (14 &)t
Online-Suffix-Sampling is unchanged except for doing k-factor sampling.
Adaption of operations on factors used in Algorithm 2
Compute relation: R,
Run the algorithm of Theorem 16 using samples in D,
Decomposition: v; - v < v
Find largest suffix v’ in D, s.t. v' € Prefix(Ag) //i.e. v' is in w2
Dyjyy, +suffixes (v')<; with their samples
D,, <suffix v’ with its samples & weight estimates //to compute R,
-(|vi|high7|vi|1ow) when v'"! and v’ differ by only one letter (then vi=ws)
—(|vi_1|high, |vi|1ow) otherwise
Test: |uo| > |v2|/2 using |v2|iow instead of |uva]
Concatenation: wug < (v1 - Ry,) - %o
Dy < (Dyjv,, Rv,) replacing each sample of D, in vz by R,
// The height of a sample determines whether %t %5 in v
D,, < Simplify(Concatenate(D,/, Dy,))

» Theorem 20. Let A be a VPA for L with m > 2 states, and let e, > 0. Then there is an e-
streaming  algorithm  for L  with one-sided error 1 and memory  space
O(m523m2 (log® n)(log 1/1)/e*), where n is the input length.

5.3 Final Analysis

As Algorithm 4 may fail at various steps, the relations it considers may not correspond to
any word. However, each relatlon R that it produces is still in ¥. Furthermore, the slicing
automaton A over ZQ is S-closed. Fact 21 below bounds the S-diameter of A (which is
equal to the YX-diameter of A4) by 2m” . For simpler languages, as those coming from a DTD,
this bound can be lowered to m.

» Fact 21. Let A be a VPA with m states. Then the X-diameter of A is at most om”,

We first state that the decomposition, weights and sampling we maintain are close enough
to an (1 4 ¢’)-suffix sampling with the correct weights. Recall that &’ = ¢/(6logn).

» Lemma 22 (Stability lemma). Let v be an unfinished peak with Wy, Ws two of the T samplers
maintained by Algorithm 4. Then the joint process Wy, Wa) over-samples an (1 + €’)-suffic
sampling on v, and the decomposition has size at most 144(log |v|)(logn)/e + O(logn).

Using the tester from Theorem 16 for computing each R, we get our robustness lemma.

» Lemma 23 (Robustness lemma). Let A be a VPA recognizing L and let w € ™. Let Rfina1
be the final value of Riyenp in Algorithm 4.

If u € L, then Rgina1 € L; and if Rsina1 € L, then bdists (u, L) < en with probability at
least 1 —n
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