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Abstract
In recent years much effort has been put into developing polynomial-time conditional lower
bounds for algorithms and data structures in both static and dynamic settings. Along these
lines we introduce a framework for proving conditional lower bounds based on the well-known
3SUM conjecture. Our framework creates a compact representation of an instance of the 3SUM
problem using hashing and domain specific encoding. This compact representation admits false
solutions to the original 3SUM problem instance which we reveal and eliminate until we find a
true solution. In other words, from all witnesses (candidate solutions) we figure out if an honest
one (a true solution) exists. This enumeration of witnesses is used to prove conditional lower
bounds on reporting problems that generate all witnesses. In turn, these reporting problems are
then reduced to various decision problems using special search data structures which are able to
enumerate the witnesses while only using solutions to decision variants. Hence, 3SUM-hardness
of the decision problems is deduced.

We utilize this framework to show conditional lower bounds for several variants of convo-
lutions, matrix multiplication and string problems. Our framework uses a strong connection
between all of these problems and the ability to find witnesses.

Specifically, we prove conditional lower bounds for computing partial outputs of convolutions
and matrix multiplication for sparse inputs. These problems are inspired by the open question
raised by Muthukrishnan 20 years ago [22]. The lower bounds we show rule out the possibility
(unless the 3SUM conjecture is false) that almost linear time solutions to sparse input-output
convolutions or matrix multiplications exist. This is in contrast to standard convolutions and
matrix multiplications that have, or assumed to have, almost linear solutions.

Moreover, we improve upon the conditional lower bounds of Amir et al. [5] for histogram
indexing, a problem that has been of much interest recently. The conditional lower bounds we
show apply for both reporting and decision variants. For the well-studied decision variant, we
show a full tradeoff between preprocessing and query time for every alphabet size > 2. At an
extreme, this implies that no solution to this problem exists with subquadratic preprocessing
time and Õ(1) query time for every alphabet size > 2, unless the 3SUM conjecture is false. This
is in contrast to a recent result by Chan and Lewenstein [9] for a binary alphabet.

While these specific applications are used to demonstrate the techniques of our framework,
we believe that this novel framework is useful for many other problems as well.
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1 Introduction

In recent years much effort has been invested towards developing polynomial time lower
bounds for algorithms and data structures in both static and dynamic settings. This effort is
directed towards obtaining a better understanding of the complexity class P for well-studied
problems which seem hard in the polynomial sense. The seminal paper by Gajentaan and
Overmars [13] set the stage for this approach by proving lower bounds for many problems in
computational geometry conditioned on the 3SUM conjecture. In the 3SUM problem we are
given a set A of n integers and we need to establish if there are a, b, c ∈ A such that a+b+c = 0.
This problem has a simple O(n2) algorithm (and some poly-logarithmic improvements in
[6, 17]) but no truly subquadratic algorithm is known, where truly subquadratic means
O(n2−ε) for some ε > 0. The 3SUM conjecture states that no truly subquadratic algorithm
exists for the 3SUM problem.

Based on this conjecture, there has been a recent extensive line of work establishing condi-
tional lower bounds (CLBs) for many problems in a variety of fields other than computational
geometry, including many interesting dynamic problems, see e.g. [1, 2, 3, 4, 19, 23].

1.1 Decision and Reporting Problems
Algorithmic problems come in many flavors. The classic one is the decision variant. In this
variant, we are given an instance of a problem and we are required to decide if it has some
property or not. Some examples include: (1) given a 3-CNF formula we may be interested in
deciding if it satisfiable by some truth assignment; (2) given a bipartite graph we may be
interested in deciding if the graph has a perfect matching; (3) given a text T and a pattern
P we may be interested in deciding if P occurs in T . It is well-known that the first example
is NP-complete while the two others are in P. An instance that has the property in question
has at least one witness that proves the existence of the property. In the examples above a
witness is: (1) a satisfying assignment; (2) a perfect matching in the graph; (3) a position of
an occurrence of P in T . Sometimes, we are not only interested in understanding if a witness
exists, but rather we wish to enumerate all of the witnesses. This is the reporting variant of
the problem. In the examples mentioned above the goal of the reporting variant is to: (1)
enumerate all satisfying assignments; (2) enumerate all perfect matchings; (3) enumerate all
occurrences of P in T . For the first two examples it is known from complexity theory that it
is most likely hard to count the number of witnesses (not to mention reporting them) (these
are #P-complete problems), while the third example can be solved by classic linear time
algorithms.

In this paper we investigate the interplay between the decision and reporting variants of
algorithmic problems and present a systematic framework that is used for proving CLBs for
these variants. We expect this framework to be useful for proving CLBs on other problems
not considered here.

1.2 Our Framework
We introduce and follow a framework that shows 3SUM-hardness of decision problems via
their reporting versions. The high-level idea is to reduce an instance of 3SUM to an instance
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of a reporting problem, and then reduce the instance of a reporting problem to several
instances of its decision version using a sophisticated search structure. The outline of this
framework is described next.

Compact Representation. One of the difficulties in proving CLBs based on the 3SUM
conjecture is that the input universe for 3SUM could be too large for accommodating
a reduction to a certain problem. To tackle this, we embed the universe using special
hashing techniques. This is sometimes coupled with a secondary problem-specific encoding
scheme in order to match the problem at hand.
Reporting. The embedding in the first step may introduce false-positives. To tackle this,
we report all the candidate solutions (witnesses) for the embedded 3SUM instance, in
order to verify if a true solution (an honest witness) to 3SUM really exists. This is where
we are able to say something about the difficulty of solving reporting problems. This is
done by reducing the embedded 3SUM instance to an instance of such a reporting problem,
if it provides an efficient way to find all the false-positives. In some cases, such reductions
reveal tradeoff relationships between the preprocessing time and reporting/query time.
Reporting via Decision. In this step the goal is to establish 3SUM-hardness of a decision
problem. To do so we reduce an instance of the reporting version of the problem to
instances of the decision version by creating a data structure on top of the many instances
of the decision version. This data structure allows us to efficiently report all of the
elements in the output of the instance of the reporting version. By constructing the data
structure in different ways we obtain varying CLBs for the decision variants depending
on the specific structure that we use.

By following this route we introduce new CLBs for some important problems which are
discussed in detail in Section 2. We point out that the embedding in the first step follows
along the lines of [23] and [19]. However, in some cases we also add an additional encoding
scheme to fit the needs of the specific problem at hand.

Implications. In Section 2 we discuss three applications from two different domains which
utilize our framework for proving CLBs, thereby demonstrating the usefulness of our frame-
work. Table 1 summarizes these results. Of particular interest are new results on Histogram
Indexing (defined in Section 2) which, together with the algorithm of [9], demonstrate a sharp
separation when allowing truly subquadratic preprocessing time between binary and trinary
alphabet settings. Moreover, our framework is the first to obtain a CLB for the reporting
version, which, as opposed to the decision variant, also holds for the binary alphabet case.

2 Applications

Convolution Problems

The convolution of two vectors u, v ∈ {R+ ∪ {0}}n is a vector w, such that w[k] =∑k
i=0 u[i]v[k − i] for 0 ≤ k ≤ 2n− 2. Computing the convolution of u and v takes O(n logn)

time using the celebrated FFT algorithm. Convolutions are used extensively in many areas
including signal processing, communications, image compression, pattern matching, etc. A
convolution witness for the kth entry in w is a pair (a, b) such that a+b = k and u[a] ·v[b] > 0.
In other words, the witnesses of entry k in w are all values i that contribute a non-zero value
to the summation w[k] =

∑k
i=0 u[i]v[k − i]. The first convolution problem we consider is the

convolution witnesses problem which is defined as follows.
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I Definition 1. In the convolution witnesses problem we preprocess two vectors u, v ∈
{R+ ∪ {0}}n and their convolution vector w, so that given a query integer 0 ≤ k ≤ 2n− 2,
we list all convolution witnesses of index k in w.

We prove the following CLB for the convolution witnesses problem that holds even if u
and v are binary vectors and all numbers in w are non-negative integers.

I Theorem 2. Assume the 3SUM conjecture is true. Then for any constant 0 < α < 1, there
is no algorithm solving the convolution witnesses problem with O(n2−α) expected preprocessing
time and O(nα/2−Ω(1)) expected amortized query time per witness.

Theorem 2 implies that when using only truly subquadratic preprocessing time one
is required to spend a significant polynomial amount of time on every single witness. In
particular, this means that, assuming the 3SUM conjecture, one cannot expect to find
witnesses much faster than following the naive algorithm for computing convolution naïvely
according to the convolution definition. This is in contrast to the decision version of the
problem, where we only ask if a witness exists. This variant is easily solved using constant
query time after a near linear time preprocessing procedure (computing the convolution
itself).

Another variation of the convolution problem which we consider is the sparse convolution
problem. There are two different problems named sparse convolution, both appearing as
open questions in a paper by Muthukrishnan [22]. In the first, which is now well understood,
we are given Boolean vectors u and v of lengths N and M , where M < N . There are n
ones in u, m ones in v and z ones in w, where w is the Boolean convolution vector of u and
v. The goal is to report the non-zero elements in w in Õ(z) time. This problem has been
extensively studied, and the goal has been achieved; see for example [9, 11, 15]. The second
variant which we call partial convolutions is as follows.

I Definition 3. The partial convolution problem on two vectors u and v of real numbers
(of length N and M respectively, where M < N) and a set S of indices is to compute, for
each i ∈ S, the value of the i-th element in the convolution of u and v.

Muthukrishnan in [22] asked if it is possible to compute a partial convolution significantly
faster than the time needed to compute a (classic) convolution. We prove a CLB based on
the 3SUM conjecture, that holds also for the special case of Boolean vectors, and, therefore,
also for the special case in which we only want to know if the output values at indices in S
are zero or more. Moreover, we focus on the important variant of this problem that deals
with the case where the two input vectors have only n = O(N1−Ω(1)) ones and are both
given implicitly (specifying only the indices of the ones). Our results also extend to the
indexing version of the partial convolution problem, which we call the partial convolution
indexing problem, and is defined as follows.

I Definition 4. The partial convolution indexing problem is to preprocess an N -length
vector u of real numbers and a set of indices S to support the following queries: given an
M -length vector v (M < N) of real numbers, for each i ∈ S compute the value of the i-th
element of the convolution of u and v.

Once again this variant already relevant when the input is Boolean and sparse, i.e. u and
v have n = O(N1−Ω(1)) ones and are represented implicitly by specifying their indices.

We prove the following CLBs for these problems with the help of our framework.
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I Theorem 5. Assume the 3SUM conjecture is true. Then there is no algorithm for the
partial convolution problem with O(N1−Ω(1)) time, even if |S| and the number of ones in
both input vectors are less than N1−Ω(1).

I Theorem 6. Assume the 3SUM conjecture is true. Then there is no algorithm for the
partial convolution indexing problem with O(N2−Ω(1)) preprocessing time and O(N1−Ω(1))
query time, even if both |S| and the number of ones of the input vectors are O(N1−Ω(1)).

As mentioned above, the convolution of vectors of length N can be computed in Õ(N)
time with the FFT algorithm. However, in the partial convolution problem and partial
convolution indexing problem, despite the input vectors being sparse and represented sparsely
(specifying only the O(N1−Ω(1)) indices of the ones in each vector), and despite the portion
of the output we need to compute being sparse (|S| = O(N1−Ω(1))), no linear time algorithm
(in n = O(N1−Ω(1))) exists, unless the 3SUM conjecture is false.

Notice that the partial convolution problem and its indexing variant are decision problems,
since they require a decision for each location i ∈ S, whether w[i] > 0 or not. This is in
contrast to the convolution witnesses problem, which is a reporting problem, as it requires
the reporting of all of the witnesses for w[i].

To prove CLBs for the convolution problems we follow our framework. That is, we first use
a hash function to embed a 3SUM instance to a smaller universe. This mapping introduces
false-positives, which we enumerate by utilizing the reporting problem of convolution witnesses.
To solve the reporting version we reduce it to several instances of a decision problem, partial
convolution or its indexing variant, by constructing a suitable data structure. Tying it all
together leads to CLBs for both the reporting and decision problems.

Matrix Problems

We also present some similar CLBs for matrices.

I Definition 7. The partial matrix multiplication problem on two N ×N matrices A
and B of real numbers and a set of entries S ⊆ N ×N is to compute, for each (i, j) ∈ S, the
value (A×B)[i, j].

The indexing variant of this problem is defined as follows.

I Definition 8. The partial matrix multiplication indexing problem is to preprocess
an N ×N matrix A of real numbers and a collection S = {S1, S2, ..., Sk} of sets of entries,
where Si ⊆ N ×N , so that given a sequence B1, . . . , Bk of N ×N matrices of real numbers,
we enumerate the entries of A×Bi that correspond to Si.

For S = {S1, S2, ..., Sk} let SIZE(S) =
∑k
i=1 |Si|. We prove the following CLBs, which

hold also for the special case of Boolean multiplication assuming that the input is given
implicitly by specifying only the indices of the ones.

I Theorem 9. Assume the 3SUM conjecture is true. Then there is no algorithm for the
partial matrix multiplication problem running in O(N2−Ω(1)) expected time, even if |S| and
the number of ones in the input matrices is O(N2−Ω(1)).

I Theorem 10. Assume the 3SUM conjecture is true. Then there is no algorithm for the
partial matrix multiplication indexing problem with O(SIZE(S)) preprocessing time and
O(N2−Ω(1)) query time.

ESA 2016
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Matrix multiplication, and in particular Boolean matrix multiplication, can be solved in
Õ(nω) time, where ω ≈ 2.373 [14, 25]. Many researchers believe that the true value of ω is 2.
This belief implies that the running time for computing the product of two Boolean matrices
is proportional to the size of the input matrices and the resulting output. However, our
results demonstrate that such a result is unlikely to exist for sparse versions of the problem,
where the number of ones in the matrices is O(N2−Ω(1)) and we are interested in only a
partial output matrix (only O(N2−Ω(1)) entries of the matrix product).

To prove Theorem 9 and 10 we follow our framework. The process is very similar to the
path for proving CLBs for convolution problems. In fact, instead of considering a reporting
version of the partial matrix multiplication problem for proving these CLBs, we once again
utilize the reporting problem of convolution witnesses. However, this time we transform the
convolution witnesses to the matrix multiplication problems using a more elaborate data
structure. The main difficulty in this transformation is to guarantee the sparsity of both the
input and the required output. This transformation illustrates how a reporting version of a
problem can be used to prove CLBs for decision versions of other problems, by changing the
way we look for honest witnesses.

String Problems

Another application of our framework, which is seemingly unrelated to the previous two, is
the problem of histogram indexing. A histogram, also called a Parikh vector, of a string T
over alphabet Σ is a |Σ|-length vector containing the character count of T . For example, for
T = abbbacab the histogram is ψ(T ) = (3, 4, 1).

I Definition 11. In the histogram indexing problem we preprocess a string T to support
the following queries: given a query Parikh vector ψ, return whether there is a substring T ′
of T such that ψ(T ′) = ψ.

I Definition 12. In the histogram indexing reporting problem we preprocess a string
T to support the following queries: given a query Parikh vector ψ, report indices of T at
which a substring T ′ of T begins such that ψ(T ′) = ψ.

The problem of histogram indexing (not the reporting version) is sometimes called jumbled
indexing. It has received much attention in recent years. For example, for binary alphabets –
that is histograms of length 2 – there is a straightforward algorithm with O(n2) preprocessing
time and constant query time, see [10]. Burcsi et al. [8] and Moosa and Rahman [20]
improved the preprocessing time to O(n2/ logn). Using the four-Russian trick a further
improvement was achieved by Moosa and Rahman [21]. Then, using a connection to the
recent improvement of all-pairs-shortest path by Williams [24], as observed by Bremner et
al. [7] and by Hermelin et al. [16], the preprocessing time was further reduced to O( n2

2Ω(logn)0.5 )
. Finally, Chan and Lewenstein [9] presented an O(n1.859) preprocessing time algorithm for
the problem with constant query time. For non-binary alphabets some progress was achieved
in the work by Kociumaka et al. [18] and even further achievement was shown in [9]. On the
negative side, some CLBs were recently shown by Amir et al. [5].

We follow our framework and first obtain CLBs for the reporting version of histogram
indexing. This is the first time CLBs are shown for the reporting version. Moreover, these
CLBs apply to binary alphabets, as opposed to the decision version in which there currently
is no CLB known for binary alphabets. The CLBs for the reporting version admit a full
tradeoff between preprocessing and query time. For the decision variant, we improve upon
the CLB by Amir et al. [5] by presenting full-tradeoffs between preprocessing and query
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Table 1 Summary of CLBs proved in this paper. In this table N is the size of vectors, strings
and the dimension of matrices. #1 refers to the number of ones in the input. The rows in this table
are interpreted to mean that there is no data structure that beats these preprocessing, query, and
reporting (if exists) complexities at the same time. For partial convolution and matrix multiplication
the CLB on the preprocessing time should be interpreted as a CLB on the total running time as
these are offline problems.

Problem
(Type)

Preprocessing
Time

Query
Time

Reporting
Time

Remarks

Conv.
Witnesses
(Reporting)

Ω(N2−α) Ω(N1−α/2) Ω(Nα/2−o(1)) [Theorem 2]
0 < α < 1

Partial
Conv.
(Decision)

Ω(N1−o(1)) — — [Theorem 5]
Sparse input:
#1 < N1−Ω(1);
Sparse required
output:
|S| < N1−Ω(1)

Partial
Conv.
Indexing
(Decision)

Ω(N2−o(1)) Ω(N1−o(1)) — [Theorem 6]
Sparse input:
#1 < N1−Ω(1);
Sparse required
output:
|S| < N1−Ω(1)

Partial
Matrix
Mult.
(Decision)

Ω(N2−o(1)) — — [Theorem 9]
Sparse input:
#1 < N2−Ω(1);
Sparse required
output:
|S| < N2−Ω(1)

Partial
Matrix
Mult.
Indexing
(Decision)

Ω(SIZE(S)) Ω(N2−o(1)) — [Theorem 10]
Sparse input:
#1 < N2−Ω(1);
Sparse required
output:
|Si| < N2−Ω(1);
SIZE(S) =∑k

i=1 |Si|

Histogram
Reporting
(Reporting)

Ω(N2− 2γ
`+γ−o(1)) Ω(N1− γ

`+γ−o(1)) Ω(N
γ`

`+γ − 2γ
`+γ −o(1)) [Theorem 13]

alphabet size:
` ≥ 2;
0 < γ < `

Histogram
Indexing
(Decision)

Ω(N2− 2(1−α)
`−1−α−o(1)) Ω(N1− 1+α(`−3)

`−1−α −o(1)) — [Theorem 14]
alphabet size:
` > 2;
0 ≤ α ≤ 1
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time based on the standard 3SUM conjecture. Specifically, our new CLB implies that no
solution to the histogram indexing problem exists with subquadratic preprocessing time and
Õ(1) query time for every alphabet size bigger than 2, unless the 3SUM conjecture is false.
This demonstrates a sharp separation between binary and trinary alphabets, since Chan and
Lewenstein [9] introduced an algorithm for histogram indexing on binary alphabets with
Õ(n1.859) preprocessing time and constant query time.

The CLBs are summarized by the following theorems.

I Theorem 13. Assume the 3SUM conjecture is true. Then the histogram reporting
problem for an N-length string and constant alphabet size ` ≥ 2 cannot be solved using
O(N2− 2γ

`+γ−Ω(1)) preprocessing time, O(N1− γ
`+γ−Ω(1)) query time and O(N

γ`
`+γ−

2γ
`+γ−Ω(1))

reporting time per item, for any 0 < γ < `.

I Theorem 14. Assume the 3SUM conjecture holds. Then the histogram indexing prob-
lem for a string of length N and constant alphabet size ` ≥ 3 cannot be solved with
O(N2− 2(1−α)

`−1−α−Ω(1)) preprocessing time and O(N1− 1+α(`−3)
`−1−α −Ω(1)) query time.

The main structure of these proofs follows our framework. We first embed a 3SUM
instance and encode it in a string with limited length. We then report the false-positives
using the reporting variant of the histogram indexing problem, which implies CLBs for this
variant. Finally, we reduce the reporting version to the decision version thereby obtaining
CLBs for the decision version. The reduction utilizes a sophisticated data structure for
reporting witnesses using many instances of the decision version.

3 Preliminaries

In the basic 3SUM problem we are given a set A of n integers and we need to answer whether
there are a, b, c ∈ A such that a + b + c = 0. In a common variant of the classic problem,
which we also denote by 3SUM, three arrays A,B and C are given and we need to answer
whether there are a ∈ A, b ∈ B, c ∈ C such that a+ b+ c = 0. Both versions have the same
computational cost (see [13]). There are some other variants of the 3SUM problem shown to
be as hard as 3SUM up to poly-logarithmic factors. One such variant is Convolution3SUM,
shown to be hard by Pǎtraşcu [23], see also [19]. In Convolution3SUM A is an ordered set and
we need to answer whether there exist indices 0 ≤ i, j ≤ n−1 such that A[i] +A[j] = A[i+ j].
We also define DiffConv3SUM, in which we are given an ordered set A and we need to verify
whether there exists 0 ≤ i, k ≤ n− 1 such that A[k]−A[i] = A[k − i]. It is easy to see that
this is equivalent to Convolution3SUM.

Let H be a family of hash functions from [u]→ [m].
H is called linear if for any h ∈ H and any x, x′ ∈ [u], we have h(x) + h(x′) ≡ h(x +

x′) (modm). H is called almost-linear if for any h ∈ H and any x, x′ ∈ [u], we have either
h(x)+h(x′) ≡ h(x+x′)+ch (modm), or h(x)+h(x′) ≡ h(x+x′)+ch+1 (modm), where ch is
an integer that depends only on the choice of h. For a function h : [u]→ [m] and a set S ⊂ [u]
where |S| = n, we say that i ∈ [m] is an overflowed value of h if |{x ∈ S : h(x) = i}| > 3n/m.
H is called almost-balanced if for a random h ∈ H and any set S ⊂ [u] where |S| = n, the
expected number of elements from S that are mapped to overflowed values is O(m). See [19]
for constructions of families that are almost-linear and almost-balanced (see also [6, 12]).

For simplicity of presentation, and following the footsteps of previous papers that have
used such families of functions [6, 23], we assume for the rest of the paper that almost linearity
implies that for any h ∈ H and any x, x′ ∈ [u] we have h(x) + h(x′) ≡ h(x + x′) (modm).
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There are actually two assumptions taking place here. The first is that there is only one
option of so-called linearity. Overcoming this assumption imposes only a constant factor
overhead. The second assumption is that ch = 0. However, the constant ch only affects
offsets in our algorithm in a straightforward and not meaningful way, so we drop it in order
to avoid clutter in our presentation.

4 Convolution Witnesses

We first prove a CLB for the convolution witnesses problem. We begin with a lemma which
has elements from the proof of Pǎtraşcu’s reduction [23] and from [6]. However, the lemma
diverges from [23] by treating the hashed subsets differently. Specifically, many special 3SUM
subproblems are created and then reduced to convolution witnesses.

We say that a binary vector of length n is r-sparse if it contains at most r 1’s. An
instance of convolution witnesses problem (u, v, w) is (n,R)-sparse if u and v are both of
length n and n/R-sparse.

I Lemma 15. Let sequence A = 〈x1, · · · , xn〉 be an instance of Convolution3SUM. Let
R = O(nδ), where 0 < δ < 0.5 is a constant. There exists a truly subquadratic reduction
from the instance A to O(R2) (n,R)-sparse instances of convolution witnesses problem for
which we need to report O(n2/R) witnesses (over all instances).

Proof. We use an almost-linear, almost-balanced, hash function h : U → [R] and create R
buckets B0, · · · , BR−1 where each Ba contains the indices of all elements xi ∈ A for which
h(xi) = a. Since h is almost-balanced the expected overall number of elements in buckets
with more than 3n/R elements is O(R). For each index i in an overflowed bucket, we verify
whether xi + xj = xi+j for every other j in O(n) time. Hence, we verify whether any index
in an overflowed bucket is part of a Convolution3SUM solution in O(nR) expected time. Since
R = O(n1−Ω(1)) the expected time is truly subquadratic time.

We now assume that every bucket contains at most 3n/R elements. From the properties
of almost-linear hashing, if xi+xj = xi+j then h(xi)+h(xj) modR = h(xi+j) modR. Hence,
if xi + xj = xi+j then i ∈ Ba, j ∈ Bb implies that i+ j ∈ Ba+bmodR.

Every three buckets form an instance of 3SUM and are uniquely defined by a and b.
Hence, there are R(R− 1)/2 = O(R2) 3SUM subproblems each on O(n/R) elements from
the small universe [n]. However, h may generate false positives. So, we must be able to
verify that any 3SUM solution (a witness) for any instance is indeed a solution (an honest
witness) for the problem on A. The number of false positives is expected to be O(n2/R) over
all O(R2) instances, see [6]. So, we need an efficient tool to report each such witness in order
to be able to solve Convolution3SUM.

To obtain such a tool, we reduce the problem to the convolution setting in the following
way. We generate a characteristic vector va of length n for every set Ba (va[i] = 1 if i ∈ Ba and
va[i] = 0 otherwise, for 0 ≤ i < n). This vector will be 3n/R-sparse, since |Ba| ≤ 3n/R. Note
that: i ∈ Ba, j ∈ Bb and i + j ∈ Ba+b mod R ⇐⇒ va[i] = 1, vb[j] = 1 and va+b mod R[i + j] = 1.

Now, for each pair of vectors, va and vb, we generate their convolution. Let v = va ∗ vb
be the convolution of va and vb, and let ` = v[i+ j]. If va+bmodR[i+ j] = 1, then we need to
extract the ` witnesses of v[i+ j]. For each witness (i, j) we check whether xi + xj = xi+j .
We note that if, while verifying, we discover that the overall number of the false-positives
exceeds expectation (cn2/R, for some constant c) by more than twice we rehash.

Thus, we see that Convolution3SUM can be solved by generating O(R2) (n,R)-sparse
instances of convolution witnesses problem. These instances are computed in O(nR2) time,
which is truly subquadratic as R = O(nδ) for δ < 1/2. J
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It now follows that:

I Theorem 2 (restated). Assume the 3SUM conjecture is true. Then for any constant
0 < α < 1, there is no algorithm solving the convolution witnesses problem with O(n2−α)
expected preprocessing time and O(nα/2−Ω(1)) expected amortized query time per witness.

Proof. We make use of Lemma 15 and its parameter R. In particular, the total cost of
solving Convolution3SUM is at most O(R2 · P (n,R) + n2/R ·Q(n,R)) expected time, where
P (n,R) is the time needed to preprocess an (n,R)-sparse instance of a convolution witness
and Q(n,R) is the time per witness query for an (n,R)-sparse instance of a convolution
witness.

If we choose R = nα/2−Ω(1) we have that for P (n) = O(n2−α) and Q(n) = O(nα/2−Ω(1))
we solve Convolution3SUM in O(n2−Ω(1)) time which is truly subquadratic. J

5 From Reporting to Decision I: Hardness of Partial Convolutions

We further consider the problem of reporting witnesses for convolutions. However, now we
use the third step of our framework. We will construct a search data structure over decision
problems which will allow us to efficiently search for witnesses. This will be our method for
proving CLBs for the decision problems of partial convolutions [22]. Specifically, we intend
to generate a data structure that uses convolutions on small sub-vectors of the input vectors
in order to solve the problem. However, the data structure cannot be fully constructed as it
will be too large. Hence, the construction is partial and we defer some of the work to the
query phase.

We start with Lemma 15, and focus on an (n,R)-sparse instance of the convolution
witnesses problem(u, v, w). We generate a specialized search tree for efficiently finding
witnesses, which is created in an innovative way exploiting the sparsity of the input.

5.1 Search Tree Construction
Assume, without loss of generality, that n is a power of 2. We construct a binary tree in
the following way. First, we generate the root of the tree with the convolution of v and
u. Then we split u into 2 sub-vectors, say u1 and u2, each containing exactly n/(2R) 1s.
For each sub-vector we generate nodes that are children of the root, where the first node
contains the convolution of v and u1 and the second node contains the convolution of v
and u2. We continue this construction recursively so that at the ith recursive level we
partition u into 2i sub-vectors each containing n/(2iR) 1s. A vertex at level i represents the
convolution of v and a sub-vector uA containing n/2iR 1s. The vertex has two children, one
represents the convolution of v and the sub-vector of uA with the first n/2i+1R 1s of uA
(denoted by uA,1). The other represents the convolution of v and the rest of uA with the
other n/2i+1R 1s (denoted by uA,2). We stop the construction at the leaf level in which u
is split to sub-vectors that each one of them contains X/R 1s from u, for some X < n to
be determined later. Calculating the convolution in each vertex is done bottom-up. First,
we calculate the convolution for each vertex in the leaf level. Then, we use these results
to calculate the convolution of the next level upwards. Specifically, if we have vertex that
represent the convolution v and some sub-vector uA and it has two children one which
represents the convolution of v and uA,1 and the other which represents the convolution of v
and uA,2, then (v ∗ uA)[k] = (v ∗ uA,1)[k] + (v ∗ uA,2)[k − l1] for every k ∈ [0, n+ l1 + l2 − 1],
where l1 and l2 are the lengths of uA,1 and uA,2 respectively, and we consider the value of
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out of range entries as zero. This way we continue to calculate all the convolutions in the
tree until reaching its root.

Construction Time. It is straightforward to verify that the total cost of the construction
procedure is dominated by the time of constructing the lowest level of the binary tree. In
this level, we have n/X sub-vectors of u as each of them has X/R 1’s and the total number
of 1s in u is n/R. We calculate the convolution of v with each of these sub-vectors, which can
be done in Õ(n) time. Thus, the total time needed to build the tree is Õ(n2/X). herefore,
the total time for calculating the binary trees for all O(R2) (n,R)-sparse instances of the
convolution witnesses problem is Õ(R2n2/X).

Witness Search. To search for a witness we begin from the root of the binary tree and
traverse down to a leaf containing a non-zero value in the result of the convolution at the
query index (adjusting the index as needed while moving down the structure). The search
for a leaf costs logarithmic time per query (as the tree has logarithmic height and in each
level we just need to find a child with a non-zero value in the convolution it represents in
the specific index of interest). Within the leaf, representing the convolution of v and some
sub-vector uA of u we can simply find a witness in Õ(X/R) time as uA contains just X/R 1s.
Thus, as we have O(n2/R) false-positives over all O(R2) instances, the total time for finding
all them is Õ(n2X/R2).

Consequently, using the binary tree for solving Convolution3SUM will cost Õ(R2n2/X +
n2X/R2) time, which for X = R2 is Θ̃(n2) time. Since the tradeoff between the preprocessing
time and query time meets at n2, any improvement to the running time of either of them
will imply a subquadratic solution for the Convolution3SUM problem.

5.2 Conditional Lower Bounds for Partial Convolution
As a consequence of our discussion above we obtain the following results regarding partial
convolution and its indexing variant:

I Theorem 5 (restated). Assume the 3SUM conjecture is true. Then there is no algorithm
for the partial convolution problem with O(N1−Ω(1)) time, even if |S| and the number of ones
in both input vectors are less than N1−Ω(1).

Proof. We make use of Lemma 15. In order to construct the binary tree as described in
Section 5.1, we need to be able compute the convolution of v with some sub-vector of u for
each leaf in the tree (all other convolution can be calculated efficiently from the convolutions
in the leaves as described in the previous section). Recall that both input vectors have
length N = n, n/R 1s (which is O(N1−Ω(1)) for R = na, where a is a positive constant),
and we are interested in finding their convolution result only at the O(n/R) indices (that
is, |S| = O(N1−Ω(1))). If we preprocess the input for partial convolution in truly sublinear
time (for example, proportional to n/R) then the total time for constructing all the search
trees will be O(R2n2−Ω(1)/X) while the total query time will remain O(n2X/R2). Choosing
X = nc for small enough constant c and setting R = X, we obtain a subquadratic solution
to Convolution3SUM. J

I Theorem 6 (restated). Assume the 3SUM conjecture is true. Then there is no algorithm for
the partial convolution indexing problem with O(N2−Ω(1)) preprocessing time and O(N1−Ω(1))
query time, even if both |S| and the number of ones of the input vectors are O(N1−Ω(1)).
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Proof. Use Lemma 15 and the previous discussion. If the preprocessing time for the
partial convolution indexing problem is truly subquadratic and queries are answered in truly
sublinear time then the total time for constructing all the structures for all O(R2) instances is
O(R2[n2−Ω(1) +n1−Ω(1) ·n/X]) while the total time for all of the queries remains O(n2X/R2)
(note that N = n). Choosing X = nc for small enough constant c and setting R = X, we
obtain a subquadratic algorithm for Convolution3SUM. J

6 From Reporting to Decision II: Hardness of Partial Matrix
Multiplication

We present another transformation from the reporting problem of convolution witnesses to
decision problems. This time we prove CLBs for the partial matrix multiplication and its
indexing variant. The main difficulty in this transformation is to ensure the sparsity of both
input and required output. The CLBs that we prove are stated as follows (full details and
proofs will appear in the full version of this paper).

I Theorem 9 (restated). Assume the 3SUM conjecture is true. Then there is no algorithm
for the partial matrix multiplication problem running in O(N2−Ω(1)) expected time, even if
|S| and the number of ones in the input matrices is O(N2−Ω(1)).

I Theorem 10 (restated). Assume the 3SUM conjecture is true. Then there is no algorithm
for the partial matrix multiplication indexing problem with O(SIZE(S)) preprocessing time
and O(N2−Ω(1)) query time.

7 Hardness of Data Structures for Histogram Indexing

In order to prove a CLB for both the histogram indexing problem and the histogram (indexing)
reporting problem, we will first focus on reducing 3SUM to the histogram reporting problem,
and then turn our focus to reducing the the histogram reporting problem to the histogram
indexing problem.

7.1 Reducing Convolution3SUM to Histogram Reporting
We are given an ordered set A of integers x1, x2, ..., xn for which we want to solve Diff-
Conv3SUM. Our methodology here is to encode the input integers into a compact string
S so that histogram indexing with carefully chosen query patterns implies a solution to
DiffConv3SUM. Since the size of the universe of the input integers can be as large as n3, we
hash down the universe size while (almost) maintaining the linearity property of the input.
To do this, we make use of an almost-linear almost-balanced hash function h : U → [R] as
defined in Section 3, and apply h to all of the input integers.

After utilizing h to compress the input range, we are ready to encode the input and
create the string S. To do this, we encode each h(xk) separately, and then concatenate
the encodings in the same order as their corresponding original integers in A. We use the
following encoding scheme, using an alphabet Σ = {σ0, σ1, , ..., σ`−1}. Some other encoding
schemes, which surprisingly provide the same bounds, will be presented in the full version of
this paper.

Encoding 1. The encoding will consist of two separate partial encodings concatenated
together. The first partial encoding is partitioned into ` parts which together will rep-
resent h(xk) in base R1/`. For 0 ≤ j ≤ ` − 1 the jth part of this first partial encoding
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is a unary representation of pj,h(xk) = bh(xk)/Rj/`cmodR1/` using σj , and is denoted
by enc(j, h(xk)) = σ

p(j,h(xk))
j . The first partial encoding of h(xk), which we also call a

regular encoding of h(xk), is enc`(h(xk)) = enc(0, h(xk))enc(1, h(xk)) · · · enc(` − 1, h(xk))
= σ

p0,h(xk)
0 σ

p1,h(xk)
1 · · ·σp`−1,h(xk)

`−1 .
For the second partial encoding we encode the complement of each enc(j, h(xk)) which

is the unary representation of p̄j,h(xk) = R1/` − (bh(xk)/Rj/`cmodR1/`) using σj , and
is denoted by enc(j, h(xk)). The second partial encoding of h(xk), which we also call
a complement encoding of h(xk), is enc`(h(xk)) = enc(0, h(xk))enc(1, h(xk)) · · · enc(` −
1, h(xk)) = σ

p̄0,h(xk)
0 σ

p̄1,h(xk)
1 · · ·σp̄`−1,h(xk)

`−1 .
The full encoding of h(xk) is the concatenation of enc`(h(xk)) and enc`(h(xk)) which we

denote by ENC`(h(xk)). Finally, the string S is set to be
ENC`(h(x1))ENC`(h(x2)) · · ·ENC`(h(xn)). The size of S is clearly N = O(` ·R 1

` n). We
denote the substring of S starting at the location of the beginning of enc`(h(xi)) and ending
at the location of the end of enc`(h(xj)) by Si,j .

Consider a Parikh vector vk obtained from xk and h where the rth element has a count
of p̄r,h(xk) +R1/` · (k − 1). We say that vk represents xk. For a vector w = (w0, w1, ..., wm)
we define w>>1 = (0, w0, w1, ..., wm−1). We also define the carry set of vk to be Vk =
{vk + R1/`u − u>>1 | u = (u0, u1, ..., u`−2, 0), ui ∈ {0, 1} 0 ≤ i < ` − 1}. It is easy to see
that |Vk| = 2`−1 and that Vk can be obtained from vk in O(` · 2`−1) time. We call vk the
base of Vk. We have the following lemma regarding Vk:

I Lemma 16. If there exists a pair xi, xj such that xk = xj − xi and k = j − i, then the
Parikh vector of Si,j must be in Vk.

Proof. Since h is linear we know that h(xk) = h(xj)− h(xi). This is equivalent to saying
that R+R

`−1
` −h(xk) = R+R

`−1
` − [h(xj)−h(xi)] = (R+R

`−1
` −h(xj)) +h(xi). In Si,j we

have the full encoding of all integers xi+1, ..., xj−1. There are exactly k − 1 integers between
xi and xj . Therefore, each of them adds R1/` occurrences of each σr (0 ≤ r ≤ l − 1) to
Si,j . In addition to the full encodings of these integers we have two more partial encodings:
enc`(h(xi)) and enc`(h(xj)). Notice that enc`(h(xi)) and enc`(h(xj)) represent h(xi) and
R + R

`−1
` − h(xj), respectively, in base R1/`. If we look at the vector vk (the base of Vk)

after subtracting (k − 1)R1/` from the count of each character, we obtain the representation
of R+R

`−1
` − h(xk) in base R1/`, which intuitively implies that vk is the Parikh vector that

we are looking for. However, it is possible to generate a carry at each of the ` digits of the
base R1/` during the addition of (R + R

`−1
` − h(xj)) + h(xi). To handle these carries we

consider all possible 2` carry scenarios and generate a vector for each of the 2`−1 scenarios.
These carry scenarios are exactly represented by the vectors in Vk, as each vector u in the
definition of Vk specifies the indices in which we have a carry. Hence, the Parikh vector of
Si,j must be one of the vectors in Vk. J

Thus, we preprocess S with an algorithm for histogram reporting, and then query the
resulting data structure with all the vectors in Vk, whose base vk represents some xk, in an
attempt to decide if xk is part of a solution to DiffConv3SUM. The reported locations are
classified into two types:

Candidates: Locations where the histogram match begins and ends exactly between the
complement and regular encodings of two input integers. All these locations correspond to
xi and xj such that for the particular h(xk) for which the query was constructed, we have
h(xk) = h(xj)− h(xi) and also k = j − i.
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Encoding Errors: All matches that are not candidates.
While encoding errors clearly do not provide a solution for DiffConv3SUM on A, candidates

may also not be suitable for a solution since the function h introduces false-positives. The
following lemma bounds the total expected number of false-positives (both from false-positive
candidates and encoding errors) that can be reported by a single query vector (and the
vectors in the carry set that it serves as it base).

I Lemma 17. The expected number of false positives that are reported when considering all
vectors in Vk (whose base represents xk) as queries is O(2`−1N/R1− 1

` ).

Proof. We focus on v ∈ Vk that is queried when considering xk. This vector v implies the
value of m which is the length of substrings of S that can have v as their Parikh vector.
Clearly, there are at most N such substrings. We focus on the substring from location α to
location α+m− 1 in S. Due to our encoding scheme, this substring contains a (possibly
empty) suffix of ENC`(h(xi)), for some xi, followed by k − 1 full encodings of some integers
from A, and then a (possibly empty) prefix of ENC`(h(xj)) , for some integers xi and xj .
The only way in which we may falsely report location α as a match is if for each σ ∈ Σ
the number of σ characters in the substring of S, denoted by f(σ, α,m), is equal to the
count of σ in v, denoted by vσ. For a given σ, since the substring contains k − 1 complete
encodings, we can consider vσ − (k − 1)R1/` which is a function of p̄r,h(xk), compared to
f(σ, α,m) − (k − 1)R1/`. Now, since p̄r,h(xk) is uniformly random (due to h) in the range
[R1/`], the probability that they are equal is R−1/`. This is true for every character σ on its
own, but when considering all of the ` characters, once we set the count for the first `− 1
characters the count for the last character completely depends on the other counts. Therefore,
the probability that the comparison passes for all of the characters only depends on the first
`− 1 characters, and is 1/R1−1/`. By linearity of expectation over all possible locations in S
and all 2`−1 vectors in Vk, the expected number of false positives is O(2`−1N/R1− 1

` ). J

7.2 Hardness of Histogram Reporting

Utilizing the reduction we have described in the previous section, that transforms an ordered
set A to a string S, we can prove the following CLB.

I Theorem 13 (restated). Assume the 3SUM conjecture holds. The histogram reporting
problem for an N-length string and constant alphabet size ` ≥ 2 cannot be solved using
O(N2− 2γ

`+γ−Ω(1)) preprocessing time, O(N1− γ
`+γ−Ω(1)) query time and O(N

γ`
`+γ−

2γ
`+γ−Ω(1))

reporting time per item, for any 0 < γ < `.

Proof. We follow the reduction in Section 7.1. For an instance of the histogram reporting
problem on a string of length N denote the preprocessing time by O(Nα), the query time by
O(Nβ) and the reporting time per item by O(Nδ). The total expected running time used
by our reduction to solve DiffConv3SUM is O(Nα) + n ·O(Nβ) + Efp ·O(Nδ), where Efp is
the expected total number of false positives. This running time must be Ω(n2−Ω(1)), unless
3SUM conjecture is false.

Since N = O(` ·R 1
` n) and Efp = O(n2`N/R1− 1

` ), then either (` ·R 1
` n)α = Ω(n2−o(1)),

(` · R 1
` n)β = Ω(n1−o(1)), or n2`(` · R 1

` n)/R1− 1
` · (` · R 1

` n)δ = Ω(n2−o(1)). Set R to be nγ .
By straightforward calculations following our choice of R we get that α = 2− 2γ

`+γ − Ω(1),
β = 1− γ

`+γ − Ω(1), and δ = γ`
`+γ −

2γ
`+γ − Ω(1). J
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7.3 From Reporting to Decision: Hardness of Histogram Indexing
We make use of Theorem 13 to obtain a CLB on the decision variant of the problem. Amir
et al. [5] proved similar lower bounds based on a stronger 3SUM conjecture. Our proof here
shows that this stronger assumption is not needed and that the common 3SUM conjecture
suffices. The idea of the proof is to make the expected number of false-positives small by a
suitable choice of R.

I Lemma 18. Assume the 3SUM conjecture holds. The histogram indexing problem for a
string of length N and constant alphabet size ` ≥ 3 cannot be solved with O(N2− 2

`−1−Ω(1))
preprocessing time and O(N1− 1

`−1−Ω(1)) query time.

Proof. We follow the reduction in Section 7.1. In order to use histogram indexing we will
reduce the probability of a false positive for any query to be less than 1/2. From Lemma 17
we know that the expected number of false positives due to query is at most O( 2`−1(`R

1
` n)

R
1− 1

`
).

By setting R to be c1n
`
`−2 for sufficiently large constant c1 the number of false positives is

strictly smaller than 1/2, which implies immediately that the probability of a false positive
is strictly smaller than 1/2. Therefore, if we were to solve histogram indexing instead of
histogram reporting on the same input as in Theorem 13, the probability of a false positive is
less than 1/2. We can make this probability smaller by repeating the process O(logn) times,
each time using a different hash function h. This way, the probability that all of the queries
that are due to a specific xk return false positives is less than 1/poly(n). If a given xk passes
all of the query processes (that is, a positive answer is received by each one of them), then we
can verify that there is indeed a match with this xk in O(n) time, which will add a negligible
cost to the expected running time in the case it is indeed a false positive. Thus, the total
expected running time of this procedure is O(logn(P (N, `)+nQ(N, `))), where P (N, `) is the
preprocessing time (for input string of length N and alphabet size `) and Q(N, `) is the query
time (for the same parameters). Therefore, unless the 3SUM conjecture is false, there is no
solution for histogram indexing such that P (N, `) = O(n2−Ω(1)) and Q(N, `) = O(n1−Ω(1)).
If we plug-in the value of R we have chosen and follow the calculations in the proof of
Theorem 13 (with γ = `

`−2 ), then we obtain that there is no solution for the histogram
indexing problem with P (N, `) = O(N2− 2

`−1−Ω(1)) and Q(N, `) = O(N1− 1
`−1−Ω(1)). J

We generalize this CLB by presenting a full-tradeoff between preprocessing and query
time. The proof will appear in the full version of this paper. The idea of the proof is to
artificially split the encoded string S to smaller parts, so we can have many false positives in
S, but the probability for a false positive in each part will be small.

I Theorem 14 (restated). Assume the 3SUM conjecture holds. The histogram indexing
problem for a string of length N and constant alphabet size ` ≥ 3 cannot be solved with
O(N2− 2(1−α)

`−1−α−Ω(1)) preprocessing time and O(N1− 1+α(`−3)
`−1−α −Ω(1)) query time, for any 0 ≤

α ≤ 1.
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