Incremental Exact Min-Cut in Poly-logarithmic
Amortized Update Time*

Gramoz Goranci!, Monika Henzinger'?, and Mikkel Thorup*?

1 University of Vienna, Faculty of Computer Science, Vienna, Austria
gramoz.goranci@univie.ac.at

2 University of Vienna, Faculty of Computer Science, Vienna, Austria
monika.henzinger@univie.ac.at

3 Faculty of Computer Science, University of Copenhagen, Copenhagen,
Denmark
mikkel2thorup@gmail.com

—— Abstract

We present a deterministic incremental algorithm for ezactly maintaining the size of a minimum
cut with O(1) amortized time per edge insertion and O(1) query time. This result partially
answers an open question posed by Thorup [Combinatorica 2007]. It also stays in sharp contrast
to a polynomial conditional lower-bound for the fully-dynamic weighted minimum cut problem.
Our algorithm is obtained by combining a recent sparsification technique of Kawarabayashi and
Thorup [STOC 2015] and an exact incremental algorithm of Henzinger [J. of Algorithm 1997].

We also study space-efficient incremental algorithms for the minimum cut problem. Con-
cretely, we show that there exists an O(nlogn/e?) space Monte-Carlo algorithm that can pro-
cess a stream of edge insertions starting from an empty graph, and with high probability, the
algorithm maintains a (1 + ¢)-approximation to the minimum cut. The algorithm has O(1)
amortized update-time and constant query-time.

1998 ACM Subject Classification G.2.2 Graph Theory
Keywords and phrases Dynamic Graph Algorithms, Minimum Cut, Edge Connectivity

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.46

1 Introduction

Computing a minimum cut of a graph is a fundamental algorithmic graph problem. While
most of the focus has been on designing static efficient algorithms for finding a minimum cut,
the dynamic maintenance of a minimum cut has also attracted increasing attention over the
last two decades. The motivation for studying the dynamic setting is apparent, as important
networks such as social or road network undergo constant and rapid changes.

Given an initial graph G, the goal of a dynamic graph algorithm is to build a data-
structure that maintains G' and supports update and query operations. Depending on
the types of update operations we allow, dynamic algorithms are classified into three main

This work was done in part while M. Henzinger and M. Thorup were visiting the Simons Institute for

the Theory of Computing.

T The research leading to these results has received funding from the European Research Council under
the European Union’s 7th Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 340506
for M. Henzinger.

¥ M. Thorup’s research is partly supported by Advanced Grant DFF-0602-02499B from the Danish

Council for Independent Research under the Sapere Aude research career programme.

© Gramoz Goranci, Monika Henzinger, and Mikkel Thorup;

licensed under Creative Commons License CC-BY
24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 46; pp. 46:1-46:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.46
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

46:2

Incremental Exact Min-Cut in Poly-logarithmic Amortized Update Time

categories: (i) fully dynamic, if update operations consist of both edge insertions and deletions,
(ii) incremental, if update operations consist of edge insertions only and (iii) decremental,
if update operations consist of edge deletions only. In this paper, we study incremental
algorithms for maintaining the size of a minimum cut of an unweighted, undirected graph
(denoted by A(G) = \) supporting the following operations:

INSERT(u, v): insert the edge (u,v) in G.

QUERYSIZE: return the size of a minimum cut of the current G.
For any o > 1, we say that an algorithm is an a-approximation of A if QUERYSIZE returns
a positive number k such that A < k < a - A. Our problem is characterized by two time
measures; query time, which denotes the time needed to answer each query and total update
time, which denotes the time needed to process all edge insertions. We say that an algorithm
has an O(t(n)) amortized update time if it takes O(m(t(n))) total update time for m edge

insertions starting from an empty graph. We use O(-) to hide poly-logarithmic factors.

Related Work

For over a decade, the best known static and deterministic algorithm for computing a minimum
cut was due to Gabow [10] which runs in O(m + A% logn) time. Recently, Kawarabayashi and
Thorup [19] devised a 5(m) time algorithm which applies only to simple, unweighted and
undirected graphs. Randomized Monte Carlo algorithms in the context of static minimum cut
were initiated by Karger [17]. The best known randomized algorithm is due to Karger [18]
and runs in O(mlog®n) time.

Karger [16] was the first to study the dynamic maintenance of a minimum cut in its
full generality. He devised a fully dynamic, albeit randomized, algorithm for maintaining
a /14 2/e-approximation of the minimum cut in 5(n1/2+5) expected amortized time per
edge operation. In the incremental setting, he showed that the update time for the same
approximation ratio can be further improved to 5(715) Thorup and Karger [28] improved
upon the above guarantees by achieving an approximation factor of /2 4 o(1) and an 6(1)
expected amortized time per edge operation.

Henzinger [14] obtained the following guarantees for the incremental minimum cut;
for any ¢ € (0,1], (i) an O(1/£?) amortized update-time for a (2 + ¢)-approximation, (ii)
an O(log® n/e?) expected amortized update-time for a (1 4 €)-approximation and (iii) an
O(Alogn) amortized update-time for the exact minimum cut.

For minimum cut up to some poly-logarithmic size, Thorup [27] gave a fully dynamic
Monte-Carlo algorithm for maintaining exact minimum cut in O(y/n) time per edge operation.
He also showed how to obtain an 1 + o(1)-approximation of an arbitrary sized minimum cut
with the same time bounds. In comparison to previous results, it is worth pointing out that
his work achieves worst-case update times.

Lacki and Sankwoski [21] studied the dynamic maintenance of the exact size of the
minimum cut in planar graphs with arbitrary edge weights. They obtained a fully dynamic
algorithm with O(n/6) query and update time.

There has been a growing interest in proving conditional lower bounds for dynamic
problems in the last few years [1, 13]. A recent result of Nanongkai and Saranurak [24] shows
the following conditional lower-bound for the ezact weighted minimum cut assuming the
Online Matrix-Vector Multiplication conjecture: for any € > 0, there are no fully-dynamic
algorithms with polynomial-time preprocessing that can simultaneously achieve O(n!~¢)
update-time and O(n?~¢) query-time.

G.Goranci, M. Henzinger, and M. Thorup

Results and Technical Overview

We present two new incremental algorithms concerning the maintenance of the size of a
minimum cut. Both algorithms apply to undirected, unweighted simple graphs.

Our first and main result, presented in Section 4, shows that there is a deterministic
incremental algorithm for ezactly maintaining the size of a minimum cut with 5(1) amortized
time per operation and O(1) query time. This result allows us to partially answer in the
affirmative a question regarding efficient dynamic algorithms for exact minimum cut posed by
Thorup [27]. Meanwhile, it also stays in sharp contrast to the recent polynomial conditional
lower-bound for the fully-dynamic weighted minimum cut problem [24].

We obtain our result by heavily relying on a recent sparsification technique developed in
the context of static minimum cut. Specifically, for some given simple graph G, Kawarabayashi
and Thorup [19] designed an O(m) procedure that contracts vertex sets of G and produces a
multigraph H with considerably less vertices and edges while preserving some family of cuts
of size up to 3/2A(G). Motivated by the properties of H, we crucially observe that it is “safe
to escape from G and work entirely with graph H as long as the sequence of newly inserted

2

edges have not increased the size of a minimum cut in A by more than 3/2\(G). If the latter
occurs, we then recompute a new multigraph H for the current graph G. Since A(G) < n,
we note the number of such re-computations can be at most O(logn). For maintaining the
minimum-cut of H, we appeal to the exact incremental algorithm due to Henzinger [14].
Though the combination of this two algorithms might seem immediate at first sight, we
remark that it is not alone sufficient for achieving the claimed bounds. Our main contribution
is to overcome some technical obstacles and formally argue that such combination indeed
leads to our desirable guarantees.

Motivated by the recent work on space-efficient dynamic algorithms [5, 12], we next study
the efficient maintenance of the size of a minimum cut using only 6(n) space. Concretely,
we present a O(nlogn/e?) space Monte-Carlo algorithms that can process a stream of
edge insertions starting from an empty graph, and with high probability, the algorithm
maintains an (1 4 ¢)-approximation to the minimum cut in O(a(n)log® n/e?) amortized
update-time and constant query-time. Note that none of the existing streaming algorithms
for (1 + €)-approximate minimum cut [2, 20, 3] achieve these update and query times.

2 Preliminary

Let G = (V, E) be an undirected, unweighted multigraph with no self-loops. Two vertices x
and y are k-edge connected if there exist k edge-disjoint paths connecting x and y. A graph
G is k-connected if every pair of vertices is k-edge connected. The local edge connectivity
MG, z,y) of vertices z and y is the largest k such that z and y are k-edge connected in G.
The edge connectivity \(G) of G is the largest k such that G is k-edge connected.

For a subset S C V, the edge cut E(S,V \ S) is a set of edges that have one endpoint
in S and the other in V'\ S. If S is a singleton, we refer to such cut as trivial cut. Two
vertices x and y are separated from E(S,V \ S) if they do not belong to the same connected
component induced by the edge cut. A minimum edge cut of x and y is a cut of minimum
size among all cuts separating = and y. A global minimum cut A\(G) for G is the minimum
edge cut over all pairs of vertices. By Menger’s Theorem [22], (a) the size of the minimum
edge cut separating x and y is A(G, z,y), and (b) the size of the global minimum cut is equal
to M(G).

Let n, mp and m; be the number of vertices, initial edges and inserted edges, respectively.
The total number of edges m is the sum of the initial and inserted edges. Moreover, let

46:3

ESA 2016

46:4

Incremental Exact Min-Cut in Poly-logarithmic Amortized Update Time

A and 6 denote the size of the global minimum cut and the minimum degree in the final
graph, respectively. Note that the minimum degree is always an upper bound on the edge
connectivity, i.e., A < and m = mg + m; = Q(n).

A subset U C V is contracted if all vertices in U are identified with some element from
U and all edges between them are discarded. Note that this may not correspond to edge
contractions, since we do not know whether U is connected. For G = (V, E) and a collection
of vertex sets, let H = (Vg, Ey) denote the graph obtained by contracting such vertex sets.
Such contractions are associated with a mapping i : V — V. For an edge subset N C F,
let Ny, = {(h(a), (b)) : (a,b) € N} C Eg be its corresponding edge subset induced by h.

3 Sparse certificates

In this section we review a useful sparsification tool, introduced by Nagamochi and Ibaraki [23].

» Definition 1 ([4]). A sparse k-connectivity certificate, or simply a k-certificate, for an
unweighted graph G with n vertices is a subgraph G’ of G such that

1. G’ consists of at most k(n — 1) edges, and

2. @ contains all edges crossing cuts of size at most k.

Given an undirected graph G = (V, E), a mazimal spanning forest decomposition (msfd)
of order k is a decomposition of G into k edge-disjoint spanning forests F;, 1 < i < k, such
that F; is a maximal spanning forest of G\ (F1 U Fy...UF;_1). If we let G' = (V,, <, F3),
then G’ is a k-certificate. An msfd that fulfills the following additional properties is called a
DA-msfd of order k: For a multigraph G, (1) for all 1 <4 < k, if x and y are connected in F},
then they are i-edge connected in G; (2) G is k-edge connected iff G’ is k-edge connected;
(3) forany 1 <i<kandz,y €V, NU,<; Fj,z,y) > min(\G,z,y),i). As G" is a subgraph
of G, A(G') < A(GQ). This implies that A(G') = min(k, A(G)). Nagamochi and Ibaraki [23]
presented a O(m + n) time algorithm to construct a DA-msfd, of order k.

4 Incremental Exact Minimum Cut

In this section we present a deterministic incremental algorithm that exactly maintains A(G).
The algorithm has an 6(1) update-time, an O(1) query time and it applies to any undirected,
unweighted, simple graph G = (V| E). The result is obtained by carefully combining a recent
result of Kawarabayashi and Thorup [19] on static min-cut and the incremental exact min-cut
algorithm of Henzinger [14]. We start by describing the maintenance of non-trivial cuts, that
is, cuts with at least two vertices on both sides.

Maintaining non-trivial cuts

Kawarabayashi and Thorup [19] devised a near-linear time algorithm that contracts vertex
sets of a simple input graph G and produces a sparse multi-graph preserving all non-trivial
minimum cuts of G. In the following theorem, we state a slightly generalized version of this
algorithm.

» Theorem 2 (KT-SPARSIFIER [19]). Given an undirected, unweighted graph G with n
vertices, m edges, and min-cut A, in 6(m) time, we can contract vertex sets and produce a
multigraph H which consists of only my = O(m/\) edges and ng = O(n/\) vertices, and
which preserves all non-trivial minimum cuts along with the non-trivial cuts of size up to
3/2\ in G.

G.Goranci, M. Henzinger, and M. Thorup

As far as non-trivial cuts are concerned, the above theorem implies that it is safe to

abandon G and work on H as long as the sequence of newly inserted edges satisfies Ay < 3/2.
To incrementally maintain the correct Ap, we apply Henzinger’s algorithm [14] on top of H.
The basic idea to verify the correctness of the solution is to compute and store all min-cuts.

Clearly, a solution is correct as long as an edge insertion does not increase the size of all
min-cuts. If all min-cuts have increased, a new solution is computed using information about
the previous solution. We next show how to do this efficiently.

To store all minimum edge cuts we use the cactus tree representation by Dinitz, Karzanov
and Lomonosov [7]. A cactus tree of a graph G = (V, E) is a weighted graph G, = (V,, E.)
defined as follows: There is a mapping ¢ : V' — V, such that:

1. Every node in V maps to exactly one node in V. and every node in V, corresponds to a
(possibly empty) subset of V.

2. ¢(x) = ¢(y) iff x and y are (A(G) + 1)-edge connected.

3. Every minimum cut in G. corresponds to a min-cut in G, and every min-cut in G
corresponds to at least one min-cut in G..

4. If X is odd, every edge of E. has weight A and G, is a tree. If A is even, G, consists of
paths and simple cycles sharing at most one vertex, where edges that belong to a cycle
have weight A/2 while those not belonging to a cycle have weight A.

Dinitz and Westbrook [8] showed that given a cactus tree, we can use the data structures

from [11, 25] to maintain the cactus tree for minimum cut size A under w insertions, reporting

when the minimum cut size increases to A + 1 in O(u + n) total time.

To quickly compute and update the cactus tree representation of a given multigraph G,
we use an algorithm due to Gabow [9]. The algorithm computes first a subgraph of G, called
a complete A-intersection or I(G,)\), with at most An edges, and uses I(G, \) to compute
the cactus tree. Given some initial graph with mg edges, the algorithm computes I(G, \)
and the cactus tree in 6(m0 + A\2n) time. Moreover, given I(G,\) and a sequence of edge
insertions that increase the minimum cut by 1, the new I(G, A) and the new cactus tree
can be computed in O(m/), where m’ is the number of edges in the current graph (this
corresponds to one execution of Round Robin subroutine [10]).

Maintaining trivial cuts

We remark that the multigraph H from Theorem 2 preserves only non-trivial cuts of G. If
A =9, then we also need a way to keep track of a trivial minimum cut. We achieve this by

maintaining a minimum heap H¢g on the vertices, where each vertex is stored with its degree.

If an edge insertion is performed, the values of the edge endpoints are updated accordingly in
the heap. It is well known that constructing He takes O(n) time. The supported operations
MIN(H¢) and UPDATEENDPOINTS(H¢,e) can be implemented in O(1) and O(logn) time,
respectively (see [6]).

This leads to the following Algorithm 1.

Correctness

Let G be some current graph throughout the execution of the algorithm and let H be the
corresponding multigraph maintained by the algorithm. Recall that H preserves some family
of cuts from G. We say that H is correct if and only if there exists a minimum cut from G
that is contained in the union of (a) all trivial cuts of G and (b) all cuts in H. Note that we
consider H to be correct even in the Special Step (i.e., when Ay > 3/2X*), where H is not

46:5

ESA 2016

46:6 Incremental Exact Min-Cut in Poly-logarithmic Amortized Update Time

Algorithm 1 INCREMENTAL ExacT MINIMUM CuUT

1: Compute the size Ag of the min-cut of G and set A* = Aq.
Build a heap Hg on the vertices, where each vertex stores its degree as a key.
Compute a multigraph H by running KT-SPARSIFIER on G and a mapping h : V — Vg.
Compute the size Ay of the min-cut of H, a DA-msfd Fi, ..., F,, of order m of H,
I(H,\ir), and a cactus-tree of ;<) . 1 Fi-
2: Set Nj, = 0.
while there is at least one minimum cut of size Ay do
Receive the next operation.
if it is a query then return min{\y, MIN(Hg)}
else it is the insertion of an edge (u,v), then
update the cactus tree according to the insertion of the new edge (h(u), h(v)),
add the edge (h(u), h(v)) to Np and update the degrees of u and v in Hg.
endif
endwhile
Set Ay = Ag + 1.
3: if min{A\gy, MIN(Hg)}> 3/2* then
// Full Rebuild Step
Compute A(G) and set A* = A\(G).
Compute a multigraph H by running K'T-SPARSIFIER on the current graph G.
Update Ay to be the min-cut of H, compute a DA-msfd Fi, ..., F,, of order m of H,
and then I(H, Ay) and a cactus tree of ;< 1 I3
else if Ay < 3/2)* then
// Partial Rebuild Step
Compute a DA-msfd Fy,..., F,, of order m of UigAHH F; UNj, and
call the resulting forests Fi,..., F,,.
Let H' = (Vu, E') be a graph with £ = I(H, Ay — 1) UU;<y,, 11 Fi-
Compute I(H', A\y) and a cactus tree of H'.
else // Special Step
while MIN(H¢) < 3/2)* do
if the next operation is a query then return MIN(H¢)
else update the degrees of the edge endpoints in H¢.
endif
endwhile
Goto 3.
endif
endif
Goto 2.

G.Goranci, M. Henzinger, and M. Thorup

updated anymore since we are certain that the smallest trivial cut is smaller than any cut in
H.

To prove the correctness of the algorithm we will show that (1) it correctly maintains a
trivial min-cut at any time, (2) H is correct as long as min{MIN(H¢), Ax} < 3/2X* (and
when this condition fails we rebuild H), and (3) as long as Ay < 3/2X*, the algorithm
correctly maintains all cuts of size up to Ay + 1 of H.

Let N be the set of recently inserted edges in G that the algorithm maintains during the

execution of the while loop in Step 2. Similarly, let N, be the corresponding edge set in H.

» Lemma 3. Let H = (Viy, Eg) be a multigraph with minimum cut Ay and let Ny, be a set
with N, C Eg. Further, let Fy, ..., F,, be a DA-msfd of order m > Ag +1 of H\ Ny, and
let H' = (V, E') be a graph with E' = N, U<y, 41 Fi- Then, a cut is a min-cut in H' iff
it is @ min-cut in H.

Proof. We first show that every non-min cut in H is a non-min cut in H'. By contrapositive,
we get that a min-cut in H’ is a min-cut in H.

To this end, let (S,Vyx \ S) be a cut with |Eg(S,Vyg \ S)| > Ag + 1 in H. Define
EH(S7 VH\S)ﬂNh = SN;,, and EH(S, VH\S)Q(EH\N}L) = SH\N;L such that EH(S, VH\S) =
S, WS\, and [Ep (S, Vi \)| = [Sn, |+ S\, |- Letting F' = U, 1 Fi, we similarly
define edge sets Sy, and S%, partitioning the edges £'(S, Vi \S) that cross the cut (S, Vi \ S)
in H'. First, observe that Sy, | =[S}, | since edges of N, are always included in H'. In
addition, by second property of Definition 1, we know that F” preserves all cuts of H\ N}, up to

size A +1. Thus, if |Sg\ n, | < Ag+1, we get that [E'(S, Vg \S)| = |En(S, Va\S)| > Ag+1.

If |Sg\w, | > A + 1, then I must contain at least Ay + 1 edges crossing such cut and thus
|S%| > Am + 1. The latter implies that |E’(S, Vg \ S)| > Ay + 1. But H’' being a subgraph
of H implies that A\(H') < Ag, thus (S, Vg \ S) cannot be a min-cut in H’.

For other direction, let (S, Vg \ S) be a min-cut in H. Since H' is a subgraph of H,
we know that |E'(S, Vi \ S)| < Ag. Therefore, showing that |E’(S, Vg \ S)| > Ag implies
that (S, Vg \ S) is also a min cut in H'. Fix z,y and consider a min-cut (D, Vg \ D)
of size A\(H',x,y) separating x and y. Using the above notation and considering the cut
(D,Vg \ D) in H, we know that |Eg(D,Vg \ D)| = [Dn,| + [Dm\n,| > Ag. We first
note that [Dy, | = |DY, | since edges of Nj, are always included in H’. Then, similarly
as above, by second property of Definition 1 we know that if |Dg\n,| < Ag + 1, then
|E"(D, Vg \ D)| = |[Eg(D, Vg \ D)| > Ag. If |[Dg\n,, | > Ag + 1, then F’ must contain at
least Ay + 1 edges crossing such cut and thus |E'(D, Vg \ D)| > Ay + 1. Combining both
bounds we obtain that A(H',z,y) = |E'(D, Vg \ D)| > Ag. Since the later is valid for any =
and y, we get that A(H') > Ay must hold and in particular, |E'(S, Vg \ S)| > An. <

» Lemma 4. The algorithm correctly maintains a trivial min-cut in G.
Proof. This follows directly from the min-heap property of Hg. <

To simplify our notation, in the following we will refer to Step 1 as a Full Rebuild Step
(namely the initial Full Rebuild Step).

» Lemma 5. For some current graph G, let H be the multigraph obtained from G and assume
that Ag < 3/2*, where * denotes the value of min-cut at the last Full Rebuild Step.
Then the algorithm correctly maintains Ay = A\(H).

Proof. At the time of the last Full Rebuild Step, the algorithm applies KT-SPARSIFIER
on (G, which yields a multigraph H that preserves all non-trivial min-cuts of G. The value of

46:7

ESA 2016

46:8

Incremental Exact Min-Cut in Poly-logarithmic Amortized Update Time

Ag is updated to A(H) and a DA-msfd and a cactus tree are constructed for H. The latter
preserve all cuts of H of size up to Ay + 1. Thus, the value of Ay is correct at this step.

Now, suppose that the graph after the last Full Rebuild Step has undergone a sequence
of edge insertions, which resulted in the current graph G. During these insertions, as long
as Ay < 3/2)*, a sequence of k Partial Rebuild Steps is executed, for some k > 1. Let
)\g) be the value of Ay after the i-th execution of Partial Rebuild Step, where 1 < i < k.
Since,)\g) = A(H), it suffices to show that)\g) is correct. We proceed by induction.

For the base case, we show that)\S) is correct. First, using the fact that Ay and the
cactus tree are correct at the last Full Rebuild Step and that the incremental cactus tree
algorithm correctly tell us when to increment Ap, we conclude that incrementing the value
of Ay in Step 2 is valid. Thus,)\g) is correct. Next, in a Partial Rebuild Step, the
algorithm sparsifies the graph while preserving all cuts of size up to)\(}}) + 1 and producing a
new cactus tree for the next insertions. The correctness of the sparsification follows from
Lemma 3.

For the induction step, let us assume that)\%_1)

is correct. Then, similarly to the base
case, the correctness of)\5571), the cactus tree from the (k — 1)-th Partial Rebuild Step
and the correctness of the incremental cactus tree algorithm give that incrementing the value
of)\gjfl) in Step 2 is valid and yields a correct)\g;). <

Note that when Ay > 3/2A*, the above lemma is not guaranteed to hold. However, we will
show below that this is not necessary for the correctness of the algorithm. The fact that we
do not need to update the cactus tree in this setting is crucial for achieving our time bound.

» Lemma 6. If min{MIN(Hg), A} < 3/2*, then H is correct.

Proof. Let C’ be any non-trivial cut in G that is not in H. Such a cut must have cardinality
strictly greater than 3/2* since otherwise it would be contained in H. We show that C’
cannot be a minimum cut as long as min{ MIN(Hg), A} < 3/2X* holds. We distinguish two
cases.

1. If Ay < 3/2)*, then by Lemma 5 the algorithm maintains Ay correctly. Since H is
obtained from G by contracting vertex sets, there is a cut C' in H, and thus in G, of value
Am. It follows that C” cannot be a minimum cut of G since |C'| > 3/2X* > Ay = M(H) >
A(G), where the last inequality follows from the fact that H is a contraction of G.

2. It MIN(Hg) < 3/2)*, then by Lemma 4 there is a cut of size MIN(H¢) = 6 in G. Similarly,
C’ cannot be a minimum cut of G since |C'| > 3/2X* > ¢ > A(G).

Appealing to the above cases, we conclude H is correct since a min-cut of G is either contained

in H or it is a trivial cut of G. |

» Lemma 7. The algorithm correctly maintains A(G), i.e., \(G) = min{MIN(H¢), Au }.

Proof. Let G be some current graph. If min{MIN(H¢), Ag} < 3/2X*, then by Lemma 6, H
is correct. Thus, if Ay < 3/2)*, then Lemma 5 ensures that Ay is also maintained correctly
and, hence, min{MIN(H¢g), A} = A(G). If, however, Ay > 3/2* but min{ MIN(H¢g), Ag} <
3/2X*, then Ay > min{MIN(H¢), A} which implies that min{MIN(H¢), Ax} = MIN(Hg).
As the algorithm correctly maintains MIN(H¢) at any time by Lemma 4, it follows that the
algorithm maintains A correctly in this case as well.

The only case that remains to consider is MIN(Hg) > 3/2* and Ay > 3/2*. But this
implies that min{MIN(H¢g), A} > 3/2)*, and the algorithm computes a H and A(G) from
scratch and sets Ay correctly. After this full rebuild A(G) = min{MIN(H¢), Ag} trivially
holds. |

G.Goranci, M. Henzinger, and M. Thorup

Running Time Analysis

» Theorem 8. Let G be a simple graph with n nodes and mq edges. Then the total time
for inserting my edges and maintaining a minimum edge cut of G is 6(m0 +my). If we
start with an empty graph, the amortized time per edge insertion is 6(1) The size of the
minimum cut can be answered in constant time.

Proof. We first analyse Step 1. Building the heap Hg and computing A\ take O(n) and

O(mg) time, respectively. The total running time for constructing H, I(H,Ap) and the

cactus tree is dominated by O(mo + A2 - (n/Xo)) = O(my). Thus, the total time for Step 1 is
O(mo)

Let A%, ...,)\f{ be the values that Ay assumes in Step 2 during the execution of the
algorithm in increasing order. We define Phase i to be all steps executed after Step 1 while
An = Ay, excluding Full Rebuild Steps and Special Steps. Additionally, let \j,.. .,)*O(log)
be the values that A* assumes during the algorithm. We define Superphase j to consist of the
Jj-th Full Rebuild Step along with all steps executed while min{MIN(H¢), A\m} < 3/2)7,
where A% is the value of A(G) at the Full Rebuild Step. Note that a superphase consists
of a sequence of phases and potentially a final Special Step. Moreover, the algorithm runs
a phase if Ay < 3/2X*.

We say that A, belongs to superphase j, if the i-th phase is executed during superphase j
and Ay <3/ 2)7. We remark that the number of vertices in H changes only at the beginning
of a superphase, and remains unchanged during its lifespan.

Let n; denote the number of vertices in some superphase j. We bound this quantity as

follows:
» Fact 9. Let j be a superphase during the execution of the algorithm. Then, we have
n; = 5(n/)\§q), for all X%, belonging to superphase j.

Proof. From Step 3 we know that n; = 6(7&//\;‘) Moreover, observe that A5 < X and a
phase is executed whenever A\ < 3/2X%. Thus, for all X};’s belonging to superphase j, we
get the following relation

A5 < Ny < 3/2)%, (1)
which in turn implies that n; = 6(71/)\;‘) = 5(71/)\}[) <

For the remaining steps, we divide the running time analysis into two parts (one part
corresponding to phases, and the other to superphases).

Part 1

For some superphase j, the i-th phase consists of the i-th execution of a Partial Rebuild
Step followed by the execution of Step 2. Let u; be the number of edge insertions in Phase

i. The total time for Step 2 is O(n; + u;logn) = O(n + u;). Using Fact 9, we observe

that UiSAHJr1 F; U Ny, has size O(u;j—1 + Ayn;) = O(u;—1 +n). Thus, the total time for

computing DA-msfd in a Partial Rebuild Step is 5(ui_1 + n). Similarly, since H' has
O(Nynj) = O(n) edges, it takes O(n) time to compute I(H’, \%;) and the new cactus tree.
The total time spent in Phase ¢ is O(u;—1 + u; +n). Let A and Ay denote the size of the

minimum cut in the final graph and its corresponding multigraph, respectively. Note that

46:9

ESA 2016

46:10

Incremental Exact Min-Cut in Poly-logarithmic Amortized Update Time

Z;\:l u; < mq, An < mgy+ my and recall Eqn. (1). This gives that the total work over all
phases is

Al A
ZO(ui_l + u; +n) = ZO(ui_l + u; —|—?’l) = O(mo —|—m1).
=1

i=1

Part 2

The j-th superphase consists of the j-th execution of a Full Rebuild Step along with a
possible execution of a Special Step, depending on whether the condition is met. In a Full
Rebuild Step, the total running time for constructing H, I(H, \) and the cactus tree is

dominated by O(mg +my + (X})? - (n/A})) = O(mg +my). The running time of a Special
Step is O(my).

Throughout its execution, the algorithm begins a new superphase whenever A(G) = min
{MIN(Hg), A} > 3/2)*. This implies that A(G) must be at least 3/2*, where A* is the
value of A(G) at the last Full Rebuild Step. Thus, a new superphase begins whenever
A(G) has increased by a factor of 3/2, i.e., only O(logn) times over all insertions. This gives
that the total time over all superphases is O(mq + m1). <

5 Incremental (1 4) Minimum Cut with O(n) space

In this section we present two O(n) space incremental Monte-Carlo algorithms that w.h.p
maintain the size of a min-cut up to a (1 + ¢€)-factor. Both algorithms have O(1) update-time
and O(1), resp. O(1) query-time.

5.1 An O(nlog®n/e?) space algorithm

Our first algorithm follows an approach that was used in several previous works [14, 28, 27],
where the space requirement is not considered. The basic idea is to maintain the min-cut
up to some size k using small space. We achieve this by maintaining a sparse k-certificate
and incorporating it into the incremental exact min-cut algorithm due to Henzinger [14], as
described in Section 4. Finally we apply the well-known randomized sparsification result due
to Karger [17] to obtain our result.

Maintaining min-cut up to size k using O(kn) space

We incrementally maintain a DA-msfd for an unweighted multigraph G using k union-find
data structures Fi,...,Fi (see [6]). Each F; maintains a spanning forest F; of G. Recall
that F, ..., Fy are edge-disjoint. When a new edge e = (u,v) is inserted into G, we define i
to be the first index such that F; . FIND(u) # F;.FIND(v). If we found such an i, we append
the edge e to the forest F; by setting F;.UNION(u,v) and return ¢. If such an i cannot be
found after k steps, we simply discard edge e and return NULL. We refer to such procedure
as k-CONNECTIVITY(e).

It is easy to see that the forests maintained by k-CONNECTIVITY(e) for every newly
inserted edge e are indeed edge-disjoint. Combining this procedure with techniques from
Henzinger [14] leads to the following Algorithm 2.

The space requirement of the above algorithm is only O(kn), since we always maintain
at most k spanning forests during its execution. The total running time for testing the
k-connectivity of the endpoints of the newly inserted edges in Step 2 is O(kma(n)), where

G.Goranci, M. Henzinger, and M. Thorup

Algorithm 2 INCREMENTAL ExacT MIN-CUT UP TO SIZE k

1: Set A = 0, initialize k union-find data structures Fi,..., Fg,
k empty forests F1, ..., Fx, I()\), and an empty cactus tree.
2: while there is at least one minimum cut of size A do
Receive the next operation.
if it is a query then return A
else it is the insertion of an edge e, then
Set i = k-CONNECTIVITY (e).
if i # NULL then
Set Fz = Fl U {6}
Update the cactus tree according to the insertion of the edge e.
endif
endif
endwhile
3: Set A=A+ 1.
Let G’ = (V, E’) be a graph with E' = I(A = 1) U ;< ;4 Fi-
Compute I(X) and a cactus tree of G'.
Goto 2.

a(n) stands for the inverse of Ackermann function. These guarantees combined with the
arguments from Theorem 8 of Henzinger [14] give the following corollary.

» Corollary 10. For k > 0, there is an O(kn) space algorithm that processes a stream of edge
insertions starting from any empty graph G and maintains an exact value of min{\(G), k}.
The total time for inserting m edges is O(kma(n)logn) and queries can be answered in
constant time.

Dealing with min-cuts of arbitrary size

We observe that Corollary 10 gives polylogarithmic amortized update time only for min-cuts
up to some polylogarithmic size. For dealing with min-cuts of arbitrary size, we use the well-
known sampling technique due to Karger [17]. This allows us to get an (1 + €)-approximation
to the value of min-cut with high probability.

» Lemma 11 ([17]). Let G be any graph with minimum cut X and let p > 10(logn)/(2\).
Let S(p) be a subgraph of G obtained by including each of edge of G to S(p) with probability
p independently. Then the probability that the value of any cut of S(p) has value more than
(1 +¢€) or less than (1 — €) times its expected value is O(1/n3).

For some integer i > 1, let G; denote a subgraph of G obtained by including each edge of
G to G; with probability 1/2! independently. We now have all necessary tools to present our
incremental algorithm:
1. Fori=0,...,[logn|, let G; be the initially empty sampled subgraphs.
2. If an edge e is inserted into G, include e to each G; with probability 1/2¢ and maintain
the exact minimum cut of G; up to size k = 40logn/c? using Algorithm 2.

3. If the operation is a query, find the minimum j such that the min-cut of G; is at most k.

Return 27 \(G;).

46:11

ESA 2016

46:12

Incremental Exact Min-Cut in Poly-logarithmic Amortized Update Time

» Theorem 12. There is an O(nlog2 n/e?) space randomized algorithm that processes
a stream of edge insertions starting from an empty graph G and maintains a (1 + ¢)-
approximation to the min-cut of G with high probability. The amortized update time per
operation is O(a(n)log® n/e?) and queries can be answered in O(logn) time.

Proof. We first prove the correctness of the algorithm. For an integer t > 0, let G(Y) =
(V, E®) be the graph after the first ¢ edge insertions. Further, let A(G®) denote the min-cut
of G and p® = 10(logn)/(e2A®). For any integer i < |logy 1/p(!'], Lemma 11 implies
that QiA(GEt)) is an (1 + &)-approximation to A\(G*)). Setting i = |log, 1/p) |, we get that:

ENG)] < MGD) /20 < 2pDAGD) < 20logn/e>.

The later along with Lemma 11 imply that for any ¢ € (0,1), the size of the minimum
cut in GZ(-t) is at most (1 + €)20logn/e? < 40logn/e? with probability 1 — O(1/n3). Thus,
j < |logy 1/p™® | and the algorithm returns a (1 + £)-approximation to the minimum cut of
G® with probability 1 — O(1/n?®). Note that for any ¢, [log, 1/p¥ | < |logn|, and thus it is
sufficient to maintain only O(logn) sampled subgraphs.

Since our algorithm applies to unweighted simple graphs, we know that t < O(n?). Now
applying union bound over all t € {1,...0(n?)} gives that the probability that the algorithm
does not maintain a (1 +¢) < 14 O(g)-approximation is at most O(1/n).

The total expected time for maintaining a sampled subgraph is O(ma(n)log® n/e?) and
the required space is O(nlogn/e?) (Corollary 10). Maintaining O(logn) such subgraphs
gives an O(a(n)log® n/e?) amortized time per edge insertion and an O(nlog®n/e?) space
requirement. The O(logn) query time follows as in the worst case we scan at most O(logn)
subgraphs, each answering a min-cut query in constant time. <

5.2 Improving the space to O(nlogn/e?)

We next show how to bring down the space requirement of the previous algorithm to
O(nlogn/e?) without degrading its running time. The main idea is to keep a single sampled
subgraph instead of O(logn) of them.

Let G = (V, E) be an unweighted undirected graph and assume each edge is given some
random weight p. chosen uniformly from [0, 1]. We call the resulting weighted graph G™.
For any p > 0, we denote by G(p) the unweighted subgraph of G that consists of all edges
that have weight at most p. We state the following lemma due to Karger [15]:

» Lemma 13. Let k = 40logn/c%. Given a connected graph G, let p be a value such that
p > k/(4X(G)). Then with high probability, N(G(p)) < k and MNG(p))/p is an (1 + €)-
approximation to the min-cut of G.

Proof. Since the weight of every edge is uniformly distributed, the probability that an edge
has weight at most p is exactly p. Thus, G(p) can be viewed as taking G and including each
edge with probability p. The claim follows from Lemma 11. |

For any graph G and some appropriate weight p, the above lemma tells us that the
min-cut of G(p) is bounded by k with high probability. Thus, instead of considering the
graph G along with its random edge weights, we build a collection of £ minimum edge-disjoint
spanning forests (using those edge weights). We note that such a collection is a DA-msfd of
order k for G with O(kn) edges and by Lemma 3, it preserves all minimum cuts of G up to
size k.

Our algorithm uses the following two data structures:

G.Goranci, M. Henzinger, and M. Thorup

(1) NI-Sparsifier(k) data-structure: Given a graph G, where each edge e is assigned some
weight p. and some parameter k, we maintain an insertion-only data-structure that maintains
a collection of k£ minimum edge-disjoint spanning forests S1, ..., S, with respect to the edge
weights. Let S = Ule S;. Since we are in the incremental setting, it is known that the
problem of maintaining a single minimum spanning forest can be solved in time O(logn)
per insertion using the dynamic tree structure of Sleator and Tarjan [26]. Specifically, we
use this data-structure to determine for each pair of nodes (u,v) the maximum weight of
an edge in the cycle that the edge (u,v) induces in the minimum spanning forest S;. Let
max-weight(S;(u, v)) denote such a maximum weight. The update operation works as follows:
when a new edge e = (u,v) is inserted into G, we first use the dynamic tree data structure
to test whether v and v belong to the same tree. If no, we link their two trees with the edge
(u,v) and return the pair (TRUE, NULL) to indicate that e was added to S; and no edge was
evicted from S;. Otherwise, we check whether p, > max-weight(S;(e)). If the latter holds,
we make no changes in the forest and return (FALSE, e). Otherwise, we replace one of the
maximum edges, say €', on the path between u and v in the tree by e and return (TRUE, ¢’).
The boolean value that is returned indicates whether e belongs to S; or not, the second value
that is returned gives an edge that does not (or no longer) belong to S;. Note that each edge
insertion requires O(logn) time. We refer to this insert operation as INSERT-MSF(S;, e, p.).
Now, the algorithm that maintains the weighted minimum spanning forests implements
the following operations:
INITIALIZE-NI(k): initializes the data structure for k£ empty minimum spanning forests.
INSERT-NI(e, p.): Set i =1, ¢/ = e, taken = FALSE.
while ((< k) and ¢’ # NULL) do
Set (¢, ¢”) = INSERT-MSF(S;, ¢, per).
if (¢/ = e) then set taken = t’ endif
Set ¢/ =¢” and i =i+ 1.
endwhile
if (¢/ # e) then return (taken, ¢’) else return (taken, NULL).
Recall that S = |J,.,, Si. We use the abbreviation NI-SPARSIFIER(k) to refer to this data-
structure. By slight abuse of notation we will associate a weight with each edge in S and use
S to refer to this weighted version of S.

» Lemma 14. For k > 0 and any graph G, NI-SPARSIFIER(k) maintains a weighted DA-msfd
of order k of G under edge insertions. The algorithm uses O(kn) space and the total time
for inserting m edges is O(kmlogn).

(2) Limited Exact Min-Cut(k) data-structure: We use Algorithm 2 to implement the
following operations for any unweighted graph G and parameter k,
INSERT-LIMITED(e): executes the insertion of edge e into Algorithm 2.
QUERY-LIMITED(): returns A
INITIALIZE-LIMITED(G, k): builds a data structure for G with parameter k by calling
INSERT-LIMITED(e) for each edge e in G.
We use the abbreviation LiM(k) to refer to such data-structure.
Combining the above data-structures leads to the following algorithm:

Correctness and Running Time Analysis

Let S denote the unweighted version of S*. Throughout the execution of Algorithm 3, S
corresponds exactly to the DA-msfd of order k of G maintained by NI-SPARSIFIER (k). In

46:13

ESA 2016

46:14

Incremental Exact Min-Cut in Poly-logarithmic Amortized Update Time

Algorithm 3 (1 + ¢)-MIN-CuT WITH O(nlogn/c?) SPACE

1: Set k = 40logn/e2.
Set p = 10logn /2.
Let H and S™ be empty graphs.
2: INITIALIZE-LIMITED(H, k).
while QUERY-LIMITED() < k& do
Receive the next operation.
if it is a query then return QUERY-LIMITED()/ min{1, p}.
else it is the insertion of an edge e, then
Sample a random weight from [0, 1] for the edge e and denote it by p..
if p. <p then INSERT-LIMITED(e) endif
Set (taken, ¢’) = INSERT-NI(e, p.).
if taken then
Insert e into S with weight pe.
if (¢/ # NULL) then remove €’ from S™.
endif
endif
endwhile
3: // Rebuild Step
Set p = p/2.
Let H be the unweighted subgraph of S consisting of all edges of weight at most p.
Goto 2.

the following, let H be the graph that is given as input to LiM(k). Thus, by Corollary 10,
QUERY-LIMITED() returns min{k, A(H)}, i.e., it returns A(H) as long as A\(H) < k. We now
formally prove the correctness.

» Lemma 15. Lete < 1. If M(G) < k, then H = G, p = k/4, and QUERY-LIMITED()
returns A(G). The first rebuild step is triggered after the first insertion that increases A(Q)
to k and let \(G) = \(H) = k at that time.

Proof. The algorithm starts with an empty graph G, i.e., initially A(G) = 0. Throughout
the sequence of edge insertions A\(G) never decreases. We show by induction on the number
m of edge insertions that H = G and p = k/4 as long as A\(G) < k.

Note that k/4 > 1 by our choice of e. For m = 0, the graphs G and H are both empty
graphs and p is set to k/4. For m > 0, consider the m-th edge insertion, which inserts
an edge e. Let G and H denote the corresponding graphs after the insertion of e. By the
inductive assumption, p = k/4 and G \ {e} = H \ {e}. As p > 1, e is added to H and, thus,
it follows that G = H. Hence, A(H) = A(G). If A(G) < k, no rebuild is performed and p is
not changed. If A\(G) = k, then the last insertion was exactly the insertion that increased
AG) from k£ —1 to k. As H = G before the rebuild, QUERY-LIMITED() returns k, triggering
the first execution of the rebuild step. <

We next analyze the case that A\(G) > k. In this case, both H and p are random variables,
as they depend on the randomly chosen weights for the edges. Let S(p) be the unweighted
subgraph of S* that contains all edge of weight at most p.

» Lemma 16. Let Ny (p) be the graph consisting of all edges that were inserted after the last
rebuild and have weight at most p and let S°'4(p) be S(p) right after the last rebuild. Then
the graph H = S°“(p) U Ny, (p).

G.Goranci, M. Henzinger, and M. Thorup

» Lemma 17. At the time of a rebuild S(p) is a DA-msfd of order k of G(p).

By Lemma 13, in order to show that A(H)/ min{l,p} is an (1 + ¢)-approximation of A(G)
with high probability, we need to show that if A(G) > k then (a) the random variable p is at
least k/(4\(G)) w.h.p., which implies that A(G(p)) is a (1 + €)-approximation of \(G) w.h.p.
,and (b) that A\(H) = A(G(p)).

» Lemma 18. Let ¢ < 1. If AN(G) > k, then (1) p > k/(4N(G)) w.h.p. and (2) \(H) =
AG(p))-

Proof. For any i > 0, after the i-th rebuild we have p = p() := 10logn/(2'c?). We will show
by induction on i that (1) p? = 10logn/(2'€?) > 10logn/(c?>X\(G)) with high probability,
which is equivalent to showing that A(G) > 2¢ and that (2) at any point between the i — 1-st
and the i-th rebuild, A\(H) = A\(G(pt~1)).

We first analyse ¢ = 1. Assume that the insertion of edge e caused the first rebuild.
Lemma 15 showed that (1) at the first rebuild A(G) = k > 2! = 2 and (2) that up to the
first rebuild G(p) = G = H.

For the induction step (i > 1), we inductively assume that (1) at the (¢ — 1)-st rebuild,
pl=D > 10logn/e?A(G°'Y) with high probability, where G°' is the graph G right before the
insertion that triggered the i-th rebuild (i.e., at the last point in time when QUERY-LIMITED()
returned a value less than k), and (2) that A\(H) = A(G(p(“~?))) at any time between the (i—2)-
nd and the (i —1)-st rebuild. Let e be the edge whose insertion caused the i-th rebuild. Define
G % = Gy {e}. Note that w.h.p. p—D > 10logn/(e2A(G°')) > 10logn/(2 A (GV)) as
MG < A(G™¥). Thus, by Lemma 13, we get that A(G™% (p(i=1)) /pli—1) < (14e)A(GPW)
with high probability.

We show below that A(G*¥(pli=1))) = \(H™Y), where H™®" is the graph stored in
LiM(k) right before the i-th rebuild. Thus, A(H"*") = k, which implies that

MG (pt=Y)) = k = 40logn/e? < (1 4 e)A\(G™™) - pli—D
= (14)AN(G™™) - 10logn/ (2" 1e?),

w.h.p.. This in turn implies that A(G"®") > 2+1 /(1 + ¢) > 2¢ w.h.p. by our choice of ¢.

It remains to show that A\(G™*% (p(i=1))) = A\(H"*V). Note that this is a special case of (2),
which claims that at any point between that (i—1)-st and the i-th rebuild A\(H) = A\(G(p(—1)),
where H and G are the current graphs. Thus, to complete the proof of the lemma it suffices
to show (2).

As H is a subgraph of G(pt"~1), we know that A(G(p~V)) > A\(H). Thus, we only
need to show that A\(G(p®~1)) < A(H). Let G*~!, resp. S*~!, resp. H*~', be the graph
G, resp. S, resp. H, right after rebuild ¢ — 1 and let N, be the set of edges inserted since,
ie., G =GU"YUN,. As we showed in Lemma 16, H = S*~'(pi=1) U N, (p~Y). Thus,
H=' = §=1(pli—1)). Additionally, by Lemma 17, S*~'(p~1) is a DA-msfd of order k of
G 1(pl~1). Thus by Property (3) of a DA-msfd of order k, for every cut (A, V '\ A) of value
at most k in H'™', N\(H*™', A) = A\(S" 1 (pli—1), A) = MG (pti=1), A), where A\(G, A)
denotes the number of edges crossing from A to V' \ A in G. Now assume by contradiction
that A\(G(p(~Y)) > A(H) and consider a minimum cut (A, V' \ A) in H, i.e., \(H) = A(H, A).
We know that at any time k > A(H). Thus k¥ > MH) = A(H, A), which implies k >
MH=', A). By Property (3) of DA-msfd it follows that A(H*~, A) = A(G*~(pli=1), A).
Note that H = H*"' U N,(pl~1) and G(pli—V) = G 1(pt~—D)U Egx(pli—1). Let z be
the number of edges of Nj,(p*~1)) that cross the cut (A,V \ A). Then \(H) = \(H, A) =
MNHY A) +2 = NG pt=D), A)+2 = \(G(p~1), A), which contradicts the assumption
that A(G(pU~1)) > A(H). <

46:15

ESA 2016

46:16

Incremental Exact Min-Cut in Poly-logarithmic Amortized Update Time

Since our algorithm is incremental and applies only to unweighted graphs, we know
that there can be at most O(n?) edge insertions. Thus, by the above lemma and an union
bound over these O(n?) different graphs, we get that throughout its execution, our algorithm
maintains a (1 4 &)-approximation to the min cut with high probability.

» Theorem 19. There is an O(nlogn/c?) space randomized algorithm that processes
a stream of edge insertions starting from an empty graph G and maintains a (1 + €)-
approrimation to the min-cut of G with high probability. The total time for insertiong m
edges is O(ma(n)log® n/e?) and queries can be answered in constant time.

Proof. The space requirement is O(nlogn/e?) since at any point of time, the algorithm
keeps H, S*, LiM(k), and NI-SPARSIFIER (k), each of size at most O(nlogn/e?) (Corollary
10 and Lemma 14).

When Algorithm 3 executes a Rebuild Step, only the LiM(k) data-structure is rebuilt,
but not NI-SPARSIFIER (k). During the whole algorithm m INSERT-NI operations are per-
formed. Thus, by Lemma 14, the total time for all operations involving NI-SPARSIFIER (k) is
O(mlog®n/e?).

It remains to analyze Steps 2 and 3. In Step 2, INITIALIZE-LIMITED(H, k) takes at most
O(ma(n)log? n/e?) total time (Corollary 10). The running time of Step 3 is O(m) as well.
Since the number of Rebuild Steps is at most O(logn), it follows that the total time for
all INITIALIZE-LIMITED(H, k) calls in Steps 2 and the total time of Step 3 throughout the
execution of the algorithm is O(ma(n)log® n/e?).

We are left with analyzing the remaining part of Step 2. Each query operation executes
one QUERY-LIMITED() operation, which takes constant time. Each insertion executes one
INSERT-NI(e, p.) operation, which takes amortized time O(log® n/e). We maintain the edges
of S* in a binary tree so that each insertion and deletion takes O(logn) time. As there are
m edge insertions the remaining part of Step 2 takes total time O(mlog® n/e?). Combining
the above bounds gives the theorem. <

—— References

1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Proc. of the 55th FOCS, pages 434-443. IEEE, 2014.

2 Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming model. In
Proc. of the 36th ICALP, pages 328-338, 2009.

3 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification,
spanners, and subgraphs. In Proc. of the 32nd PODS, pages 5-14, 2012.

4 Andréas A. Bencztr and David R. Karger. Randomized approximation schemes for cuts and
flows in capacitated graphs. STAM J. Comput., 44(2):290-319, 2015.

5 Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E.
Tsourakakis. Space- and time-efficient algorithm for maintaining dense subgraphs on one-
pass dynamic streams. In Proc. of the 47th STOC, pages 173-182, 2015.

6 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms (3. ed.). MIT Press, 2009.

7 E. A. Dinitz, A. V. Karzanov, and M. V. Lomonosov. On the structure of a family of
minimum weighted cuts in a graph. Studies in Discrete Optimization, pages 290-306, 1976.

8 Yefim Dinitz and Jeffery Westbrook. Maintaining the classes of 4-edge-connectivity in a
graph on-line. Algorithmica, 20(3):242-276, 1998.

9 Harold N. Gabow. Applications of a poset representation to edge connectivity and graph
rigidity. In Proc. of the 32nd FOCS, pages 812-821, 1991.

G.Goranci, M. Henzinger, and M. Thorup

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

25

26

27
28

Harold N. Gabow. A matroid approach to finding edge connectivity and packing arbores-
cences. J. Comput. Syst. Sci., 50(2):259-273, 1995.

Zvi Galil and Giuseppe F. Italiano. Maintaining the 3-edge-connected components of a
graph on-line. SIAM J. Comput., 22(1):11-28, 1993.

David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. Dynamic graph connectivity
with improved worst case update time and sublinear space. CoRR, abs/1509.06464, 2015.
Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proc. of the 47th STOC, pages 21-30, 2015.

Monika Rauch Henzinger. A static 2-approximation algorithm for vertex connectivity and
incremental approximation algorithms for edge and vertex connectivity. Journal of Al-
gorithms, 24(1):194-220, 1997.

David Karger. Random Sampling in Graph Optimization Problems. PhD thesis, Stanford
University, Stanford, 1994.

David R. Karger. Using randomized sparsification to approximate minimum cuts. In
Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. 23-25
January 1994, Arlington, Virginia., pages 424-432, 1994.

David R. Karger. Random sampling in cut, flow, and network design problems. Math.
Oper. Res., 24(2):383-413, 1999.

David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46-76, 2000.
Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic global minimum cut of a simple
graph in near-linear time. In Proc. of the 47th STOC, pages 665—674, 2015.

Jonathan A. Kelner and Alex Levin. Spectral sparsification in the semi-streaming setting.
Theory Comput. Syst., 53(2):243-262, 2013.

Jakub Lacki and Piotr Sankowski. Min-cuts and shortest cycles in planar graphs in
O(nloglogn) time. In Proc. of the 19th ESA, pages 155-166, 2011.

Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 1(10):96-115,
1927.

Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse
k-connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583-596,
1992.

Danupon Nanongkai and Thatchaphol Saranurak. Dynamic cut oracle. under submission,
2016.

Johannes A. La Poutré. Maintenance of 2- and 3-edge-connected components of graphs II.
SIAM J. Comput., 29(5):1521-1549, 2000.

Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362-391, 1983.

Mikkel Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91-127, 2007.

Mikkel Thorup and David R Karger. Dynamic graph algorithms with applications. In
Algorithm Theory-SWAT 2000, pages 1-9. Springer, 2000.

46:17

ESA 2016

	Introduction
	Preliminary
	Sparse certificates
	Incremental Exact Minimum Cut
	Incremental 1+eps Minimum Cut with O(n poly log n) space
	An O (n log2 n) space algorithm
	Improving the space to O (n log n)

