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Abstract
Makespan minimization in restricted assignment (R|pij ∈ {pj ,∞}|Cmax) is a classical problem in
the field of machine scheduling. In a landmark paper in 1990 [9], Lenstra, Shmoys, and Tardos
gave a 2-approximation algorithm and proved that the problem cannot be approximated within
1.5 unless P=NP. The upper and lower bounds of the problem have been essentially unimproved
in the intervening 25 years, despite several remarkable successful attempts in some special cases
of the problem [2, 3, 13] recently.

In this paper, we consider a special case called graph-balancing with light hyper edges, where
heavy jobs can be assigned to at most two machines while light jobs can be assigned to any
number of machines. For this case, we present algorithms with approximation ratios strictly
better than 2. Specifically,

Two job sizes: Suppose that light jobs have weight w and heavy jobs have weight W , and
w < W . We give a 1.5-approximation algorithm (note that the current 1.5 lower bound is
established in an even more restrictive setting [1, 4]). Indeed, depending on the specific values
of w and W , sometimes our algorithm guarantees sub-1.5 approximation ratios.
Arbitrary job sizes: Suppose that W is the largest given weight, heavy jobs have weights in
the range of (βW,W ], where 4/7 ≤ β < 1, and light jobs have weights in the range of (0, βW ].
We present a (5/3 + β/3)-approximation algorithm.

Our algorithms are purely combinatorial, without the need of solving a linear program as
required in most other known approaches.
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1 Introduction

Let J be a set of n jobs andM a set of m machines. Each job j ∈ J has a weight wj and
can be assigned to a specific subset of the machines. An assignment σ : J →M is a mapping
where each job is mapped to a machine to which it can be assigned. The objective is to
minimize the makespan, defined as maxi∈M

∑
j:σ(j)=i wj . This is the classical makespan

minimization in restricted assignment (R|pij ∈ {pj ,∞}|Cmax), itself a special case
of the makespan minimization in unrelated machines (R||Cmax), where a job j has
possibly different weight wij on different machines i ∈M. In the following, we just call them
restricted assignment and unrelated machine problem for short.
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The first constant approximation algorithm for both problems is given by Lenstra, Shmoys,
and Tardos [9] in 1990, where the ratio is 2. They also show that restricted assignment
(hence also the unrelated machine problem) cannot be approximated within 1.5 unless
P=NP, even if there are only two job weights. The upper bound of 2 and the lower bound
of 1.5 have been essentially unimproved in the intervening 25 years. How to close the gap
continues to be one of the central topics in approximation algorithms. The recent book of
Williamson and Shmoys [15] lists this as one of the ten open problems.

Our Result

We consider a special case of restricted assignment, called graph balancing with
light hyper edges, which is a generalization of the graph balancing problem introduced
by Ebenlendr, Krčál and Sgall [4]. There the restriction is that every job can be assigned
to only two machines, and hence the problem can be interpreted in a graph-theoretic way:
each machine is represented by a node, and each job is represented by an edge. The goal is
to find an orientation of the edges so that the maximum weight sum of the edges oriented
towards a node is minimized. In our problem, jobs are partitioned into heavy and light,
and we assume that heavy jobs can go to only two machines while light jobs can go to any
number of machines1. In the graph-theoretic interpretation, light jobs are represented by
hyper edges, while heavy jobs are represented by regular edges.

We present approximation algorithms with performance guarantee strictly better than 2
in the following settings. For simplicity of presentation, we assume that all job weights wj
are integral (this assumption is just for ease of exposition and can be easily removed).

Two job sizes: Suppose that heavy jobs are of weight W and light jobs are of weight w,
and w < W . We give a 1.5-approximation algorithm, matching the general lower bound
of restricted assignment (it should be noted that this lower bound is established in
an even more restrictive setting [1, 4], where all jobs can only go to two machines and job
weights are 1 and 2). This is the first time the lower bound is matched in a nontrivial case of
restricted assignment (without specific restrictions on the job weight values). In fact,
sometimes our algorithm achieves an approximation ratio strictly better than 1.5. Supposing
that w ≤ W

2 , the ratio we get is 1 + bW/2c
W .

Arbitrary job sizes: Suppose that β ∈ [4/7, 1) and W is the largest given weight. A heavy
job has weight in (βW,W ] while a light job has weight in (0, βW ]. We give a (5/3 + β/3)-
approximation algorithm.

Both algorithms have the running time of O
(
n2m3 log (

∑
j∈J wj)

)
.2

The general message of our result is clear: as long as the heaviest jobs have only two
choices, it is relatively easy to break the barrier of 2 in the upper bound of restricted
assignment. This should coincide with our intuition. The heavy jobs are in a sense the
“trouble-makers”. A mistake on them causes bigger damage than a mistake on lighter jobs.
Restricting the choices of the heavy jobs thus simplifies the task.

1 If some jobs can be assigned to just one machine, then it is the same as saying a machine has some
dedicated load. All our algorithms can handle arbitrary dedicated loads on the machines.

2 For simplicity, here we upper bound
∑

j∈J aj , where aj is the number of the machines j can be assigned
to, by nm.
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The original graph balancing problem assumes that all jobs can be assigned to only
two machines and the algorithm of Ebenlendr et al. [4] gives a 1.75-approximation. According
to [11], their algorithm can be extended to our setting: given any β ∈ [0.5, 1), they can
obtain a (3/2 +β/2)-approximation. Although this ratio is superior to ours, let us emphasize
two interesting aspects of our approach.

(1) The algorithm of Ebenlendr et al. requires solving a linear program (in fact, almost
all known algorithms for the problem are LP-based), while our algorithms are purely
combinatorial. In addition to the advantage of faster running time, our approach introduces
new proof techniques (which do not involve linear programming duality).

(2) In graph balancing, Ebenlendr et al. showed that with only two job weights and
dedicated loads on the machines, their strongest LP has the integrality gap of 1.75, while
we can break the gap. Our approach thus offers a possible angle to circumvent the barrier
posed by the integrality gap, and has the potential of seeing further improvement.

Before explaining our technique in more detail, we should point out another interesting
connection with a result of Svensson [13] for general restricted assignment. He gave two
local search algorithms, which terminate (but it is unknown whether in polynomial time) and
(1) with two job weights {ε, 1}, 0 < ε < 1, the returned solution has an approximation ratio
of 5/3 + ε, and (2) with arbitrary job weights, the returned solution has an approximation
ratio of ≈ 1.94. It is worth noting that his analysis is done via the primal-duality of the
configuration-LP (thus integrality gaps smaller than two for the configuration-LP are implied).
With two job weights, our algorithm has some striking similarity to his algorithm – but
it should be emphasized that the two algorithms behave differently. We are able to prove
our algorithm terminates in polynomial time – but our setting is more restrictive. A very
interesting direction for future work is to investigate how the ideas in the two algorithms can
be related and combined.

Our Technique

Our approach is inspired by that of Gairing et al. [5] for general restricted assignment.
So let us first review their ideas. Suppose that a certain optimal makespan t is guessed.
Their core algorithm either (1) correctly reports that t is an underestimate of OPT, or (2)
returns an assignment with makespan at most t+W − 1. By a binary search on the smallest
t for which an assignment with makespan t+W − 1 is returned, and the simple fact that
OPT ≥ W , they guarantee the approximation ratio of t+W−1

OPT ≤ 1 + W−1
OPT ≤ 2 − 1

W (the
first inequality holds because t is the smallest number an assignment is returned by the
core algorithm). Their core algorithm is a preflow-push algorithm. Initially all jobs are
arbitrarily assigned. Their algorithm tries to redistribute the jobs from overloaded machines,
i.e., those with load more than t + W − 1, to those that are not. The redistribution is
done by pushing the jobs around while updating the height labels (as commonly done in
preflow-push algorithms). The critical thing is that after a polynomial number of steps, if
there are still some overloaded machines, they use the height labels to argue that t is a wrong
guess, i.e., OPT ≥ t+ 1. Our contribution is a refined core algorithm in the same framework.
With a guess t of the optimal makespan, our core algorithm either (1) correctly reports that
OPT ≥ t+ 1, or (2) returns an assignment with makespan at most (5/3 + β/3)t.

We divide all jobs into two categories, the rock jobs R, and the pebble jobs P (not to be
confused with heavy and light jobs). The former consists of those with weights in (βt, t]
while the latter includes all the rest. We use the rock jobs to form a graph GR = (V,R), and
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assign the pebbles arbitrarily to the nodes. Our core algorithm will push around the pebbles
so as to redistribute them. Observe that as t ≥W , all rocks are heavy jobs. So the formed
graph GR has only simple edges (no hyper edges). As β ≥ 4/7, if OPT ≤ t, then every node
can receive at most one rock job in the optimal solution. In fact, it is easy to see that we
can simply assume that the formed graph GR is a disjoint set of trees and cycles. Our entire
task boils down to the following:

Redistribute the pebbles so that there exists an orientation of the edges in GR in
which each node has total load (from both rocks and pebbles) at most (5/3 + β/3)t;
and if not possible, gather evidence that t is an underestimate.

Intuitively speaking, our algorithm maintains a certain activated set A of nodes. Initially,
this set includes those nodes whose total loads of pebbles cause conflicts in the orientation of
the edges in GR. A node “reachable” from a node in the activated set is also included into
the set. (Node u is reachable from node v if a pebble in v can be assigned to u.) Our goal is
to push the pebbles among nodes in A, so as to remove all conflicts in the edge orientation.
Either we are successful in doing so, or we argue that the total load of all pebbles currently
owned by the activated set, together with the total load of the rock jobs assigned to A in
any feasible orientation of the edges in GR (an orientation in GR is feasible if every node
receives at most one rock), is strictly larger than t · |A|. The progress of our algorithm (hence
its running time) is monitored by a potential function, which we show to be monotonically
decreasing.

The most sophisticated part of our algorithm is the “activation strategy”. We initially add
nodes into A if they cause conflicts in the orientation or can be (transitively) reached from
such. However, sometimes we also include nodes that do not fall into the two categories. This
is purposely done for two reasons: pushing pebbles from these nodes may help alleviate the
conflict in edge orientation indirectly; and their presence in A strengthens the contradiction
proof.

Due to the intricacy of our main algorithm, we first present the algorithm for the two job
weights case in Section 3 and then present the main algorithm for the arbitrary weights in
Section 4. The former algorithm is significantly simpler (with a straightforward activation
strategy) and contains many ingredients of the ideas behind the main algorithm.

Due to the space limit, some of the proofs are omitted. Please refer to the full version [7]
for details.

Related Work

For restricted assignment, besides the several recent advances mentioned earlier, see the
survey of Leung and Li for other special cases [10]. For two job weights, Chakrabarti, Khanna
and Li [2] showed that using the configuration-LP, they can obtain a (2− δ)-approximation
for a fixed δ > 0 (and note that there is no restriction on the number of machines a job
can go to). Kolliopoulos and Moysoglou [8] also considered the two job weights case. In
the graph balancing setting (with two job weights), they gave a 1.652-approximation
algorithm using a flow technique (thus they also break the integrality gap in [3]). They also
show that the optimal makespan for restricted assignment with two job weights can be
estimated in polynomial time within a factor of at most 1.883 (and this is further improved
to 1.833 in [2]).

For unrelated machines, Shchepin and Vakhania [12] improved the approximation
ratio to 2− 1/m. A combinatorial 2-approximation algorithm was given by Gairing, Monien,
and Woclaw [6]. Verschae and Wiese [14] showed that the configuration-LP has integrality
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gap of 2, even if every job can be assigned to only two machines. They also showed that it is
possible to achieve approximation ratios strictly better than 2 if the job weights wij respect
some constraints.

2 Preliminary

Let t be a guess of OPT. Given t, our two core algorithms either report that OPT ≥ t+ 1, or
return an assignment with makespan at most 1.5t or (5/3 + β/3)t, respectively. We conduct
a binary search on the smallest t ∈ [W,

∑
j∈J wj ] for which an assignment is returned by the

core algorithms. This particular assignment is then the desired solution.
We now explain the initial setup of the core algorithms. In our discussion, we will not

distinguish a machine and a node. Let dl(v) be the dedicated load of v, i.e., the sum of the
weights of jobs that can only be assigned to v. We can assume that dl(v) ≤ t for all nodes v.
Let J ′ ⊆ J be the jobs that can be assigned to at least two machines. We divide J ′ into
rocks R and pebbles P. A job j ∈ J ′ is a rock,

in the 2 job weights case (Section 3), if wj > t/2 and wj = W ;
in the general job weights case (Section 4), if wj > βt.

A job j ∈ J ′ that is not a rock is a pebble. Define the graph GR = (V,R) as a graph
with machines M as node set and rocks R as edge set. By our definition, a rock can be
assigned to exactly two machines. So GR has only simple edges (no hyper edges). For the
sake of convenience, we call the rocks just “edges”, avoiding ambiguity by exclusively using
the term “pebble” for the pebbles.

Suppose that OPT ≤ t. Then a machine can receive at most one rock in the optimal
solution. If any connected component in GR has more than one cycle, we can immediately
declare that OPT ≥ t+ 1. If a connected component in GR has exactly one cycle, we can
direct all edges away from the cycle and remove these edges, i.e., assign the rock to the node
v to which it is directed. W.L.O.G, we can assume that this rock is part of v’s dedicated load.
(Also observe that then node v must become an isolated node). Finally, we can eliminate
cycles of length 2 in GR with the following simple reduction. If a pair of nodes u and v is
connected by two distinct rocks r1 and r2, remove the two rocks, add min(wr1, wr2) to both
u’s and v’s dedicated load, and introduce a new pebble of weight |wr1 − wr2| between u and
v. Let Ψ denote the set of orientations in GR where each node has at most one incoming
edge. We use a proposition to summarize the above discussion.

I Proposition 1. We can assume that
the rocks in R correspond to the edge set of the graph GR, and all pebbles can be assigned
to at least two machines;
the graph GR consists of disjoint trees, cycles (of length more than 2), and isolated nodes;
for each node v ∈ V , dl(v) ≤ t;
if OPT ≤ t, then the orientation of the edges in GR in the optimal assignment must be
one of those in Ψ.

3 The 2-Valued Case

In this section, we describe the core algorithm for the two job weights case, with the guessed
makespan t ≥W . Observe that when t ∈ [W, 2w), if OPT ≤ t, then every node can receive
at most one job (pebble or rock) in the optimal assignment. Hence, we can solve the problem
exactly using the standard max-flow technique. So in the following, assume that t ≥ 2w.
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Explore1

Initialize A := {v|v is hypercritical, or v is critical in a bad system}.
Set Level(v) := 0 for all nodes in A; i := 0.

While ∃v 6∈ A reachable from A do:
i := i+ 1.
Ai := {v 6∈ A|v reachable from A}.
A′i := {v 6∈ A| v is critical in a good system and ∃u ∈ Ai in the same system}.
Set Level(v) := i for all nodes in Ai and A′i.
A := A ∪ Ai ∪ A′i.

For each node v 6∈ A, set Level(v) =∞.

Figure 1 The procedure Explore1.

Furthermore, let us first assume that t < 2W (the case of t ≥ 2W will be discussed at the
end of the section). Then the rocks have weight W and the pebbles have weight w. Initially,
the pebbles are arbitrarily assigned to the nodes. Let pl(v) be the total weight of the pebbles
assigned to node v.

I Definition 2. A node v is
uncritical, if dl(v) + pl(v) ≤ 1.5t−W − w;
critical, if dl(v) + pl(v) > 1.5t−W ;
hypercritical, if dl(v) + pl(v) > 1.5t.

(Notice that it is possible that a node is neither uncritical nor critical.)

I Definition 3. Each tree, cycle, or isolated node in GR is a system. A system is bad if any
of the following conditions holds.

It is a tree and has at least two critical nodes, or
It is a cycle and has at least one critical node, or
It contains a hypercritical node.

A system that is not bad is good.

If all systems are good, then orienting the edges in each system such that every node has
at most one incoming edge gives us a solution with makespan at most 1.5t. So let assume
that there is at least one bad system.

We next define the activated set A of nodes constructively. Roughly speaking, we will
move pebbles around the nodes in A so that either there is no more bad system left, or we
argue that, in every feasible assignment, some nodes in A cannot handle their total loads,
thereby arriving at a contradiction.

In the following, if a pebble in u can be assigned to node v, we say v is reachable from u.
Node v is reachable from A if v is reachable from any node u ∈ A. A node added into A is
activated.

Informally, all nodes that cause a system to be bad are activated. A node reachable from
A is also activated. Furthermore, suppose that a system is good and it has a critical node v
(thus the system cannot be a cycle). If any other node u in the same system is activated,
then so is v. We now give the formal procedure Explore1 in Figure 1. Notice that in the
process of activating the nodes, we also define their levels, which will be used later for the
algorithm and the potential function.

The next proposition follows straightforwardly from Explore1.
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I Proposition 4. The following holds.
1. All nodes reachable from A are in A.
2. Suppose that v is reachable from u ∈ A. Then Level(v) ≤ Level(u) + 1.
3. If a node v is critical and there exists another node v′ ∈ A in the same system, then

Level(v) ≤ Level(v′).
4. Suppose that node v ∈ A has Level(v) = i > 0. Then there exists another node u ∈ A

with Level(u) = i− 1 so that either v is reachable from u, or there exists another node
v′ ∈ A reachable from u with Level(v′) = i in the same system as v and v is critical.

After Explore1, we apply the Push operation (if possible), defined as follows.

I Definition 5. Push operation: push a pebble from u∗ to v∗ if the following conditions
hold.
1. The pebble is at u∗ and it can be assigned to v∗.
2. Level(v∗) = Level(u∗) + 1.
3. v∗ is uncritical, or v∗ is in a good system that remains good with an additional weight of

w at v∗.
4. Subject to the above three conditions, choose a node u∗ so that Level(u∗) is minimized

(if there are multiple candidates, pick any).

Our algorithm can be simply described as follows.

Algorithm 1: As long as there is a bad system, apply Explore1 and Push operation
repeatedly. When there is no bad system left, return a solution with makespan at
most 1.5t. If at some point, push is no longer possible, declare that OPT ≥ t+ 1.

I Lemma 6. When there is at least one bad system and the Push operation is no longer
possible, OPT ≥ t+ 1.

Proof. Let A(S) denote the set of activated nodes in system S. Recall that Ψ denotes the
set of all orientations in GR in which each node has at most one incoming edge. We prove
the lemma via the following claim.

I Claim 7. Let S be a system.
Suppose that S is bad. Then

W · (min
ψ∈Ψ

number of rocks to A(S) according to ψ) +
∑

v∈A(S)

pl(v) +dl(v) > |A(S)|t. (1)

Suppose that S is good. Then

W ·(min
ψ∈Ψ

number of rocks to A(S) according to ψ)+
∑

v∈A(S)

pl(v)+dl(v) > |A(S)|t−w. (2)

Observe that the term |A(S)|t is the maximum total weight that all nodes in A(S) can
handle if OPT ≤ t. As pebbles owned by nodes in A can only be assigned to the nodes in A,
by the pigeonhole principle, in all orientations ψ ∈ Ψ, and all possible assignments of the
pebbles, at least one bad system S has at least the same number of pebbles in A(S) as the
current assignment, or a good system S has at least one more pebble than it currently has in
A(S). In both cases, we reach a contradiction.
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Proof of Claim 7. First observe that in all orientations in Ψ, the nodes in A(S) have to
receive at least |A(S)| − 1 rocks. If S is a cycle, then the nodes in A(S) have to receive
exactly |A(S)| rocks.

Next observe that none of the nodes in A(S) is uncritical, since otherwise, by Propos-
ition 4(4) and Definition 5(3), the Push operation would still be possible. By the same
reasoning, if S is a tree and A(S) 6= ∅, at least one node v ∈ A(S) is critical; furthermore, if
|A(S)| = 1, this node v satisfies dl(v) + pl(v) > 1.5t− w, as an additional weight of w would
make v hypercritical. Similarly, if S is an isolated node v ∈ A, then dl(v) + pl(v) > 1.5t− w.

We now prove the claim by the following case analysis.
1. Suppose that S is a good system and A(S) 6= ∅. Then either S is a tree and A(S) contains

exactly one critical (but not hypercritical) node, or S is an isolated node, or S is a cycle
and has no critical node. In the first case, if |A(S)| ≥ 2, the LHS of (2) is at least

(1.5t−W + 1) + (|A(S)| − 1)(1.5t−W − w + 1) + (|A(S)| − 1)W =
|A(S)|t+ (|A(S)| − 2)(0.5t− w + 1) + t−W − w + 2 > |A(S)|t− w,

using the fact that 0.5t ≥ w, t ≥W , and |A(S)| ≥ 2. If, on the other hand, |A(S)| = 1,
then the LHS of (2) is strictly more than

1.5t− w ≥ t = |A(S)|t,
and the same also holds for the case when S is an isolated node. Finally, in the third
case, the LHS of (2) is at least
|A(S)|(1.5t−W − w + 1) + |A(S)|W > |A(S)|t.

2. Suppose that A(S) contains at least two critical nodes, or that S is a cycle and A(S) has
at least one critical node. In both cases, S is a bad system. Furthermore, the LHS of (1)
can be lower-bounded by the same calculation as in the previous case with an extra term
of w.

3. Suppose that A(S) contains a hypercritical node. Then the system S is bad, and the
LHS of (1) is at least

(1.5t+ 1) + (|A(S)| − 1)(1.5t−W − w + 1) + (|A(S)| − 1)W =
|A(S)|t+ (|A(S)| − 1)(0.5t− w + 1) + 0.5t+ 1 > |A(S)|t,

where the inequality holds because 0.5t ≥ w. J
J

We argue that Algorithm 1 terminates in polynomial time by the aid of a potential
function, defined as

Φ =
∑
v∈A

(|V | − Level(v)) · (number of pebbles at v).

Trivially, 0 ≤ Φ ≤ |V | · |P|. The next lemma implies that Φ is monotonically decreasing
after each Push operation. The proof can be found in the full version.

I Lemma 8. For each node v ∈ V , let Level(v) and Level′(v) denote the levels before and
after a Push operation, respectively. Then Level′(v) ≥ Level(v).

Proof. We prove by contradiction. Suppose that there exist nodes x with Level′(x) <
Level(x). Choose v to be one among them with minimum Level′(v). By the choice of
v, and Definition 5(3), Level′(v) > 0 and v ∈ A after the Push operation. Thus, by
Proposition 4(4), there exists a node u with Level′(u) = Level′(v)− 1, so that after Push,

Case 1: v is reachable from u ∈ A, or
Case 2: there exists another node v′ ∈ A reachable from u ∈ A with Level′(v′) =
Level′(v) in the same system as v, and v is critical.
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Notice that by the choice of v, in both cases, Level′(u) ≥ Level(u), and u ∈ A also
before the Push operation. Let p be the pebble by which u reaches v (Case 1), or v′ (Case
2), after Push. Before the Push operation, p was at some node u′ ∈ A (u′ may be u, or p is
the pebble pushed: from u′ to u).

By Proposition 4(2), in Case 1, Level(v) ≤ Level(u′) + 1 (as v is reachable from u′

via p before Push), and Level(v′) ≤ Level(u′) + 1 in Case 2. Furthermore, if in Case 2 v
was already critical before push, then Level(v) ≤ Level(v′) by Proposition 4(3) (note that
v′ ∈ A as it is reachable from u′ ∈ A). Hence, in both cases we would have

Level(v) ≤ Level(u′) + 1 ≤ Level(u) + 1 ≤ Level′(u) + 1 = Level′(v),

a contradiction. Note that the second inequality holds no matter u = u′ or not.
Finally consider Case 2 where v was not critical before the Push operation. Then a

pebble p′ 6= p is pushed into v in the operation. Note that in this situation, v’s system is
a tree and contains no critical nodes before Push (by Definition 5(3)); in particular v′ is
not critical. Furthermore, the presence of p in u implies that Level(v′) ≤ Level(u) + 1 by
Proposition 4(2), and that v′ ∈ A by Proposition 4(1). As v′ is not critical, Level(v′) > 0,
and by Proposition 4(4) there exists a node u′′ with Level(u′′) = Level(v′)− 1 so that u′′
can reach v′ by a pebble p′′ (u′′ may be u and p′′ may be p). As

Level(v′) ≤ Level(u) + 1 ≤ Level′(u) + 1 = Level′(v) < Level(v),

the Push operation should have pushed p′′ into v′ instead of p′ into v (see Definition 5(4)),
since u′′ and v′ satisfy all the first three conditions of Definition 5. J

By Lemma 8 and the fact that a pebble is pushed to a node with higher level, the
potential Φ strictly decreases after each Push operation, implying that Algorithm 1 finishes
in polynomial time.

Approximation Ratio: When t < 2W , we apply Algorithm 1. In the case of t ≥ 2W , we
apply the algorithm of Gairing et al. [5], which either correctly reports that OPT ≥ t+ 1, or
returns an assignment with makespan at most t+W − 1 < 1.5t.

Suppose that t is the smallest number for which an assignment is returned. Then OPT ≥ t,
and our approximation ratio is bounded by 1.5t

OPT ≤ 1.5. We use a theorem to conclude this
section.

I Theorem 9. With arbitrary dedicated loads on the machines, jobs of weight W that can
be assigned to two machines, and jobs of weight w that can be assigned to any number of
machines, we can find a 1.5 approximate solution in polynomial time.

In the full version, we show that a slight modification of our algorithm yields an improved
approximation ratio of 1 + bW

2 c
W if W ≥ 2w.

4 The General Case

In this section, we describe the core algorithm for the case of arbitrary job weights. This
algorithm inherits some basic ideas from the previous section, but has several significantly
new ingredients – mainly due to the fact that the rocks now have different weights. Before
formally presenting the algorithm, let us build up intuition by looking at some examples.

For simplicity, we rescale the numbers and assume that t = W = 1 and β = 0.7. We
aim for an assignment with makespan of at most 5/3 + 0.7/3 = 1.9 or decide that OPT > 1.
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Figure 2 There are 2k + 1 nodes (the rest is repeating the same pattern). Numbers inside the
shaded circles (nodes) are their pebble load.
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Figure 3 A naive Push will oscillate the
pebble between nodes 4 and 4′.
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Figure 4 A fake orientation from node 2 to
3 causes node 4 to have an incoming edge, thus
informing node 4′ not to push the pebble.

Consider the example in Figure 2. Note that there are 2k + 1 (for some large k) nodes (the
pattern of the last two nodes repeats). Due to node 1 (which can be regarded as the analog
of a critical node in the previous section), all edges are to be directed toward the right if
we shoot for the makespan of 1.9. Suppose that there is an isolated node with the pebble
load of 2 + ε (this node can be regarded as a bad system by itself) and it has a pebble of
weight 0.7 that can be assigned to node 3, 5, 7 and so on up to 2k + 1. Clearly, we do not
want to push the pebble into any of them, as it would cause the makespan to be larger than
1.9 by whatever orientation. Rather, we should activate node 1 and send its pebbles away
with the aim of relieving the “congestion” in the current system (later we will see that this is
activation rule 1). In this example, all odd-numbered nodes are activated, and the entire set
of nodes (including even-numbered nodes) form a conflict set (which will be defined formally
later). Roughly speaking, the conflict sets contain activated nodes and the nodes that can
be reached by “backtracking” the directed edges from them. These conflict sets embody the
“congestion” in the systems.

Recall that in the previous section, if the Push operation was no longer possible, we argued
that the total load is too much for the activated nodes system by system. Analogously, in this
example, we need to argue that in all feasible orientations, the activated set of nodes (totally
k+1 of them) in this conflict set cannot handle the total load. However, if all edges are directed
toward the left, their total load is only (0.2 + ε)k+ (2− ε) + (0.7 + ε)k = 2 + 0.9k+ ε(2k− 1),
which is less than what they can handle (which is k + 1) when k is large. As a result, we are
unable to arrive at a contradiction.

To overcome this issue, we introduce another activation rule to strengthen our contradic-
tion argument. If all edges are directed to the left, on the average, each activated node has a
total load of about 0.2 + 0.7. However, each inactivated node has, on the average, a total load
of about 0.2 + 1. This motivates our activation rule 2 : if an activated node is connected by a
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“relatively light” edge to some other node in the conflict set, the latter should be activated as
well. The intuition behind is that the two nodes together will receive a relatively heavy load.
We remark that it is easy to modify this example to show that if we do not apply activation
rule 2, then we cannot hope for a 2− δ approximation for any small δ > 0. 3

Next consider the example in Figure 3. Here nodes 2, 2′, and 4′ can be regarded as the
critical nodes, and {1, 2}, {1′, 2′, 3′, 4′} are the two conflict sets. Both nodes 1 and 1′ can be
reached by an isolated node with heavy load (the bad system) with a pebble of weight 0.7.
Suppose further that node 4′ can reach node 4 by another pebble of weight 0.7. It is easy to
see that a naive Push definition will simply “oscillate” the pebble between nodes 4 and 4′,
causing the algorithm to cycle.

Intuitively, it is not right to push the pebble from 4′ into 4, as it causes the conflict set in
the left system to become bigger. Our principle of pushing a pebble should be to relieve the
congestion in one system, while not worsening the congestion in another. To cope with this
problematic case, we use fake orientations, i.e., we direct edges away from a conflict set, as
shown in Figure 4. Node 2 directs the edge toward node 3, which in turn causes the next
edge to be directed toward node 4. With the new incoming edge, node 4 now has a total
load of 1 + 0.3 + ε to handle, and the pebble thus will not be pushed from node 4′ to node 4.

4.1 Formal description of the algorithm
We inherit some terminology from the previous section. We say that v is reachable from u if
a pebble in u can be assigned to v, and that v is reachable from A if v is reachable from any
node u ∈ A. Each tree, cycle, isolated node in GR is a system. Note that there is exactly one
edge between two adjacent nodes in GR (see Proposition 1). For ease of presentation, we use
the short hand vu to refer to the edge {v, u} in GR and wvu is its weight.

The orientation of the edges in GR will be decided dynamically. If uv is directed toward
v, we call v a father of u, and u a child of v (notice that a node can have several fathers and
children). We write rl(v) to denote total weight of the rocks that are (currently) oriented
towards v, and pl(v) still denotes the total weight of the pebbles at v. An edge that is
currently un-oriented is neutral. In the beginning, all edges in GR are neutral.

A set C of nodes, called the conflict set, will be collected in the course of the algorithm.
Let D(v) := {u ∈ C : u is child of v} and F(v) := {u ∈ C : u is father of v} for any v ∈ C. A
node v ∈ C is a leaf if D(v) = ∅, and a root if F(v) = ∅. Furthermore, a node v is overloaded
if dl(v) + pl(v) + rl(v) > (5/3 + β/3)t, and a node v ∈ C is critical if there exists u ∈ F(v)
such that dl(v) + pl(v) + wvu > (5/3 + β/3)t. In other words, a node in the conflict set is
critical if it has enough load by itself (without considering incoming rocks) to “force” an
incident edge to be directed toward a father in the conflict set.

Initially, the pebbles are arbitrarily assigned to the nodes. The orientation of a subset of
the edges in GR is determined by the procedure Forced Orientations in Figure 5.

Intuitively, the procedure first finds a “source node” v, whose dedicated, pebble, and
rock load is so high that it “forces” an incident edge vu to be oriented away from v. The
orientation of this edge then propagates through the graph, i.e. edge-orientations induced by

3 Looking at this particular example, one is tempted to use the idea of activating all nodes in the conflict
set. However, such an activation rule will not work. Consider the following example: There are k + 2
nodes forming a path, and the k + 1 edges connecting them all have weight 0.95 + ε. The first node has
a pebble load of 1 and thus “forces” an orientation of the entire path (for a makespan of at most 1.9).
The next k nodes have a pebble load of 0, and the last node has a pebble load of 0.25 and is reachable
from a bad system via a pebble of weight 0.7. The conflict set is the entire path, and activating all
nodes leads to a total load of (k + 1) · (0.95 + ε) + 1 + 0.25, which is less than k + 2 for large k.
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Forced Orientations

While ∃ neutral edge vu in GR, s.t. dl(v) + pl(v) + rl(v) + wvu > (5/3 + β/3)t:
Direct vu towards u; Marked := {u}.
While ∃ neutral edge v′u′ in GR, s.t. dl(v′) + pl(v′) + rl(v′) + wv′u′ >

(5/3 + β/3)t and v′ ∈Marked:
Direct v′u′ towards u′; Marked := Marked ∪ {u′}.

Figure 5 The procedure Forced Orientations.

the direction of vu are established. Then the next “source” is found, and so on. To simplify
our proofs, we assume that ties are broken according to a fixed total order if several pairs
(v, u) satisfy the conditions of the while-loops.

The following lemma describes a basic property of the procedure Forced Orientations,
that will be used in the subsequent discussion. Its proof can be found in the full version.

I Lemma 10. Suppose that a node v becomes overloaded during Forced Orientations.
Then there exists a path u0u1 . . . ukv of neutral edges, such that dl(u0) + pl(u0) + rl(u0) +
wu0u1 > (5/3+β/3)t before the procedure, that becomes directed from u0 towards v during the
procedure (note that u0 could be v). Furthermore, other than ukv, no edge becomes directed
toward v in the procedure.

Proof. We start with a simple observation. Let ab be the first edge directed in some iteration
of the procedure’s outer while-loop; suppose from a to b. It is easy to see that up to this
moment, no edge has been directed toward a in course of the procedure. Furthermore, if
another edge a′b′ is directed in the same iteration of the outer while-loop, then there exists a
path of neutral edges, starting with ab and ending with a′b′, that becomes directed during
this iteration. This proves the first part of the lemma.

Now suppose that some node v becomes overloaded and has more than one edge directed
towards it during the procedure. Let vx and vy be the last two edges directed toward v, and
note that both, vx and vy, become directed in the same iteration of the outer while-loop
(because as soon as one of the two is directed toward v, the other edge satisfies the conditions
of the inner while-loop). Hence, there are two different paths directed towards v (with final
edges vx and vy, respectively), both of which start with the first edge that becomes directed
in this iteration of the outer while-loop. This is not possible, since every system is a tree or
a cycle, a contradiction. J

Clearly, if after the procedure Forced Orientations a node v still has a neutral incident
edge vu, then dl(v)+pl(v)+rl(v)+wvu ≤ (5/3+β/3)t. Now suppose that after the procedure,
none of the nodes is overloaded. Then orienting the neutral edges in each system in such a
way that every node has at most one more incoming edge gives us a solution with makespan
at most (5/3 + β/3)t. So assume the procedure ends with a non-empty set of overloaded
nodes. We then apply the procedure Explore2 in Figure 6.

Let us elaborate the procedure. In each round, we perform the following three tasks.

1. Add those nodes reachable from the nodes in Ai−1 into Ai in case of i > 1; or the
overloaded nodes into Ai in case of i = 0. These nodes will be referred to as Type A
nodes.

2. In the sub-procedure Conflict set construction, nodes not in the conflict set and having a
directed path to those Type A nodes in Ai are continuously added into the conflict set
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Explore2

Initialize A := ∅; C := ∅; i := 0. Call Forced Orientations.
Repeat:

If i = 0: Ai := {v|v is overloaded}.
Else Ai := {v|v 6∈ A, v is reachable from Ai−1}.
If Ai = ∅: stop.
Ci := Ai; A := A ∪ Ai; C := C ∪ Ci.

(Conflict set construction)
While ∃v 6∈ C with a father u ∈ C or ∃ neutral vu with v ∈ C do:

While ∃v 6∈ C with a father u ∈ C:
Ci := Ci ∪ {v}; C := C ∪ Ci.

If ∃ neutral vu with v ∈ C:
Direct vu towards u; Call Forced Orientations.

(Activation of nodes)
While ∃v ∈ C \ A satisfying one of the following conditions:
Rule 1 : ∃u ∈ F(v), such that dl(v) + pl(v) + wvu > (5/3 + β/3)t
Rule 2 : ∃u ∈ A ∩ (D(v) ∪ F(v)), such that wvu < (2/3 + β/3)t

Do: Ai := Ai ∪ {v}; A := A ∪ Ai.

i := i+ 1.

Figure 6 The procedure Explore2.

Ci. Furthermore, the earlier mentioned fake orientations are applied: each node v ∈ Ci,
if having an incident neutral edge vu, direct it toward u and call the procedure Forced
Orientations. It may happen that in this process, two disjoint nodes in Ci are now
connected by a directed path P , then all nodes in P along with all nodes having a path
leading to P are added into Ci (observe that all these nodes have a directed path to some
Type A node in Ai). We note that the order of fake orientations does not materially
affect the outcome of the algorithm.

3. In the next sub-procedure Activation of nodes, we use two rules to activate extra nodes
in C\A. Rule 1 activates the critical nodes; Rule 2 activates those nodes whose father
or child are already activated and they are connected by an edge of weight less than
(2/3 +β/3)t. We will refer to the former as Type B nodes and the latter as Type C nodes.

Observe that except in the initial call of Forced Orientations, no node ever becomes
overloaded in Explore2 (by Lemma 10 and the fact that every system is a tree or a cycle).
Let us define Level(v) = i if v ∈ Ai. In case v 6∈ A, let Level(v) =∞. The next proposition
summarizes some important properties of the procedure Explore2.

I Proposition 11. After the procedure Explore2, the following holds.
1. All nodes reachable from A are in A.
2. Suppose that v ∈ A is reachable from u ∈ A. Then Level(v) ≤ Level(u) + 1.
Furthermore, at the end of each round i, the following holds.
3. Every node v that can follow a directed path to a node in C := ∪iτ=0Cτ is in C. Further-

more, if a node v ∈ C has an incident edge vu with u 6∈ C, then vu is directed toward
u.

4. Each node v ∈ Ai is one of the following three types.
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(a) Type A: there exists another node u ∈ Ai−1 so that v is reachable from u, or v is
overloaded and is part of A0.

(b) Type B: v is activated via Rule 1 (hence v is critical)4, and there exists a directed
path from v to u ∈ Ai of Type A.

(c) Type C: v is activated via Rule 2, and there exists an adjacent node u ∈ ∪iτ=0Aτ so
that wvu < (2/3 + β/3)t and u ∈ D(v) ∪ F(v).

After the procedure Explore2, we apply the Push operation (if possible), defined as
follows.

I Definition 12. Push operation: push a pebble from u∗ to v∗ if the following conditions
hold (if there are multiple candidates, pick any).
1. The pebble is at u∗ and it can be assigned to v∗.
2. Level(v∗) = Level(u∗) + 1.
3. dl(v∗) + pl(v∗) + rl(v∗) ≤ (5/3− 2/3 · β)t.
4. D(v∗) = ∅, or dl(v∗) + pl(v∗) + wv∗u ≤ (5/3− 2/3 · β)t for all u ∈ F(v).

Definition 12(3) is meant to make sure that v∗ does not become overloaded after receiving
a new pebble (whose weight can be as heavy as βt). Definition 12(4) says either v∗ is a leaf,
or adding a pebble with weight as heavy as βt does not cause v∗ to become critical.

Algorithm 2: Apply Explore2. If it ends with A0 = ∅, return a solution with
makespan at most (5/3 + β/3)t. Otherwise, apply Push. If push is impossible,
declare that OPT ≥ t+ 1. Un-orient all edges in GR and repeat this process.

I Lemma 13. When there is at least one overloaded node and the Push operation is no
longer possible, OPT ≥ t+ 1.

I Lemma 14. For each node v ∈ V , let Level(v) and Level′(v) denote the levels before
and after a Push operation, respectively. Then Level′(v) ≥ Level(v).

The proofs of the preceding two lemmas can be found in the full version. We again use
the potential function

Φ =
∑
v∈A

(|V | − Level(v)) · (number of pebbles at v)

to argue the polynomial running time of Algorithm 2. Trivially, 0 ≤ Φ ≤ |V |·|P|. Furthermore,
by Lemma 14 and the fact that a pebble is pushed to a node with higher level, the potential
Φ strictly decreases after each Push operation. This implies that Algorithm 2 finishes in
polynomial time.

We can therefore conclude:

I Theorem 15. Let β ∈ [4/7, 1). With arbitrary dedicated loads on the machines, if jobs of
weight greater than βW can be assigned to only two machines, and jobs of weight at most βW
can be assigned to any number of machines, we can find a 5/3 + β/3 approximate solution in
polynomial time.

4 For simplicity, if a node can be activated by both Rule 1 and Rule 2, we assume it is activated by Rule 1.
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