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Abstract
The Temp Secretary Problem was recently introduced by Fiat et al. [11]. It is a generalization of
the Secretary Problem, in which commitments are temporary for a fixed duration. We present a
simple online algorithm with improved performance guarantees for cases already considered by
Fiat et al. and give competitive ratios for new generalizations of the problem. In the classical
setting, where candidates have identical contract durations γ � 1 and we are allowed to hire up
to B candidates simultaneously, our algorithm is (1/2 − O(√γ))-competitive. For large B, the
bound improves to 1−O (1/

√
B)−O(√γ).

Furthermore we generalize the problem from cardinality constraints towards general packing
constraints. We achieve a competitive ratio of 1−O

(√
(1+log d+logB)/B

)
−O(√γ), where d is the

sparsity of the constraint matrix and B is generalized to the capacity ratio of linear constraints.
Additionally we extend the problem towards arbitrary hiring durations.

Our algorithmic approach is a relaxation that aggregates all temporal constraints into a non-
temporal constraint. Then we apply a linear scaling algorithm that, on every arrival, computes
a tentative solution on the input that is known up to this point. This tentative solution uses the
non-temporal, relaxed constraints scaled down linearly by the amount of time that has already
passed.
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1 Introduction

Online resource allocation problems have a notion of time: Choices have to be made at
some point in time without knowing the future input. Each decision may make a future one
infeasible. The standard example of such a setting is the secretary problem where candidates
of different value arrive over time. After each arrival, the algorithm has to decide whether to
permanently accept or reject this candidate. Every decision is final. That is, once rejected a
candidate will never come back again. Once a candidate is accepted, no other candidate can
be accepted anymore.
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In many practical applications, however, commitments are not eternal but affect only a
finite time horizon. They may limit options for the upcoming days but not for the rest of
the year or even longer. Nevertheless, even with such an assumption, traditional worst-case
competitive analysis is typically too strong a benchmark. It is trivial to see that for the
respective version of the secretary problem no algorithm achieves a bounded competitive
ratio.

Therefore, we consider a partly stochastic model introduced by Fiat et al. [11]. First an
adversary chooses which items will arrive. However, it does not determine the arrival times,
which are instead drawn from a probability distribution, typically the uniform distribution
on [0, 1]. In more detail, in the temp secretary problem, an adversary defines values of items
v1, . . . , vn. Afterwards, arrival times τj are drawn independently uniformly from [0, 1]. As
time proceeds, the values and arrival times are revealed to the algorithm. Upon each arrival,
the algorithm has to decide whether to accept or to reject the respective item. Each item is
accepted for a duration of γ, which is assumed to be much smaller than 1. At any point in
time t at most B items may overlap, that is, during time t− γ and t at most B items may
be accepted.

The objective is to maximize
∑
j∈ALG vj , where ALG ⊆ [n] denotes the selection by

the algorithm. By OPT we denote the optimal selection OPT ⊆ [n], which maximizes∑
j∈OPT vj . As the arrival times τ1, . . . , τn are random, both ALG and OPT are random

variables. We evaluate the performance of an algorithm by its competitive ratio, defined as
E
[∑

j∈ALG vj

]
/E
[∑

j∈OPT vj

]
.

1.1 Our Contribution
We introduce a new algorithmic approach to online packing problems with temporal con-
straints. As key idea we consider a relaxation to OPT by removing the temporal constraints
and exchanging them with global ones. In the special case of the temp secretary problem, we
exploit that for every realization of the arrival dates τ1, . . . , τn the optimal offline solution
OPT never contains more that Bd1/γe elements. Therefore, we exchange the constraints by
only requiring Bd1/γe items to be picked throughout the process. An online solution to this
relaxation can be found using algorithms for online linear packing problems. It then remains
to derive a solution to the original constraints.

For the temp secretary problem, this approach allows us to derive a light-weight, easy to
state algorithm. We show it to be 1

2
(
1−O(√γ)

)
-competitive for all values of B. Furthermore,

for large values of B, a different analysis shows a better competitive ratio of 1−O (1/
√
B)−

O(√γ). The previous best results for this setting were 1
2

(
1−O

(√
γ ln(1/γ)

))
for B = 1

and 1−O
(√

(lnB)/B
)
−O

(√
γ ln(1/γ)

)
for large values of B, both by Fiat et al. [11]. Note

that 1/2 is known to be an asymptotic upper bound to the competitive ratio for B = 1 [11].
We also generalize the cardinality constraint in the temp secretary problem to arbitrary

linear constraints. This enables us to capture more general combinatorial problems, like
multiple knapsack constraints that have to be fulfilled simultaneously. For example, we could
model scenarios in which the algorithm has to select production orders online in such a way
that none of the involved machines is overloaded. Our algorithm is 1−O

(√
(1+log d+logB)/B

)
−

O(√γ)-competitive, where d denotes the maximum number of constraints a single item is
contained in. By B we denote the capacity ratio, which is defined to be the minimum ratio
of a constraint’s capacity and the usage of a single item. For non-timed constraints, there
are lower bounds in the order of 1− O

(√
logm/B

)
, where m is the number of constraints

and d = m [2, 6].
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Our algorithm also has a natural generalization to settings with items of different lengths.
For the temp secretary problem, we show a competitive ratio of 1

4 −Θ
(√
γ
)
.

The main technical contribution are bounds on the probability that tentative selections
made by the algorithm are actually feasible. In related work, it is usually enough to pretend
all previous tentative choices were actually feasible. As these can be considered independent,
a concentration bound can be applied. These techniques are apparently not strong enough
here and we have to bound the actual commitments. We do so by analyzing coupled random
variables that provide an upper bound on the random process. For the case of large B, this
analysis is based on a symmetric random walk, representing arrivals and departures of items.

1.2 Related Work
Secretary problems have gained a lot of attention over the last decade, even though the most
famous variant was already introduced and solved in the 1960s [12, 21, 7].

The most famous combinatorial generalization is the matroid secretary problem, intro-
duced by Babaioff et al [4]. As of now, the big question of whether there is a constant
competitive algorithm for the matroid secretary problem is still open. The best known algo-
rithms for the problem are O(log log ρ)-competitive [10, 20]. Constant competitive algorithms
are known for most special cases, e.g. there is a 1/2e-competitive algorithm for graphical
matroids [19], a 1/9.6-competitive algorithm for laminar matroids [23] and there is an optimal
1/e-competitive algorithm for transversal matroids [16]. For k-uniform matroids, the problem
is also known as multiple-choice secretary problem and was solved by Kleinberg, who gave a
(1−O(1/

√
k))-competitive algorithm and showed that this is optimal [18].

Furthermore, online models with random arrival order have been used for online packing
problems. The knapsack secretary problem was introduced by Babaioff et al. [3] and the
currently best known competitive ratio is 1/8.1 [17]. This problem was generalized towards
general packing linear programs with special attention on the case with large capacities. There
are several known algorithms [1, 13, 17] that feature a competitive ratio of 1−O

(√
logm/B

)
,

where m is the total number of constraints and B is a lower bound on the capacities of the
constraints. These results match the lower bound by Agrawal et al.[2] and Devanur et al. [6]
for the random order and i.i.d. model respectively. Note that the result in [17] is stronger in
case of sparse matrices: If the maximal number of non-zero entries in any column is bounded
by d, the guarantee only depends on d rather than m.

Another important way of generalizing the secretary problem is the submodular secretary
problem introduced by Bateni et al. [5]. The problem generalizes the multiple-choice secretary
problem towards submodular objective functions. The currently best known competitive
ratio is e−1

e2+e by Feldmann et al. [9]. For submodular, transversal matroids the best known
algorithm is 1/95-competitive [23] and for linear packing constraints the best algorithm is
known to be Ω(1/m)-competitive [5].

The temp secretary problem that we consider and generalize in this paper was introduced
in 2015 by Fiat et al. [11]. It introduces temporal constraints to the field of online algorithms
with random order in a way that had only been considered before in the worst-case model for
online interval scheduling [22, 25]. Fiat et al. give an algorithm that is inspired by Kleinbergs
algorithm for the multiple-choice secretary problem. Their algorithm iteratively refines the
sample logn times, while our algorithm updates the sample in every round. Both algorithm
are closely related, but the one presented here can be described much more compact and
allows for a more simple analysis.

Fiat et al. achieve a competitive ratio of 1/(1+kγ)
(

1− 5/
√
k − 7.4

√
γ ln(1/γ)

)
for the case

where at most one candidate can be hired simultaneously and the sum of hires cannot

ESA 2016
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Algorithm 1: Scaling Algorithm for length γ and capacity B
for every arriving item j do

Set t := τj ; // arrival time of j

Let S(t) be the btB/γc highest-valued items j′ with τj′ ≤ t;
if j ∈ S(t) then // if among best items

if S ∪ {j} is a feasible schedule then // and if feasible
Set S := S ∪ {j}; // then select j

exceed the budget k. To compare this result to ours, consider the unconstrained budget
case k = 1/γ. In this case, they achieve a competitive ratio of 1

2

(
1−O

(√
γ ln(1/γ)

))
.

Additionally, they show a lower bound 1+γ
2 for this case, thus both algorithms, ours and

theirs, are asymptotically tight for γ → 0. For up to B concurrent hires, their algorithm is
1 − Θ

(√
(lnB)/B

)
− Θ

(√
γ ln(1/γ)

)
-competitive. Additionally, they describe a black-box

procedure that transforms any algorithm for a combinatorial secretary problem into an
algorithm for the respective combinatorial temp secretary problem. This transformation
loses a factor of 1/2 in the competitive ratio, but also works for general arrival distributions
as long as all items have an identical duration.

2 The Temp Secretary Problem

As our first result, we present a simplified and improved algorithm for the temp secretary
problem. Here, an adversary chooses a value vj for each of the n items and after values have
been determined arrival times τ1, . . . , τn are drawn independently uniformly at random from
[0, 1]. Each item when selected stays active for γ time. At any point in time, at most B
elements may be active simultaneously.

The optimal selection OPT ⊆ [n] is a random variable that depends on the arrival
times. However, pointwise we have |OPT| ≤ Bd1/γe for any realization of the arrival times
τ1, . . . , τn. Therefore, the expected value of OPT can be upper-bounded by the value of the
Bd1/γe highest-valued elements, which we denote by OPT∗ ⊆ [n].

Algorithm 1 is inspired by online approximation algorithms for OPT∗, particularly [17].
If item j arrives at time t, then we determine whether it is among the btB/γc highest-valued
items seen so far, called S(t). In this case, we call it tentatively selected. If it is also feasible
to accept j, we do so. Otherwise, we reject j.

Note that in expectation at time t we have seen a t fraction of OPT∗, so approximately
tB/γ items from OPT∗. The set S(t) approximates this set by including the best btB/γc up
to this point.

We give two performance bounds for this algorithm. First, in Section 2.2, we show that
it is 1

2
(
1−O(√γ)

)
-competitive for all values of B. Afterwards, in Section 2.3, we perform a

different analysis for large values of B giving a competitive ratio of 1−O (1/
√
B)−O(√γ).

2.1 Analysis Preliminaries

The analyses for both cases follow a similar pattern. First, we analyze the expected value of
the set S(t) and thereby the expected value of the tentative selection. Then, we bound the
probability that such a tentative selection is feasible.
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For analysis purposes, we discretize time into N uniform intervals of length 1/N, which
we call rounds. If N � n, then the probability that two items fall into the same interval is
negligible. Also, if N is large enough, we can effectively assume that all items arrive at times
which are multiples of 1/N because the value of btB/γc stays constant in almost all intervals.
From time to time, it will be helpful to fill up rounds in which no actual item arrives with
dummy items that do not have value but also do not use space. The order of these items and
dummy items is then a uniformly drawn permutation. Furthermore, to avoid cumbersome
notation, we assume that γN and √γN are integer. We overload notation and write S(`)

instead of S(`/N).
To discuss the probability of feasibility, we introduce 0/1 random variables (C`)`∈[N ] and

(F`)`∈[N ]. We set C` = 1 if and only if a tentative selection is made in round `. Furthermore,
let F` = 1 for every round ` in which it would be feasible to actually select an item. Finally,
let V` denote the value of the item tentatively selected in round ` if any, otherwise set V` = 0.
So formally V` = vjC` if item i arrives in round `. The value achieved by the algorithm is
given as

∑
j∈ALG vj =

∑N
`=1 V`F` =

∑N
`=1 V`C`F`.

Observe that the value of a single random variable C` is already fully determined by the
set S(`) and which of these items arrives in round `. Neither the mutual order in rounds
1, . . . , ` − 1 nor in ` + 1, . . . , N matters. Furthermore, conditioned on any set S(`) and
any order in rounds ` + 1, . . . , N , the probability of C` = 1 is at most |S

(`)|
` ≤ B

γN . As a
consequence, for every sequence of values a`′ ∈ {0, 1} for ` < `′ ≤ N , we have

Pr [C` = 1 | C`′ = a`′∀` < `′ ≤ N ] ≤ B

γN
.

Note that there are still complicated dependencies among these random variables. For
example, at most n of them can be 1. Therefore, based on the above observation, we define
coupled random variables that dominate the actual ones but are easier to deal with. We
introduce random variables (C̃`)`∈[N ] such that pointwise C̃` ≥ C` for which the above
relation holds with equality. To define these formally, we iterate over the rounds from large
to small index. Conditioned on any value of the variables C̃`+1 = a`+1, . . . , C̃N = aN , the
probability p = Pr

[
C` = 1

∣∣ C̃`′ = a`′∀` < `′ ≤ N
]
is always at most B

γN . Now let C̃` = 1

whenever C` = 1 and additionally C̃` = 1 with probability
B
γN−p
1−p if C` = 0. This guarantees

Pr
[
C̃` = 1

∣∣ C̃`′ = a`′∀` < `′ ≤ N
]

= B

γN
,

and therefore, by induction on all subsets of [N ], the random variables C̃1, . . . , C̃N are
independent and identically distributed. Note that C̃` = 1 whenever C` = 1. So therefore
also

∑
j∈ALG vj =

∑n
`=1 V`C̃`F`.

Next, we can bound the expected value of the items contained in the set S(`).

I Lemma 1. For ` ≥ 2
√

γ
BN

E

 ∑
j∈S(`)

vj

 ≥ (1− 9
√

1
`
N ·

B
γ

)
1− 1

2
√

γ
B

1 + γ

`

N

∑
j∈OPT∗

vj .

The general idea is as follows. In round `, we have seen an `
N -fraction of OPT∗ in

expectation, so ignoring rounding these are `
N
B
γ items in expectation. This approximately

matches the size of S(`). The set S(`) has a slightly smaller value due to variance and
rounding. The first two factors compensate these effects.

ESA 2016
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For the proof, we show that the non-temporal relaxation described here corresponds to a
packing linear program and then we apply a result in [17]. For the detailed proof, please
refer to the full version.

2.2 General Analysis
We are now ready to analyze the algorithm.

I Theorem 2. Algorithm 1 is at least 1
2
(
1− 7

2
√
γ − 37

2
√

γ
B − γ

)
-competitive for the temp

secretary problem with duration γ for all items.

The key ingredient to the analysis is a bound on the probability that a tentative selection
is feasible.

I Lemma 3. For all L, we have

E

L+√γN−1∑
`=L

C̃`F`

 ≥ (1
2 −
√
γ − 1

4√γN

)
E

L+√γN−1∑
`=L

C̃`

 .

Proof. The crux when proving this lemma is that that F` depends on C̃` in a non-trivial way.
Therefore, we instead introduce variables F̃` defined as follows. We set F̃` = 1 for ` < L and
F̃` = max{0, 1− 1

B

∑γN
i=1 C̃`−iF̃`−i} for ` ≥ L. The motivation behind this definition is that

F` = 1 if and only if it is feasible to select an item in round `. So therefore, F` = 1 if and
only if

∑γN
i=1 C`−iF`−i < B, implying F` ≥ max{0, 1 − 1

B

∑γN
i=1 C`−iF`−i}. The definition

of F̃` captures this last bound in a pessimistic way. Note that due to the independence of
(C̃`)`∈[N ], C̃` and F̃` are now independent.

We first show that pointwise
∑L+k
`=L C̃`F` ≥

∑L+k
`=L C̃`F̃` for all k ∈ Z by induction on k.

Observe that the statement is trivial for k < 0 because then both sums are empty. So, let us
consider k ≥ 0 for the induction step. If C̃L+k = 0 or F̃L+k = 0, then also the statement
follows trivially from the induction hypothesis. The only interesting case is C̃L+k = 1 and
F̃L+k > 0. In this case, we get

L+k∑
`=L

C̃`F̃` = F̃L+k +
L+k−1∑
`=L

C̃`F̃` = 1− 1
B

γN∑
i=1

C̃L+k−iF̃L+k−i +
L+k−1∑
`=L

C̃`F̃`

= 1− 1
B

L−1∑
`=L+k−γN

C̃`F̃` +
(

1− 1
B

) L+k−1∑
`=L

C̃`F̃` + 1
B

L+k−γN−1∑
`=L

C̃`F̃` .

At this point, we can apply the induction hypothesis, which states that in the second and
third sum we can replace all occurrences of F̃` by F` to get a lower bound. Furthermore,
1 = F̃` ≥ F` for ` ≤ L− 1. So, we can do the same in the first sum. Therefore

L+k∑
`=L

C̃`F̃` ≤ 1− 1
B

L−1∑
`=L+k−γN

C̃`F` +
(

1− 1
B

) L+k−1∑
`=L

C̃`F` + 1
B

L+k−γN−1∑
`=L

C̃`F`

= 1− 1
B

γN∑
i=1

C̃L+k−iFL+k−i +
L+k−1∑
`=L

C̃`F` .

Now, we use that FL+k = 1 if and only if less than B items have been selected in
rounds L + k − γN to L + k − 1. This gives us FL+k ≥ 1 − 1

B

∑γN
i=1 CL+k−iFL+k−i ≥
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1− 1
B

∑γN
i=1 C̃L+k−iFL+k−i. We immediately get

L+k∑
`=L

C̃`F̃` ≤ C̃L+kFL+k +
L+k−1∑
`=L

C̃`F` .

Now, it only remains to bound E
[∑L+√γN−1

`=L C̃`F̃`

]
=
∑L+√γN−1
`=L E

[
C̃`
]

E
[
F̃`
]
. By

definition E
[
C̃`
]

= B
γN for every `, it is enough to show that 1√

γN

∑L+√γN−1
`=L E

[
F̃`
]
≥(

1
2 −
√
γ − 1

4√γN

)
.

Define a` = E
[
F̃`
]
. We have a` ≥ 1 − 1

B

∑γN
i=1 E

[
C̃`−i

]
a`−i = 1 − 1

γN

∑γN
i=1 a`−i for

` ≥ L and a` = 1 for ` < L. Averaging over the rounds L, . . . , L+√γN − 1 we get

1
√
γN

L+√γN−1∑
`=L

a` ≥
1
√
γN

L+√γN−1∑
`=L

(
1− 1

γN

γN∑
i=1

a`−i

)

= 1
√
γN

√γN − 1
γN

L+√γN−1∑
`=L

γN∑
i=1

a`−i

 .

Here, we change the order of summation and split the inner sum into two parts which we
bound separately

1
√
γN

L+√γN−1∑
`=L

a` ≥
1
√
γN

√γN − 1
γN

γN∑
i=1

L−1+i∑
`=L

a`−i +
L+√γN−1∑
`=L+i

a`−i

 .

Since a`−i ≤ 1, we bound the first sum with
∑L−1+i
`=L a`−i ≤ i. Furthermore, as a` ≥ 0 for

all `, we can pad the second sum so that
∑L+√γN−1
`=L+i a`−i ≤

∑L+√γN−1
`=L a`, thus we have

1
γN

∑γN
i=1
∑L+√γN−1
`=L+i a`−i ≤

∑L+√γN−1
`=L a`.

We use both bounds and get

1
√
γN

L+√γN−1∑
`=L

a` ≥
1
√
γN

√γN − 1
γN

γN∑
i=1

i−
L+√γN−1∑

`=L
a`

 .

This implies

1
√
γN

L+√γN−1∑
`=L

a` = 1
2 −

γN + 1
4√γN = 1

2 −
√
γ

4 −
1

4√γN . J

Now we have all parts required to prove the theorem.

Proof of Theorem 2. If in round ` an item is tentatively selected, let V` denote its value.
Otherwise set V` = 0. Our task is to bound the sum of E [V`F`] = E

[
V`C̃`F`

]
.

Fixing which items come in rounds 1, . . . , ` fixes the set S(`). As any order among these
items and the respective dummy items is still equally likely, the item coming in round ` can
be considered being drawn uniformly at random. This way, by Lemma 1, we have for all
` ≥ 2

√
γ
BN

E [V`] ≥
1
`

E

 ∑
j∈S(`)

vi

 ≥ (1− 9
√

1
`
N ·

B
γ

)
1
N

1− 1
2
√

γ
B

1 + γ

∑
j∈OPT∗

vj .

ESA 2016
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Next, observe that V` given that C̃` = 1 is independent of F`. This is due to the fact
that the algorithm is comparison based. For this reason, the course of events in rounds
1, . . . , `− 1 is independent of the identity of the item from S(`) that actually arrives in round
`. Therefore the events leading up to round ` are identical, although they might involve
different items. Also exploiting that V` = 0 if C̃` = 0, we get

E
[
V`C̃`F`

]
= Pr

[
C̃` = 1, F` = 1

]
E
[
V`
∣∣ C̃` = 1, F` = 1

]
= Pr

[
C̃` = 1, F` = 1

]
E
[
V`
∣∣ C̃` = 1

]
=

Pr
[
C̃` = 1, F` = 1

]
Pr
[
C̃` = 1

] E [V`] .

To get the bound, we split the input sequence into blocks of length √γN and apply
Lemma 3 on each of these blocks.

E

 ∑
j∈ALG

vj

 ≥ b 1√
γ
c−1∑

k=2

(k+1)√γN∑
`=k√γN+1

E
[
V`C̃`F`

]

≥
b 1√

γ
c−1∑

k=2

(k+1)√γN∑
`=k√γN+1

Pr
[
C̃` = 1, F` = 1

]
Pr
[
C̃` = 1

] (
1− 9

√
1

`
N ·

B
γ

)
1
N

1− 1
2
√

γ
B

1 + γ

∑
j∈OPT∗

vj

≥
(

1
2 −

7
4
√
γ − 37

4

√
γ

B
− γ

2 −
1

4√γN

) ∑
j∈OPT∗

vj .

Details on the calculations can be found in the full version. J

2.3 Improved Analysis for Large Capacities
For the same algorithm, we can show a better competitive ratio if B is large, converging to 1
asymptotically.

I Theorem 4. Algorithm 1 is at least
(

1− 4√
B
− 41

2
√

γ
B − 3γ −O

( 1
B

))
-competitive for the

temp secretary problem with duration γ for all items.
The proof of this theorem is very similar to the proof of Theorem 2. Again, we will bound

the number of rounds in which C̃` = 1 but F` = 0. The main difference is that we consider
blocks of γN rounds each. In this case, the duration of an item corresponds to the length of
the block. Therefore, no more than B items can be feasibly selected in any block.

If B items are selected at the beginning of such a block, then it is feasible to select one
item for every item that times out. We use this concept and construct a symmetric random
walk. The maximum of this random walk upper bounds the number of failure events, in
which the algorithm performs a tentative selection before sufficiently many previous items
have timed out.

In contrast to Lemma 3, the expected ratio of failure events to successful selections of
item is decreasing in B and therefore our competitive ratio in Theorem 4 tends to 1 as B
increases.
I Lemma 5. The expected number of rounds ` ∈ {L, . . . , L+ γN − 1} in which C̃` = 1 but
F` = 0 is

∣∣{` ∣∣ C̃` = 1 ∧ F` = 0
}∣∣ ≤ √B + π2

6
√
B + 2

√
4B
3π +O(1) ≤ 4

√
B +O(1).

Proof. We claim that the number of rounds ` ∈ {L, . . . , L+ γN − 1} for which C̃` = 1 but
F` = 0 is bounded by

Q := max
L≤`<L+γN

∑̀
r=L

C̃r −
`−γN∑

r=L−γN
C̃r

+

∣∣∣∣∣∣
L−1∑

r=L−γN
C̃r −B

∣∣∣∣∣∣ .
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To show this, we define an alternative sequence (C̃ ′r)r∈[N ] by setting C̃r = C̃ ′r for every r
except for the first Q occurrences of C̃r = 1 after L, where we set C̃ ′r = 0. Consider an ` ≥ L
such that C̃ ′` = 1. Now observe that

∑̀
r=`−γN

C̃ ′r =
∑̀

r=`−γN
C̃r −Q ≤

L−1∑
r=L−γN

C̃r −

∣∣∣∣∣∣
L−1∑

r=L−γN
C̃r −B

∣∣∣∣∣∣ ≤ B .

This implies that
∑L+γN−1
r=L C̃rFr ≥

∑L+γN−1
r=L C̃ ′r because every case of C̃r = 1 but Fr = 0

can be matched to a case where C̃r = 1 but C̃ ′r = 0. So, to show the lemma, it only remains
to show that E [Q] = O(

√
B).

First, observe that
∑L−1
r=L−γN C̃r is drawn from a binomial distribution with γN trials

and probability B
γN . Therefore, its expectation is µ = B and its standard deviation is

σ =
√
B − B

γN ≤
√
B. Thus by Chebyshev inequality, we get

E

∣∣∣∣∣∣
L−1∑

r=L−γN
C̃r −B

∣∣∣∣∣∣
 ≤ σ+

∞∑
k=1

E

∣∣∣∣∣∣
L−1∑

r=L−γN
C̃r −B

∣∣∣∣∣∣ ≥ kσ
σ ≤ σ+

∞∑
k=1

σ

k2 =
√
B+π2

6
√
B.

So, it only remains to show that

E

 max
L≤`<L+γN

∑̀
r=L

C̃r −
`−γN∑

r=L−γN
C̃r

 ≤ 2
√

4B
3π +O(1) .

Let C̃ ′′` ∈ {−1, 0, 1} be a random variable with C̃ ′′` = C̃` − C̃`−γN . Each C̃ ′′` takes the
values 1 and −1 with probability p = B

γN (1− B
γN ) each and 0 with the remaining probability

1−2p =
(

1− 2B
γN + 2( B

γN )2
)
. Furthermore, because the C̃` random variables are independent,

C̃ ′′L, . . . , C̃
′′
L+γN−1 also are.

We interpret this random process on the C̃ ′′` as a random walk of length γN that moves
up or down with probability p and stays the same with probability 1− 2p. In the next part
of the proof, we are going to show that the maximal deviation of this random walk is in
Θ(
√
B). To this end, we condition our random walk on the number of zeros that occur. The

remaining random walk is symmetric, thus results from the literature apply.
It has been shown that, for a symmetric random walk that starts in position 0 and does

k steps, the expected final position is E [Sk] =
√

2k
3π +O(k− 1

2 ) [14]. Furthermore, it is well
known that the expected maximal deviation during such a random walk is E [Mk] ≤ 2E [Sk].
Now, let K be the number of times C̃ ′′r 6= 0 for r ∈ {L, . . . , L+ γN − 1}. Then we have

E

 max
L≤`<L+γN

∑̀
r=L

C̃r −
`−γN∑

r=L−γN
C̃r

 ≤ γN∑
k=0

E [Mk] ·Pr [K = k]

≤
γN∑
k=0

2E [Sk] ·Pr [K = k] ≤ E
[

2
√

2K
3π +O(K− 1

2 )
]
≤ 2
√

2E [K]
3π +O(1)

= 2
√

4B
3π +O(1) . J

We use the same proof structure as in the previous proof of Theorem 2, but now we
replace Lemma 3 with Lemma 5.
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Proof of Theorem 4. Again, if in round ` an item is tentatively selected, let V` denote its
value. Otherwise set V` = 0. By the same arguments as in the proof of Theorem 2, we have

E
[
V`C̃`F`

]
=

Pr
[
C̃` = 1, F` = 1

]
Pr
[
C̃` = 1

] E [V`] .

To get the bound, we split the input sequence into blocks of length γN and ignore the
blocks in which there is a round for which Lemma 1 does not hold.

E

 ∑
j∈ALG

vj

 ≥ b 1
γ c−1∑

k=
⌈

2
√

1
γB

⌉
(k+1)γN∑
`=kγN+1

E
[
V`C̃`F`

]

≥
b 1
γ c−1∑

k=
⌈

2
√

1
γB

⌉
(k+1)γN∑
`=kγN+1

Pr
[
C̃` = 1, F` = 1

]
Pr
[
C̃` = 1

] (
1− 9

√
1

`
N ·

B
γ

)
· 1
N

1− 1
2
√

γ
B

1 + γ

∑
j∈OPT∗

vj

≥
(

1− 4√
B
− 41

2

√
γ

B
− 3γ −O

(
1
B

)) ∑
j∈OPT∗

vj .

The missing details on the calculations are included in the full version. J

3 The Temp Secretary Problem with Packing Constraints

Next, we turn to the temp secretary with general linear packing constraints. This generalizes
the timed cardinality constraint of the temp secretary problem towards multiple knapsack
constraints. Therefore we can model, e.g., production capacities of different types. Now, the
problem is not about selecting a set of best candidates, but a set of contracts with different
resource demands such that the value of the selected contracts is maximized and all demands
are fulfilled at any point in time.

We assume that the items, or possible contracts, that arrive over time are variables
of a packing LP that have to be set immediately and irrevocably at time of arrival. In
more detail, we assume that an adversary defines an n×m constraint matrix A, a capacity
vector b, and an objective function vector v. Again, for each variable xj an arrival time is
drawn independently uniformly at random from [0, 1]. We now have to find an assignment
x̂j ∈ {0, 1} for all j ∈ [n], with the property that for every t ∈ [0, 1], the set of variables that
arrive between t and t+ γ solve the packing LP. That is, for every t, we need Ax′ ≤ b, where
x′j = x̂j if tj ∈ [t, t+ γ] and 0 otherwise. The objective is to maximize vT x̂. So, x̂ represents
the aggregate vector of which items are selected whenever they are present in the system.
Therefore, the temp secretary problem can be captured by having only one constraint with
all coefficients being 1 and the capacity being the cardinality bound. As the output of our
algorithm will be integral, this algorithm also solved the temp secretary problem.

We assume that the matrix A is sparse. That is, each column of A contains at most d
non-zero entries. Furthermore, we assume that the capacities in each constraint are large
compared to the respective coefficients in A. Our bound will depend on the capacity ratio B,
defined as B = mini∈[m]

bi
max j∈[n]ai,j . When modeling the temp secretary problem as above,

this capacity ratio coincides with the capacity bound.
Again, we use a relaxation without temporal constraints like the one in Section 2. In

this case, it reads max vTx s.t. Ax ≤ d 1
γ eb, 0 ≤ xj ≤ 1 for all j ∈ [n]. While our algorithm

chooses online which items to select and which to reject subject to the temporal constraints,
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Algorithm 2: Scaling Algorithm for packing constraints
for every arriving item j ∈ [n] do

Set t := τj ; // arrival time of j

Let x(t) be an optimal solution to the LP max vTx s.t. Ax ≤ t(1− ε) bγ , 0 ≤ xj′ ≤ 1
for j′ ∈ U≤t; // optimal offline solution

x̂
(t)
j′ =

{
1, with prob. x(t)

j′ if j′ = j;
0, otherwise;

// randomized rounding

if x̂+ x̂(t) is feasible with respect to temporal constraints then
Set x̂ := x̂+ x̂(t); // make allocation to j permanent

our point of comparison is the best fractional solution to this LP relaxation. We use an
algorithm similar to the one presented in [17] to solve the relaxed problem. We scale down
the aggregated constraints slightly and solve the resulting linear packing problem. Next, we
use randomized rounding to transform the fractional solution into our integral, tentative
solution. At this point, the algorithm behaves exactly like the one in Section 2. If the item
that just arrived is part of the tentative solution and it is feasible to select it, then the
algorithm adds it to the online solution. In contrast to the analysis in [17], we have to show
that temporal constraints are likely fulfilled although the algorithm only operates on the
relaxed ones.

To define the algorithm, let U≤t be the set of variables U≤t ⊆ [n] that arrive before time
t. Let ε =

√
6 (1+log d+logB)

B .
This algorithm can also be extended to the case in which there are not only timed

constraints but also global ones. Additionally, it can be applied when multiple variables
arrive at a time like in [17]. We omit these generalizations because the techniques are identical
to the ones presented here, but correct notation gets a lot more involved.

I Theorem 6. Algorithm 2 is 1
1+γ −O

(√
1+log d+logB

B

)
-competitive for the temp secretary

problem with linear packing constraints.

Please note that this algorithm is invariant to scaling constraints and therefore we can
assume without loss of generality that maxj∈[n] ai,j ≤ 1 and bi ≥ B for every constraint
i ∈ [m].

For the proof, we will first bound the expected consumption of the tentative solution
of the algorithm. Then we will use a Chernoff bound to bound the probability that last
if -clause of the algorithm is violated for a single constraint. Finally, we will aggregate the
probabilities for all constraints in the relaxation.

We discretize time, like in Section 2, with arbitrary precision such that every discrete
time interval only contains a single item of the input. We have N � n rounds, spanning time
1
N each. For each of the N − n rounds in which no variable arrives, we introduce a dummy
variable with all coefficients zero. These N variables can now be considered being assigned
to the rounds by a uniformly drawn permutation. In the proofs, we overload notation and
write x(`) = x(t) and U≤` = U≤t if t lies within round `.

I Lemma 7. Let U<` ⊆ [n] be the set of items that arrive before round `. Then, conditioned
on this set, the sum of previous tentative allocations violates any constraint i ∈ [m] with
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probability at most

Pr

 `−1∑
`′=`−γN

Ax̂(`′)


i

> bi − 1

∣∣∣∣∣∣ U<`
 ≤ 1

dB

if ε =
√

6 1+log d+logB
B ≤ 1

2 .

We describe the capacity used by the tentative selection through random variables
X`′ =

(
Ax̂(`′)

)
i
. These random variables are not independent but 1-correlated as defined

by Panconesi and Srinivasan [24] and this allows us to apply a Chernoff bound to proof the
lemma. Details can be found in the full version.

Proof of Theorem 6. We can assume without loss of generality that
√

6 1+log d+logB
B ≤ 1

2
because otherwise the theorem statement follows trivially.

First, we bound the value of the tentative allocation performed in round ` ≥ 2
√

1+ln d
B N

using a result in [17]. Compared to [17] our non-temporal relaxation is scaled down by an
additional factor of 1− ε this gives us

E
[
vTx(`)

]
≥

(
1− 9

√
1

`
N · (1− ε)

B
γ

)
`

N
(1− ε) · max

x:Ax≤b/γ,0≤xj≤1 for all j ∈ [m]
vTx

Letting x∗ denote the optimal solution to the relaxation, we also have

max
x:Ax≤b/γ,0≤xj≤1 for all j ∈ [m]

vTx ≥
1
γ

d 1
γ e
vTx∗ ≥ 1

1 + γ
vTx∗ .

So, this implies

E
[
vTx(`)

]
≥

(
1− 9

√
1

`
N · (1− ε)

B
γ

)
`

N

1− ε
1 + γ

vTx∗ .

Observe that this outcome only depends on the set U≤` but not the order in this set.
Therefore, the variable that arrives in round ` can be considered being drawn uniformly from
U≤`. This way, we get

E
[
vT x̂(`)

∣∣∣ U≤`] = 1
`

E
[
vTx(`)

∣∣∣ U≤`]
Note that these outcomes only depend on the sets U<` and U≤` but not the order within
U<`.

To bound the probability of feasibility, we will use Lemma 7, conditioning on the set U<`
and U≤`. Let j be the index of the variable arriving in round `. Taking a union bound over
all ≤ d constraints in which variable j has non-zero coefficients, we get

Pr [it is feasible to set x̂j = 1 | U<`, U≤`]

≥ 1− d ·
∑

i:ai,j>0
Pr

 `−1∑
`′=`−γN

Ax̂(`′)


i

> bi − 1

∣∣∣∣∣∣ U<`
 ≥ (1− 1

B

)
.

Overall, the expected value of the allocation performed in round ` is at least

E
[
vT x̂(`)

]
≥

(
1− 9

√
1

`
N · (1− ε)

B
γ

)
1
N

1− ε
1 + γ

(
1− 1

B

)
vTx∗ .
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Algorithm 3: Scaling Algorithm for different lengths and capacity B
for every arriving item j do

Set t := τj , U≤t := items arrived so far;
Let S(t) := GreedyRoundUp(U≤t, αtB);
if j ∈ S(t) then // if among best items

if S ∪ {j} is a feasible schedule then // and if feasible
Set S := S ∪ {j}; // then select j

Taking the sum of all these bounds, we get

E
[
vT x̂

]
≥

N∑
`=2
√

1+ln d
B N

(
1− 9

√
1

`
N · (1− ε)

B
γ

)
1
N
· 1− ε

1 + γ

(
1− 1

B

)
vTx∗

≥ 1−O(ε)
1 + γ

vTx∗ . J

4 The Temp Secretary Problem with Different Lengths

We generalize the Temp Secretary Problem towards different item durations λj ≤ γ for all
items j ∈ [n]. To define the relaxation, we use the fact that pointwise

∑
j∈OPT λj ≤ B(1 +γ).

This is due to the fact that an item j selected at time τj = 1 will be active until time 1 + λj .
Therefore, let OPT∗ denote the optimal solution to this knapsack problem with profits vj .
Due to the knapsack nature of the problem, the algorithm cannot be purely comparison-based
anymore. Instead, whenever an item arrives, we compute an approximate knapsack solution
and tentatively select the item if it is included in this solution. It will be crucial that these
solutions only slowly change when adding or removing items. This is why, there is no obvious
generalization of our algorithm and analysis to general packing LPs. In more detail, for
U ′ ⊆ [n] and Λ > 0 we define GreedyRoundUp(U ′,Λ) as the set U ′′ ⊆ U ′ which we get by
ordering the items in U ′ in non-increasing order vj

λj
and taking the minimal prefix such that∑

j∈U ′′ λj ≥ Λ.

I Theorem 8. With α = 1/2, Algorithm 3 is at least 1
4 −Θ

(√
γ
)
-competitive for the temp

secretary problem with arbitrary durations λj ≤ γ.

We use the same proof structure like in Theorem 2. Here Lemma 9 gives a bound on the
expected value of the tentative solution. The proof of this lemma is very similar to the proof
of Lemma 1 and can be found in the full version.

I Lemma 9. For ` ≥ 2
√

γ
BN

E

 ∑
j∈S(`)

vj

 ≥ α(1− 9
√

1
`
N
B
γ

)
`

N

1
1 + γ

∑
j∈OPT∗

vj .

The main difference to previous proofs in this paper is the fact that we cannot bound the
probability of a selection for a fixed round because it depends on the lengths of the items
that arrive up to this round. Fortunately, we can bound the probability that a selection
would be feasible by the following lemma.
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I Lemma 10. Conditioning on any set of arrivals in rounds 1, . . . , `− 1, the probability that
an item can be feasibly selected in round ` is at least 1− α− 3γN

`−γN .

As a key idea, we show that the probability of a selection does not significantly change
between rounds.

I Lemma 11. Let Hi,` be the 0/1 indicator if an item with duration at least i rounds is
tentatively selected in rounds `. It holds that Pr [Hi,`−i = 1] ≤ Pr [Hi,` = 1] + αB+1

`−i .

Proof. First, we observe that an item j is tentatively selected in round `′ if it is contained in
S(`′) and arrives in round `′. As the set S(`′) only depends on the items arriving in rounds
1, . . . , `′ but not on their order, the probability of j being tentatively selected is exactly
1
`′Pr

[
j ∈ S(`′)

]
. Therefore, to prove this lemma, we will compare the sets S(`−i) and S(`).

Instead of making statements about the set S(`−i) directly, we instead use a set S̃ defined
as S̃ :=GreedyRoundUp(U≤`−i, α `

NB). Note that by definition of GreedyRoundUp,
this set S̃ is a superset of S(`−i) =GreedyRoundUp(U≤`−i, α `−iN B).

Let now E∗i,`−i be the event that an item of length at least i rounds arrives in round `− i
that is contained in S̃ ∩ S(`), and let E−i,`−i be the event that an item of length at least i
rounds arrives in round `− i that is contained in S̃ \ S(`). As S(`−i) is contained in S̃, we
have Pr [Hi,`−i = 1] ≤ Pr

[
E∗i,`−i

]
+ Pr

[
E−i,`−i

]
.

To bound the first probability, we use that every item in S(`) has already arrived in round
`− i with probability `−i

` . Every such item arrives exactly in round `− i with probability
1
`−i . Therefore we have Pr

[
E∗i,`−i

]
= Pr [Hi,` = 1].

For the second probability, observe that S̃ contains all elements of S(`) that have arrived
by round `− i, i.e., S̃ ⊇ S(`)∩U≤`−i. Also if

∑
j∈S(`) λj < α `

NB−γ, it has to be S(`) = U≤`.
Therefore, S̃ = S(`) and nothing has to be shown. This implies that E

[∑
j∈S̃∩S(`) λj

]
≥

`−i
` α

`
NB = α `−iN B because the probability for each item in S(`) to arrive until round `− i is

`−i
` . Therefore, the λj values for all but one item in S̃ \ S(`) add up to at most αB i

N .
Let K denote the number of items in S̃ \ S(`) of length at least i blocks. On the one

hand, K is bounded by E [K] ≤ αB + 1 due to the above considerations. On the other hand,
conditioning on K, we can bound the probability of Pr

[
E−i,`−i

]
by Pr

[
E−i,`−i

∣∣∣ K = k
]
≤ k

`−i .

Taking the expectation over K, we get Pr
[
E−i,`−i

]
≤ αB+1

`−i . J

Proof of Lemma 10. Using Lemma 11, we now have

Pr [round ` would be feasible | U≤`−1] ≥ 1− 1
B

γN∑
i=1

E [Hi,`−i | U≤`−1]

≥ 1− 1
B

γN∑
i=1

E [Hi,`−1 | U≤`−1]− αγN + 1
`− γN

.

Observe that
∑γN
i=1 E [Hi,`−1 | U≤`−1] is exactly the length in rounds of the tentative

selection in round ` − 1, counting no tentative selection as 0. This length is bounded by
1
`−1 E

[∑
j∈S(`−1) λjN

∣∣∣ U≤`−1

]
. This sum can be bounded pointwise by

∑
j∈S(`−1) λj ≤

α `−1
N B + γ. So we have

∑γN
i=1 E [Hi,`−1 | U≤`−1] ≤ α+ γN

`−1 .
This means Pr [round ` would be feasible | U≤`−1] ≥ 1 − α − (1+α)γN+1

`−γN ≥ 1 − α −
3γN
`−γN . J
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The remaining proof follows essentially the pattern of the previous sections.

Proof of Theorem 8. We have already shown that

Pr [round ` would be feasible | U≤`−1] ≥ 1− α− 3γN
`− γN

.

By combining this bound with Lemma 9, we get that the expected value gained from round
` ≥ 2√γN is at least

1
2` ·

(
1− 9

√
γ
`
NB

)
`

N

∑
j∈OPT∗ vj

1 + γ
·
(

1
2 −

3γN
`− γN

)
.

Similar calculations like in the proof of Theorem 2 and α = 1
2 give a competitive ratio of

E

 ∑
j∈ALG

vj

 ≥ 1√
γ
−1∑

k=2

(k+1)√γN−1∑
`=k√γN

1
2

(
1− 9

√
γ
`
NB

)
1
N

∑
j∈OPT∗ vj

1 + γ
·
(

1
2 −

3γN
`− γN

)

≥
(

1
4 − 5√γ − 3

2γ ln
(

1
√
γ

))
· 1

1 + γ

∑
j∈OPT∗

vj .

The missing details are included in the full version. J

5 Future Work

The area of online problems with stochastic arrivals and temporal constraints leaves many
open research directions. First of all, only very few impossibility results are known in this
model. It seems natural that bounds in the related random order model should generalize in
some way. For example in the temp secretary problem with large capacities, it seems plausible
that the competitive ratio cannot be better than 1− Ω

(√
1
B

)
like in [18], independent of

γ. A small γ increases the overall capacity, but in every step the algorithm is still tightly
restricted by the timed capacity B.

Furthermore, the results in this paper apply if the arrival times are each drawn indepen-
dently uniformly from [0, 1]. This condition can be relaxed in several ways. Firstly, other
distributions than the uniform one are of important interest. Although the algorithms in
this paper do admit a reasonable generalization using quantiles, our analyses as they are
do not extend. Secondly, it is also very interesting to weaken the assumption that arrival
times are independent and identically distributed. There is only little work in related models
[15, 8] and none for this particular setting.

Other fruitful directions could be the extension to other feasibility structures, such as
(special classes of) matroid, and to other objective functions, such as submodular ones.
Finally, it might also be interesting to let the algorithm decide the contract starting/finishing
dates or its duration.
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