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Abstract
We study the natural problem of estimating the expansion of subsets of vertices on one side of a
bipartite graph. More precisely, given a bipartite graph G(U, V,E) and a parameter β, the goal
is to find a subset V ′ ⊆ V containing β fraction of the vertices of V which minimizes the size of
N(V ′), the neighborhood of V ′. This problem, which we call Bipartite Expansion, is a special
case of submodular minimization subject to a cardinality constraint, and is also related to other
problems in graph partitioning and expansion. Previous to this work, there was no hardness of
approximation known for Bipartite Expansion.

In this paper we show the following strong inapproximability for Bipartite Expansion: for
any constants τ, γ > 0 there is no algorithm which, given a constant β > 0 and a bipartite graph
G(U, V,E), runs in polynomial time and decides whether

(YES case) There is a subset S∗ ⊆ V s.t. |S∗| ≥ β|V | satisfying |N(S∗)| ≤ γ|U |, or
(NO case) Any subset S ⊆ V s.t. |S| ≥ τβ|V | satisfies |N(S)| ≥ (1− γ)|U |,

unless NP ⊆ ∩ε>0DTIME
(
2nε) i.e. NP has subexponential time algorithms.

We note that our hardness result stated above is a vertex expansion analogue of the Small
Set (Edge) Expansion Conjecture of Raghavendra and Steurer [23].
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1 Introduction

Graph partitioning and graph expansion are very well studied topics in graph theory,
combinatorics and theoretical computer science. A central goal in this line of research is to
decide how well a given graph can be partitioned into smaller parts. Generally speaking, a
partitioning is considered good if the graph is decomposed into reasonably sized components
while removing only a small number of vertices or edges. Specific variants of the graph
partitioning question are addressed by a number of well known problems – such as Vertex
Separator, Sparsest Cut and Balanced Separator – which have been studied extensively in
several previous works [18, 16, 17, 5, 15].

Related to the above is the Bipartite Expansion problem which measures the vertex
expansion of subsets on one of the sides of a bipartite graph. Specifically, given a bipartite
graph G(U, V,E), the goal is to find a subset V ′ ⊆ V of size at least β|V | to minimize |N(V ′)|
for some parameter β ∈ (0, 1), where N(V ′) is the neighborhood of V ′ in U . The absence of
V ′ with a small neighborhood implies that there is an edge between any two large enough
subsets – one each of U and V , presenting a bottleneck to a good partitioning of the graph.
Such graphs are known as bipartite expanders. They have been studied in several applications
such as parallel sorting [22, 2], constructing good codes [26], randomness extractors [12, 25]
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and more recently for constructing secure public key cryptographic systems [4]. Since vertex
expansion is a submodular function, Bipartite Expansion is a special case of minimizing a
submodular function subject to a cardinality constraint, for which Svitkina and Fleischer [27]
gave an O

(√
n/ lnn

)
pseudo-approximation. In spite of this being a natural problem, we

are not aware of any hardness of approximation results for Bipartite Expansion.
In this work we establish the following strong hardness of approximation result for

Bipartite Expansion under the assumption that NP does not have subexponential time
algorithms.

I Theorem 1.1 (Main). For any constants γ, τ > 0, there is no algorithm which, given a
constant β > 0 and an n-vertex bipartite graph G(U, V,E ⊆ U × V ), runs in O(nc) time
where c = c(τ, γ, β) and decides between the following cases,

(YES case) There is a subset S∗ ⊆ V s.t. |S∗| ≥ β|V | satisfying |N(S∗)| ≤ γ|U |, or
(NO case) Any subset S ⊆ V s.t. |S| ≥ τβ|V | satisfies |N(S)| ≥ (1− γ)|U |,

unless NP ⊆ ∩ε>0DTIME
(
2nε).

More concretely, the above shows (for example) that even if there exists a good subset
V ∗ of at least β fraction of the vertices of V such that its neighborhood is 1% of U , it is
hard to find V ′ of β/100 fraction of the vertices of V , such that the neighborhood of V ′ is at
most 99% of U .

We note that Bipartite Expansion problem seems to bear resemblance to the Small Set
Expansion problem which has recently received attention due to its connection to Khot’s [13]
Unique Games Conjecture. This connection was established by Raghavendra and Steurer [23]
who proved that the Small Set Expansion Conjecture (see [23] for the statement) implies
the Unique Games Conjecture. Theorem 1.1 is, in some sense, a vertex expansion analogue
of the statement of the Small Set Expansion Conjecture which deals with edge expansion.
Louis, Raghavendra, and Vempala [19] have shown that the Small Set Expansion Conjecture
implies hardness of approximation for a variant of vertex expansion on general graphs. While
a similar reverse reduction from vertex expansion to edge expansion of small sets is not
known, this raises the intriguing possibility that techniques similar to those of this work
could throw some light on the Small Set Expansion and Unique Games conjectures.

Our result also serves as a complexity theoretic lower bound for the O
(√

n/ lnn
)
pseudo-

approximation of [27] for minimizing submodular functions subject to a cardinality constraint,
even when the function is monotone like bipartite vertex expansion.

1.1 Related Work
Bipartite Expansion is related to graph partitioning problems including Vertex Separator
and Balanced Separator, and is known to be NP-hard via a reduction from the Balanced
Vertex Separator problem [21].

Leighton and Rao [16] gave an O(logn) (pseudo-)approximation for Balanced Separator
and Vertex Separator problems. For Balanced Separator, the factor was improved to the
currently best known O(

√
logn) in a seminal work of Arora, Rao, and Vazirani [5]. Subsequent

work by Feige et al. [11] and Agarwal et al. [1] also proved O(
√

logn) approximation for
Vertex Separator. For both these problems PTAS was ruled out under standard complexity
assumptions by Ambuhl, Mastrolilli, and Svensson [3] using the quasi-random Probabilistically
Checkable Proof (PCP) of Khot [14]. Subsequently work of Raghavendra, Steurer, and
Tulsiani [24] has ruled out a constant factor approximation for Balanced Separator based
on the Small Set Expansion Conjecture [23] which implies the Unique Games Conjecture
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of Khot [13]. The latter conjecture was used in previous works [15, 7] to prove similar
inapproximability for a non-uniform version of Balanced Separator. As mentioned above, the
work of Svitkina and Fleischer [27] shows that Bipartite Expansion admits a O

(√
n/ lnn

)
pseudo-approximation: given the existence of a subset V ∗ of size β|V | and |N(V ∗)| ≤ γ|U |,
the algorithm outputs a subset V ′ of size at least σβ|V | and |N(V ′)| ≤ ργ|U |, with ρ/σ ≤
O
(√

n/ lnn
)
.

While not much is known about the inapproximability of Bipartite Expansion, the problem
of explicitly constructing bipartite expanders has been fairly well studied [20, 22, 2]. These
constructions and their variants have applications in sorting networks [22, 2], error-correcting
codes [26] and randomness extractors [12, 25]. We end with a brief mention of a result by
Applebaum, Barak, and Wigderson [4] who construct public-key encryption schemes based
on the (assumed) average case hardness of detecting a random unbalanced bipartite graph
from one which has a randomly planted “shrinking” set S of O(logn) vertices on the larger
side such that |N(S)| ≤ |S|/3. While the parameters they consider are different from our
setting, their work has, in part, motivated this study of bipartite expansion.

1.2 Our Techniques

The starting point of our reduction is the quasi-random PCP constructed by Khot [14].
Unlike previously constructed PCPs, Khot’s construction essentially showed that the YES
and NO cases differ in how randomly the queries of the verifier’s tests are distributed over
the locations of the proof. This crucial quasi-randomness property – which we describe
below – was used by Khot [14] to rule out PTAS for Min-Bisection, Dense k-Subgraph and
Bipartite Clique, results which were only known earlier assuming the average case hardness
of Random-3SAT [10].

The construction in [14] proceeded by (i) proving the inapproximability of an Homogeneous
Algebraic CSP over a large field, (ii) transforming the latter into an Outer Verifier based on
an algebraic test, and (iii) composing the Outer Verifier with a d-query Inner Verifier based
on the Hadamard Encoding over F[2]. The quasi-randomness finally obtained by this series
of reductions can be roughly summarized as follows: in the YES case there is a subset of half
the locations of the proof which contains all the d queries of ≈ 1/2d−1 fraction of tests of
the Inner Verifier, while in the NO case any such subset of the proof locations completely
contains ≈ 1/2d fraction of the tests. Taking the locations of the proof on the LHS, the tests
of the verifier on the RHS, and connecting a location with a test if it queries the former, this
already gives us an instance of Bipartite Expansion with a small hardness factor.

However, the inapproximability obtained above is far too weak for us to amplify the
hardness gap using (say) graph powering. For this we modify the construction of [14]
to encode the proof of the Inner Verifier using a Hadamard Code over a larger field F[q]
where q � 2. A similar abstraction of the Inner Verifier as a bipartite graph G(U, V,E)
yields a ηδ versus η gap in the expansion of similar sized subsets of V , for arbitrarily small
η, δ > 0. Taking the bipartite kth graph power using OR-product of the edges, where
k ≈ C/η, amplifies the above to a Cδ versus (1− exp(−C)) gap in the expansion. The
modified quasi-random PCP also yields a gap in the sizes of the relevant subsets of V which
is preserved by the powering operation. This, along with the expansion gap, is sufficient to
prove Theorem 1.1.

The construction and the analysis of the modified quasi-random PCP proceed along the
same lines as in [14]. The parameters of the construction are set appropriately so that the
subsequent OR-product graph powering amplifies the gap as desired.

ESA 2016
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Organization of the paper. The next section formally defines Bipartite Expansion as a
decision problem, and restates our hardness result as Theorem 2.2. Section 3 provides the
description of the Homogeneous Algebraic CSP and the quasi-random PCP of Khot [14],
along with the statement (Theorem 3.4) of the aforementioned modified quasi-random PCP.
Section 4 is devoted to proving Theorem 2.2 starting from Theorem 3.4 and the construction
of the modified quasi-random PCP, i.e. the proof of Theorem 3.4, is given in Section 5.

2 Our Results

Bipartite Expansion is defined as the following decision problem.

I Definition 2.1. For parameters τ, γ, β > 0, the BipartiteExpansion (τ, γ, β) problem is:
given a bipartite graph G(U, V,E ⊆ U × V ) distinguish between the following cases.

(YES Case) There is a subset S∗ ⊆ V , |S∗| ≥ β|V | s.t. |N(S∗)| ≤ γ|U |.
(NO Case) For any subset S ⊆ V s.t. |S| ≥ τβ|V |, |N(S)| ≥ (1− γ)|U |.

We prove the following hardness of BipartiteExpansion which implies Theorem 1.1.

I Theorem 2.2. For any choice of constants ε, τ, γ > 0, there exists β > 0, such that there
is a DTIME (2nε) reduction from SAT to BipartiteExpansion (τ, γ, β).

3 Preliminaries

3.1 The HomAlgCSP Problem
I Definition 3.1. Let an HomAlgCSP instance A(k, d,m,F, C) be the following problem:
1. C is a system of constraints on functions f : Fm 7→ F where every constraint is on values

of f on k different points and is given by a conjunction of homogeneous linear constraints
on those k values. A constraint C ∈ C on f(p1), . . . , f(pk) is is given as

k∑
i=1

γijf(pi) = 0 for j = 1, 2, . . . wherepi ∈ Fm and γij ∈ F.

We denote a constraint C by the set of points {pi}ki=1, while the γij ’s will be implicit.
2. C has |F|O(m) constraints.
The goal is to find a m-variate polynomial f of total degree at most d, not identically zero,
so as to maximize the fraction of constraints satisfied.

The following inapproximability of HomAlgCSP was shown in [14] following from
Theorems 1.5 and 3.4 proved therein.

I Theorem 3.2. There is a universal constant ∆ > 0, such that for any constant K > 0
and any constant d̃ > 0 possibly depending on K, there is a reduction from a SAT formula
of size n to an instance A(k, d∗ = 10d̃,m = O(m̃3d̃),F, C) of HomAlgCSP with k = 21,
N ≤ |F| ≤ N2 where N = n∆K , and any choice of m̃ satisfying

(
m̃
d̃

)
≥ N . The size of the

instance A is |F|O(m), where the field F is any suitably sized extension of F[2]. The reduction
is a DTIME (|F|O(m)) procedure1 such that,

1 The work of Khot [14] was based on a randomized hardness reduction for Minimum Distance of
Codeword [9], which can be made deterministic using subsequent results of Cheng and Wan [8] and
Austrin and Khot [6].
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1. (YES Case) If the SAT formula is satisfiable then there is a degree d∗ multivariate
polynomial f , not identically zero, which satisfies 1− 1/2K fraction of constraints of A.

2. (NO Case) If the SAT formula is unsatisfiable then no degree 1000d∗ multivariate poly-
nomial, which is not identically zero, satisfies more than 1/22K fraction of constraints of
A.

3.2 Quasi-Random PCP of Khot [14]
The following is the statement of Khot’s quasi-random PCP.

I Theorem 3.3 (Theorem 1.9 of [14]). For every ε > 0, there exists an integer d =
O(1/ε log(1/ε)) such that the following holds : there is a PCP verifier for a SAT instance
of size n satisfying:
1. The proof for the verifier is of size 2O(nε).
2. The verifier uses O(nε) random bits, runs in time 2O(nε), and reads d locations from the

proof. Let Q be the d locations queried by the verifier in a random test.
3. Every query location is uniformly distributed over the proof, though different query locations

within Q are correlated.
4. (YES Case) Suppose that the SAT instance is satisfiable. Then there exists a subset Π∗

of half the locations of the proof such that,

Pr
Q

[Q ⊆ Π∗] ≥ 1
2d−1

(
1−O

(
1
d

))
,

where the probability is taken over a random test of the verifier.
5. (NO Case) Suppose that the SAT instance is unsatisfiable, and let Π′ be any set of half

the locations in the proof. Then,∣∣∣∣Pr
Q

[Q ⊆ Π′]− 1
2d

∣∣∣∣ ≤ 1
220d .

3.3 Modified Quasi-Random PCP
As discussed in Section 1.2, for our hardness result we construct the quasi-random PCP with
an Inner Verifier encoding over a large field F[q]. While the details of the construction and
its analysis are given in Section 5, here we abstract out the bounds on the distribution of the
PCP queries required for our purposes.

I Theorem 3.4. For every positive integer (power of two) R > 2, and arbitrarily small
ε > 0, there exists an integer d = Θ((1/ε) log((logR)/ε)) along with the setting q := R4d,
such that the following holds : there is a PCP verifier for a SAT instance of size n satisfying
properties (1)-(3) of Theorem 3.3 along with,
4. (YES Case) Suppose that the SAT instance is satisfiable. Then there exists a subset Π∗

of 1/q fraction of the locations of the proof, such that

Pr
Q

[Q ⊆ Π∗] ≥ 1
qd−1

(
1−O

(
1
d2

))
, (1)

where the probability is taken over a random test of the verifier.
5. (NO Case) Suppose that the SAT instance is unsatisfiable, and let Π′ be any set of

ζ ∈ [0, 1] fraction of the locations of the proof. Then,∣∣∣∣Pr
Q

[Q ⊆ Π′]− ζd
∣∣∣∣ ≤ 1

q2d2 . (2)

ESA 2016
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4 Reducing the Modified Quasi-Random PCP to BipartiteExpansion

For convenience we first abstract out the Modified Quasi-Random PCP as a bipartite graph
and translate its YES and NO cases into a gap in expansion of small subsets on one side of
the bipartition. This gap in expansion is then strengthened using an appropriate powering
of the initial bipartite graph to yield the desired hardness for BipartiteExpansion. We
assume for the rest of this section that that the parameters R, d and q in Theorem 3.4 are
large enough constants.

4.1 Modified Quasi-Random PCP as a Bipartite Graph
Starting from an instance of the Modified Quasi-Random PCP in Theorem 3.4 define the
bipartite graph G(U, V,E ⊆ U × V ) where U is the set of proof locations, V is the set
of d-query tests of the verifier and (u, v) ∈ E iff the test v contains the query location u.
Restating the YES and NO cases in terms of expansion of subsets of V we have the following
lemmas.

I Lemma 4.1. If G is a YES instance then there is a subset S∗ ⊆ V of size at least
0.99|V |

/
qd−1 such that |N(S∗)| ≤ |U |/q .

Proof. Take S∗ to be the set of tests completely contained in the 1/q fraction of the proof
locations given by the YES case. The lemma follows from (1) and large enough d. J

I Lemma 4.2. If G is a NO instance then for any subset S ⊆ V s.t. |S| = a|V | where
a ∈ [1/q2d2

, 1],

|N(S)|
|U |

≥ a1/d − 1
aq2d2 .

Proof. In the NO case we let ζ = |N(S)|
|U | , and thus from (2) we have

a ≤ ζd + 1
q2d2 ⇒ ζd ≥ a− 1

q2d2 ≥ 0,

since a ≥ 1/q2d2 . This implies that,

ζ ≥
(
a− 1

q2d2

) 1
d

≥ a1/d
(

1− 1
aq2d2

) 1
d

≥ a1/d
(

1− 1
aq2d2

)
≥ a1/d − 1

aq2d2 ,

since a1/d ≤ 1. J

4.2 Graph powering using OR-product
Fix a parameter k := R4d−1. From G(U, V,E) obtained above we construct the bipartite
graph G(U, V ,E ⊆ U × V ) as follows.

U = Uk and V = V k. For any u ∈ U , j ∈ [k], uj ∈ U denotes the jth coordinate of u.
Similarly for v ∈ V .
(u, v) ∈ E iff ∃j ∈ [k] s.t. (uj , vj) ∈ E.

The rest of this section is devoted to proving the desired YES and NO cases completing
the proof of Theorem 2.2.
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4.2.1 YES Case
We prove the following lemma.

I Lemma 4.3. If G is a YES instance then there exists a subset T ∗ ⊆ V such that,

|T ∗| ≥
(

0.99
qd−1

)k
|V |,

and,

|N(T ∗)| ≤ |U |/R.

Proof. Let T ∗ = (S∗)k where S∗ is as given in Lemma 4.1. The first condition above is
directly satisfied by the bound on the size of S∗ in Lemma 4.1. Further, by union bound
over all the k coordinates,

|N(T ∗)|
|U |

≤ k · |N(S∗)|
|U |

≤ k

q
= R4d−1

R4d = R−1,

where |N(S∗)|/|U | ≤ 1/q as given in Lemma 4.1. J

4.2.2 NO Case
For convenience let h := 1

/
qd−1/2 . The NO case is given by the following lemma.

I Lemma 4.4. If G is a NO instance then for any subset T ⊆ V s.t. |T | ≥ hk|V |,

|N(T )| ≥
(

1− e−R/2
)
|U |.

Proof. Let us first define the projections T1, . . . , Tk ⊆ V of T as: Tj = {v ∈ V | ∃v ∈
T s.t. vj = v}. By construction, |T | ≤

∏k
j=1 |Tj |. Let aj := |Tj |/|V | . Thus, we have,

k∏
j=1

(aj |V |) ≥ hk|V | = hk|V |k,

which implies

k∏
j=1

aj ≥ hk. (3)

By the AM-GM inequality we have,

Ej∈[k]

[
a

1/d
j

]
≥

 k∏
j=1

a
1/d
j

1/k

=

 k∏
j=1

aj

1/kd

≥ h1/d. (4)

We also have the following simple lemma.

I Lemma 4.5. For at most k/d values j ∈ {1, . . . , k}, aj < hd.

Proof. Assuming that for t > k/d values j ∈ {1, . . . , k} aj < hd, we obtain that
∏k
j=1 aj ≤

htd < hk (since h < 1), which contradicts (3). J

ESA 2016
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Let us define bj := |N(Tj)|/|U | for j ∈ [k]. Since, by our setting, hd ≥ q−d
2 ≥ q−2d2 ,

Lemma 4.2 yields

{
aj ≥ hd

}
⇒
{
bj ≥ a1/d

j − 1
ajq2d2

}
⇒
{
bj ≥ a1/d

j − 1
qd2

}
. (5)

Therefore,

k∑
j=1

bj ≥
∑
j∈[k]
aj≥hd

(
a

1/d
j − 1

qd2

)
=

k∑
j=1

(
a

1/d
j − 1

qd2

)
−
∑
j∈[k]
aj<h

d

(
a

1/d
j − 1

qd2

)

≥
k∑
j=1

(
a

1/d
j − 1

qd2

)
−
∑
j∈[k]
aj<h

d

a
1/d
j

≥
k∑
j=1

(
a

1/d
j − 1

qd2

)
−
∑
j∈[k]
aj<h

d

h

≥
k∑
j=1

(
a

1/d
j − 1

qd2

)
−
(
k

d

)
h,

where the last inequality uses Lemma 4.5. Taking an expectation we obtain,

Ej∈[k] [bj ] ≥ Ej∈[k]

[
a

1/d
j

]
− 1
qd2 −

h

d
≥ h1/d − 1

qd2 −
h

d
≥ h1/d/2, (6)

where second last inequality follows from (4) and the last inequality is due to the large
enough setting of the parameters. Observe that,

h1/d =
(
q−(d−1/2)

)1/d
=
(
R−4d(d−1/2)

)1/d
= R−4d+2.

Using the above along with the construction of G we have,

1− |N(T )|
|U |

=
k∏
j=1

(1− bj)

≤
(
Ej∈[k][1− bj ]

)k (By the AM-GM inequality)

≤
(

1− h1/d/2
)k

(Using (6))

≤
(

1− 1
2R4d−2

)R4d−1

≤ e−R/2,

which completes the proof of Lemma 4.4. J

4.2.3 Gap in the domain subset sizes
In the YES case there is a subset of V of fractional size at least

β :=
(

0.99
qd−1

)k
(7)
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with neighborhood size at most R−1|U |, while in the NO case every subset of V of fractional
size at least

hk =
(

1
qd−1/2

)k
(8)

has neighborhood of size at least (1− e−R/2)|U |. The subset size threshold in the NO case is
much smaller than in the YES case with the gap being,(

β

hk

)
=
(

0.99qd−1/2

qd−1

)k
≥ qk/3 ≥ eR,

for large enough R, q, d which we may assume.

4.2.4 Setting the parameters and proof of Theorem 2.2
Given ε, τ and γ > 0, choose R large enough so that γ ≥ max{R−1, e−R/2}, and τ ≥ e−R.
Setting d = Θ((1/ε) log((logR)/ε)) as per Theorem 3.4 along with Lemmas 4.3, Lemma 4.4,
and Section 4.2.3 yields the proof of Theorem 2.2 with β given by (7).

5 Construction of the Quasi-Random PCP

The PCP given in Theorem 3.4 is a composition of an Outer Verifier which is an algebraic
test on an instance of HomAlgCSP, with a Hadamard code based encoding (Inner Verifier).
This is almost the same as the construction of [14], except that the Inner Verifier’s encoding
is over a larger field rather than F[2]. We refer the reader to [14] for motivation behind
this construction and its nuances, and instead give a concise description of the PCP and its
analysis.

Let the HomAlgCSP instance be A(k = 21, d∗,m,F, C). The Outer Verifier is given the
polynomial f as a table of values at each point in Fm, and it samples a constraint from C
uniformly at random and attempts to verify whether it is satisfied by f , and whether the
table of f is a polynomial of degree ≈ d∗. We need the following definition of a curve.

I Definition 5.1. A curve L in Fm is a function L : F 7→ Fm, where L(t) = (a1(t), . . . , am(t)).
It is of degree d if each of the coordinate functions ai is degree d (univariate) polynomial. A
line is a curve of degree 1.

Let t1, t2, . . . , tk+3 be distinct field elements in F which we fix for the rest of the construc-
tion. Suppose the verifier chooses the constraint C({pi}ki=1) ∈ C uniformly at random. For
a, b, c ∈ Fm, define L = La,b,c be the unique degree (k + 2) curve that satisfies

L(ti) = pi, 1 ≤ i ≤ k, L(tk+1) = a, L(tk+2) = b, L(tk+3) = c.

If f is a degree d∗ multivariate polynomial over the vector space Fm then its restriction
to the curve L(t) = La,b,c(t), denoted by f |L, is a degree d − 1 := (k + 2)d∗ univariate
polynomial in t. This polynomial can be interpolated from any d values of f on the curve,
which is then used to test its consistency at an additional random point. Similarly, given a
line `, the restriction of f , denoted by f |` is a degree d∗ univariate polynomial. Allowing
it degree up to (d− 2) it is interpolated using the values of f at (d− 1) random points on
`, which is used to run the Low Degree test. The following is the description of the Outer
Verifier.

ESA 2016
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5.1 Outer Verifier
Steps of the Outer Verifier
1. Pick a constraint C = {pi}ki=1 ∈ C at random.
2. Pick a random line ` in Fm and pick random points v1, . . . , vd−1, vd on the line.
3. Pick t ∈ F \ {t1, . . . , tk+3} at random, points a, b at random from Fm and let L be the

unique degree k + 2 curve L = La,b,c such that,

L(ti) = pi, 1 ≤ i ≤ k, L(tk+1) = a, L(tk+2) = b, L(t) = vd,

and c is implicitly defined as L(tk+3).
4. Pick random points vd+1, . . . , v2d on L.
5. Let f |` be the unique degree d− 2 polynomial interpolated using the values {f(vi)}d−1

i=1 .
6. Let f |L be the unique degree d− 1 polynomial interpolated using the values {f(vi)}2di=d+1.
7. Check if,

f |L(vd) = f(vd) = f |`(vd).

8. Check if the values of f |L at points {pi}ki=1 satisfy the constraint C.
9. Check that the values f(vi), 1 ≤ i ≤ 2d are not all zero.

As in [14], the Outer Verifier can be replaced by the followingModified Outer Verifier which
reads more values from the proof and makes additional tests, and additionally abstracts
out: (i) interpolation into multiplication by an invertible matrix, and (ii) checking the
homogeneous constraints of the Outer Verifier into checking orthogonality with a certain
subspace. Our construction is the same, except that instead of F[2] we shall use an extension
field F[q] as the underlying field of representation, where q is as given in Theorem 3.4 and F
in Theorem 3.2 is chosen to be an extension of F[q].

5.2 Modified Outer Verifier
Since F is an extension of F[q] the elements of F are represented as F[q]-vectors of a length
l = (log |F|)/(log q). Moreover, the representation can be chosen such that addition over F
and multiplication by a constant in F are homogeneous linear operations on these vectors.
The Modified Outer Verifier is given a table of values f(v) (in the form of l length F[q]-vectors)
for every point v ∈ Fm and it executes the following steps:

Steps of the Modified Outer Verifier
1. Pick a constraint C = {pi}ki=1 ∈ C at random.
2. Pick a random line ` in Fm and pick random points v1, . . . , vd−1, vd on the line.
3. Pick t ∈ F \ {t1, . . . , tk+3} at random, points a, b at random from Fm and let L be the

unique degree k + 2 curve L = La,b,c such that,

L(ti) = pi, 1 ≤ i ≤ k, L(tk+1) = a, L(tk+2) = b, L(t) = vd.

and c is implicitly defined to be L(tk+3).
4. Pick random points vd+1, . . . , v2d on the curve L.
5. Pick additional random points u1 . . . ud on the line ` and ud+1, . . . , u2d from the curve L.
6. Let T2ld×2ld be an appropriate invertible matrix over F[q] and H be an appropriate

subspace of F[q]2ld. Both depend only on the choice of the points {vi}2di=1 and {uj}2dj=1.
Remark 5.2 explains how T and H are chosen.
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7. Read the values of the function f from the table at the points v1, . . . , v2d and u1, . . . , u2d.
Since the values are represented by length l F[q]-vectors, let

x = f(v1) ◦ f(v2) ◦ · · · ◦ f(v2d) (9)
y = f(u1) ◦ f(u2) ◦ · · · ◦ f(u2d) (10)

where ◦ represents concatenation of vectors.
8. Accept iff,

x 6= 0, x = Ty and h · x = 0 ∀ h ∈ H (i.e. x ⊥ H). (11)

I Remark 5.2. The choice of H is such that h · x = 0 ∀ h ∈ H abstracts out the condi-
tions: (i) the values at the field elements {ti}ki=1 of the degree d− 1 univariate polynomial
interpolated from f(vd+1) . . . f(v2d) satisfy the homogeneous linear constraints of C, and
(ii) the polynomial interpolated from the values f(v1) . . . f(vd−1) agrees with the degree
d− 1 polynomial interpolated from f(vd+1) . . . f(v2d) at the point vd, where both evaluate
to f(vd).

The invertible matrix T is chosen such that the constraint x = Ty abstracts out the
conditions: (i) the degree d− 1 polynomial interpolated from the values f(v1) . . . f(vd) is the
same as the polynomial interpolated from the values f(u1) . . . f(ud), and (ii) the degree d− 1
polynomial interpolated from f(vd+1) . . . f(v2d) is the same as the polynomial interpolated
from the values f(ud+1) . . . f(u2d).

The condition x 6= 0 essentially ensures that f is not a zero polynomial.

The following theorem, regarding the acceptance probability of the Outer Verifier, was
proved in [14].

I Theorem 5.3. There are constants c1, c2 such that the following holds. If, after picking a
constraint C({pi}ki=1) ∈ C, the Outer Verifier (or the Modified Outer Verifier) accepts with
probability δ, then for 1 ≤ t ≤ 2c2/(δ/2)c1 , P1, P2, . . . , Pt are all the degree d polynomials
that have agreement at least (δ/2)c1/c2 with f and for some 1 ≤ j ≤ t, Pj is a non-zero
polynomial whose values at the points {pi}ki=1 satisfies the constraint C.

5.3 Inner Verifier
The Inner Verifier expects, for every point v ∈ Fm, the Hadamard Code of f(v) ∈ F[q]l. (See
Section 7 for a description of the Hadamard Code).

Steps of the Inner Verifier
1. Pick a constraint C ∈ C and the points v1, . . . , v2d and u1, . . . , u2d as in steps 1 − 5 of

the Modified Outer Verifier.
2. Let T2ld×2ld and H be the matrix and subspace respectively chosen as in step 7 of the

Modified Outer Verifier.
3. Pick a random string z ∈ (F[q]l)2d and a random h ∈ H. Write,

z = z1 ◦ z2 ◦ · · · ◦ z2d

h = h1 ◦ h2 ◦ · · · ◦ h2d

zT = w1 ◦ w2 ◦ · · · ◦ w2d.

4. Let A1, . . . , A2d and B1, . . . , B2d be the tables giving the supposed Hadamard Codes of
f(v1), . . . , f(v2d) and f(u1), . . . , f(u2d) respectively.

5. Accept iff
∑2d
i=1Ai(zi + hi) +

∑2d
j=1Bj(wj) = 0.
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5.4 Analysis

Let Π∗ be a subset of locations of the proof Π given to the Inner Verifier. Setting the
locations of Π∗ to be 1 and the rest of the locations to zero, we obtain the tables Ai and Bi
(1 ≤ j ≤ 2d) which are queried in the description of the Inner Verifier. We wish to analyze
the probability over a random test Q of the Inner Verifier that the locations queried by it
are contained inside Π∗, i.e.

Pr
Q

[Q ⊆ Π∗] .

This is first arithmetized to,

EQ

 2d∏
i=1

Ai(zi + hi)
2d∏
j=1

Bj(wj)

 . (12)

Here Q depends on the choice of the constraint C, the line ` and curve L, the points
v1, . . . , v2d, u1, . . . , u2d, and the choice of z and h. Plugging in the Fourier expansion (see
Section 6) of the Ai and Bi we obtain,

EQ

 ∑
α1,...,α2d,β1,...,β2d

 2d∏
i=1

Âi,αi

2d∏
j=1

B̂j,βj

2d∏
i=1

χαi
(zi + hi)

2d∏
j=1

χβj
(wj)


= EQ

 ∑
α=α1◦···◦α2d,
β=β1◦···◦β2d

 2d∏
i=1

Âi,αi

2d∏
j=1

B̂j,βj
· φ(α · z + β · w) · φ(α · h)


 , (13)

where φ : F[q]→ {−1, 1} is defined in Section 6. Now, since h is randomly chosen from H,
the above expectation is zero unless α ⊥ H. Also,

z · α+ w · β = z · α+ zT · β
= z · (α+ Tβ)

which implies that the expectation in (13) is zero unless α = Tβ, since z is chosen randomly
from F[q]2ld. Therefore we obtain the following expression,

EC,`,L,v1,...,v2d

u1,...,u2d


∑

α=α1◦···◦α2d,
β=α1◦···◦β2d,

α⊥H, β=T−1α

 2d∏
i=1

Âi,αi

2d∏
j=1

B̂j,βj


 . (14)

5.4.1 YES Case

We prove the following lemma.

I Lemma 5.4. If the instance A of HomAlgCSP is a YES instance then there exists a
subset Π∗ of 1/q fraction of the proof locations such that

Pr
Q

[Q ⊆ Π∗] ≥
1

q4d−1

(
1− 1

2K

)
.
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Proof. Let f be the polynomial given by the YES case. Since f is of degree at most d∗, it is
nonzero at all points except for a negligible fraction (O(d∗/|F|)) which we ignore. Construct
the proof Π as follows: For each point v ∈ Fm let the corresponding table Av be defined as:

Av(x) =
{

1 if the Hadamard Code of f(v) at location x is 0 ∈ F[q],
0 otherwise.

(15)

Now, let Π∗ be the subset of locations where Π is 1. Since we are dealing with Hadamard
Codes of nonzero values, Π∗ is exactly (1/q) fraction of the locations. Also, from Lemma 7.1,

Av = (1/q)
∑
t∈F[q]

χtf(v),

where f(v) in the is represented as an element of F[q]l. Using this, we see that when the
constraint C is satisfied by f , for each t ∈ F[q] setting αi = tf(vi) and βi = tf(ui) (1 ≤ i ≤ 2d
where the f values are represented as elements of F[q]l) contributes 1/q4d in (14). Since
1− 1/2K fraction of the constraints are satisfied by f in the YES case of Theorem 3.2 the
lemma follows. J

5.4.2 NO Case
The NO case soundness is given by the following lemma.

I Lemma 5.5. Let Π∗ be any subset of ζ ∈ [0, 1] fraction of locations of the proof Π. Then,
if A is a NO instance then,∣∣∣∣Pr

Q
[Q ⊆ Π∗]− ζ4d

∣∣∣∣ ≤ C0

22K/C1
, (16)

for some universal constants C0, C1 > 0.

Proof. Suppose that,∣∣∣∣Pr
Q

[Q ⊆ Π∗]− ζ4d
∣∣∣∣ = δ. (17)

Let the proof Π evaluate to 1 at the locations in Π∗ and zero otherwise. Thus,

Ev
[
Âv

]
= ζ.

Using the mixing property of curves and lines (refer to Appendix A.4 of [14]) we obtain
that for the random line ` and curve L chosen by the Outer Verifier, except with probability
O(1/|F|1/3) (which we shall ignore),

∀ i = 1, . . . , 2d Evi∈`[Âi,0] ≈ ζ , Euj∈`[B̂j,0] ≈ ζ

where again the error in the above approximations is bounded by O(1/|F|1/3) which we
shall ignore. Thus, the contribution of α = 0 in (14) is (up to negligible error) ζ4d. From
(17), an analysis identical to that in Section 10.5 of [14] yields a table of values f such that
the Outer Verifier accepts with probability δ2 over a randomly chosen constraint C ∈ C
of the HomAlgCSP instance A. Thus, for at least δ2/2 of the constraints C, the Outer
Verifier accepts with probability δ2/2. Using Theorem 5.3, this implies that there is a degree
d ≤ (21+3)d∗ ≤ 100d∗ polynomial which satisfies at least (δ/C0)C1 fraction of the constraints
of A for some universal constants C0, C1 > 0. This contradicts the NO case of Theorem 3.2
unless δ is at most the RHS of (16), thus completing the proof of the lemma. We omit
further details and refer the reader to [14]. J
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5.4.3 Setting the parameters
The various parameters of the PCP reduction from HomAlgCSP are set so that Lemmas 5.4
and5.5 along with Theorem 3.2 yield Theorem 3.4. First we change 4d to d in Lemmas 5.4
and 5.5. As in Theorem 3.4, q := R4d. We set d := Θ(2K/3/(logR)) so that,

1
2K = O

(
1
d3

)
and C0

22K/C1
≤ 1
q2d2 ,

appropriately bounding the errors in Lemmas 5.4 and 5.5. Note that d ≤ (21 + 3) · 10 · 4 · d̃ ≤
1000d̃ (where d̃ is as in Theorem 3.2). Thus, choosing m = n1000∆K/d yields

(
m
d̃

)
≥ N as

required, and that the entire reduction runs in time 2nε where ε = Θ(K/d) can be made
arbitrarily small by choosing K large enough. Rearranging, d = Θ((1/ε) log((logR)/ε)).

6 Fourier Analysis

We will be working over the field F[q] := F[2r] for r > 0, which is a field extension of F[2]. Let
ϕ be the isomorphism from the additive group (F[2r],+) to (F[2]r,+). Define the following
homomorphism φ from (F[2r],+) to the multiplicative group ({−1, 1}, .).

φ(a) =
{

1 if ϕ(a) contains even number of 1s
−1 otherwise

for any a ∈ F[2r]. Note that φ(a+b) = φ(a)φ(b), ∀a, b ∈ F[2r]. We now define the ‘characters’
ψa : F[2r] 7→ {−1, 1} for a ∈ F[2r] as follows.

ψa(b) := φ(ab)

The characters ψa satisfy the following properties.

ψ0(b) = 1 ∀b ∈ F[2r]
ψa(0) = 1 ∀a ∈ F[2r]

ψa+b(c) = ψa(c)ψb(c)

and,

∑
a∈F[2r]

ψa(b) =
{
|F[2r]| if b = 0
0 otherwise

We note that the ‘character’ functions form an orthonormal basis for the space L2(F[2r]).
We have that,

〈ψa, ψb〉 =
{

1 if a = b

0 otherwise

where,

〈ψa, ψb〉 := Ec∈F[2r] [ψa(c)ψb(c)] .

We now consider the vector space F[2r]m for some positive integer m. We define the
‘characters’ χα : F[2r]m 7→ {−1, 1} for every α ∈ F[2r]m as,

χα(f) := φ(α · f), f ∈ F[2r]m
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where ‘·’ is the inner product in the vector space F[2r]m. From the way we defined the
characters ψa, we have,

χα(f) =
m∏
i=1

ψαi(fi),

where αi and fi are the ith coordinates of α and f respectively. The characters χα satisfy
the following properties,

χ0(f) = 1 ∀f ∈ F[2r]m

χα(0) = 1 ∀α ∈ F[2r]m

χα+β(f) = χα(f)χβ(f)
χα(f + g) = χα(f)χα(g)

and,

Ef∈F[2r]m [χα(f)] =
{

1 if α = 0
0 otherwise

The characters χα form an orthonormal basis for L2(F[2r]m). We have,

〈χα, χβ〉 =
{

1 if α = β

0 otherwise

where,

〈χα, χβ〉 := Ef∈F[2r]m [χα(f)χβ(f)] .

Let A : F[2r]m 7→ R be any real valued function. Then the Fourier expansion of A is
given by,

A(x) =
∑

α∈F[2r]m
Âαχα(x),

where,

Âα = Ex∈F[2r]m [A(x)χα(x)].

A useful equality is:

Â0 = Ex∈F[2r]m [A(x)].

7 Hadamard Codes

Let l be a positive integer and F[q] be an extension of F[2]. Then, for any a ∈ F[q]l, its
Hadamard Code Ha : F[q]l → F[q] is given by Ha(x) = a · x =

∑l
i=1 aixi. We have the

following simple lemma.

I Lemma 7.1. For any a ∈ F[q]l, let A : F[q]l → {0, 1} be defined as A(x) := 1{Ha(x) = 0}.
Then,

A = (1/q)
∑
t∈F[q]

χta.
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Proof. If a = 0, then A is identically 1, and thus A = χ0 = (1/q)
∑
t∈F[q] χta. If a 6= 0, then

Ex[A(x)] = Prx[a · x = 0] = 1/q. Further,

{A(x) = 1} ⇔ {a · x = 0} ⇔ {ta · x = 0, ∀t ∈ F[q]} ⇒ {χta(x) = 1, ∀t ∈ F[q]}.

Thus, Âta = Ex[A(x)χta(x)] = Ex[A(x)] = 1/q, for all t ∈ F[q]. By Parseval’s identity these
are the only non-zero Fourier coefficients. J
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