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Abstract
Spectral clustering is a popular and successful approach for partitioning the nodes of a graph
into clusters for which the ratio of outside connections compared to the volume (sum of degrees)
is small. In order to partition into k clusters, one first computes an approximation of the bottom
k eigenvectors of the (normalized) Laplacian of G, uses it to embed the vertices of G into k-
dimensional Euclidean space Rk, and then partitions the resulting points via a k-means clustering
algorithm. It is an important task for theory to explain the success of spectral clustering.

Peng et al. (COLT, 2015) made an important step in this direction. They showed that
spectral clustering provably works if the gap between the (k + 1)-th and the k-th eigenvalue of
the normalized Laplacian is sufficiently large. They proved a structural and an algorithmic result.
The algorithmic result needs a considerably stronger gap assumption and does not analyze the
standard spectral clustering paradigm; it replaces spectral embedding by heat kernel embedding
and k-means clustering by locality sensitive hashing.

We extend their work in two directions. Structurally, we improve the quality guarantee for
spectral clustering by a factor of k and simultaneously weaken the gap assumption. Algorithmic-
ally, we show that the standard paradigm for spectral clustering works. Moreover, it even works
with the same gap assumption as required for the structural result.
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1 Introduction

A cluster in an undirected graph G = (V,E) is a set S of nodes whose volume is large
compared to the number of outside connections. Formally, we define the conductance of
S by φ(S) =

∣∣E(S, S)
∣∣ /µ(S), where µ(S) =

∑
v∈S deg(v) is the volume of S. The k-way

partitioning problem for graphs asks to partition the vertices of a graph such that the
conductance of each block of the partition is small (formal definition below). This problem
arises in many applications, e.g., image segmentation and exploratory data analysis. We
refer to the survey [10] for additional information. A popular and very successful approach
to clustering [4, 8, 10] is spectral clustering. One first computes an approximation of the
bottom k eigenvectors of the (normalized) Laplacian of G, uses it to embed the vertices of
G into k-dimensional Euclidean space Rk, and then partitions the resulting points via a
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k-means clustering algorithm. It is an important task for theory to explain the success of
spectral clustering. Recently, Peng et al. [7] made an important step in this direction. They
showed that spectral clustering provably works if the (k + 1)-th and the k-th eigenvalue of
the normalized Laplacian differ sufficiently. In order to explain their result, we need some
notation.

Let LG = I −D−1/2AD−1/2 be the normalized Laplacian matrix of G, where D is the
diagonal degree matrix and A is the adjacency matrix, and let fj ∈ RV be the eigenvector
corresponding to the j-th smallest eigenvalue λj of LG. The spectral embedding map F :
V → Rk is defined by

F (u) = 1√
du

(f1 (u) , . . . , fk (u))T
, for all vertices u ∈ V . (1)

Peng et al. [7] construct a k-means instance XV by inserting du many copies of the vector
F (u) into XV , for every vertex u ∈ V .

Let X be a set of vectors of the same dimension. Then

4k(X ) , min
partition (X1,...,Xk) of X

k∑
i=1

∑
x∈Xi

‖x− ci‖2 , where ci = 1
|Xi|

∑
x∈Xi

x,

is the optimal cost of clustering X into k sets. An α-approximate clustering algorithm returns
a k-way partition (A1, . . . , Ak) and centers c1, . . . , ck such that

Cost({Ai, ci}ki=1) ,
k∑
i=1

∑
x∈Ai

‖x− ci‖2 6 α · 4k(X ). (2)

The order k conductance constant ρ(k) is a well studied worst case guarantee for k-way
partitioning that is defined by

ρ(k) = min
disjoint nonempty Z1,...,Zk

Φ(Z1, . . . , Zk), where Φ(Z1, . . . , Zk) = max
i∈[1:k]

φ(Zi). (3)

Lee et al. [3] connected ρ(k) and the k-th smallest eigenvalue of the normalized Laplacian
matrix LG through the relation, also known as higher order Cheeger inequality,

λk/2 6 ρ(k) 6 O(k2)
√
λk. (4)

In this work, we focus attention on the order k partition constant ρ̂(k) of G, defined by

ρ̂(k) , min
partition (P1,...,Pk) of V

Φ(P1, . . . Pk), where Φ(Z1, . . . , Zk) = max
i∈[1:k]

φ(Zi).

In a consecutive work, inspired by partitioning graphs into expanders, Oveis Gharan and
Trevisan [6] proved the following relation

ρ(k) 6 ρ̂(k) 6 kρ(k). (5)

We are now ready to state the main structural result by Peng et al [7].

I Theorem 1.1 ([7, Theorem 1.2]). Let k > 3 and (P1, . . . , Pk) be a k-way partition of V
with Φ(P1, . . . , Pk) = ρ̂(k). Let G be a graph that satisfies the gap assumption1

δ = 2 · 105 · k3

Υ ∈ (0, 1/2], where Υ ,
λk+1

ρ̂(k) . (6)

1 Note that λk/2 6 ρ̂(k), see (4,5). Thus the assumption implies λk/2 6 ρ̂(k) = δλk+1/(2 · 105 · k3), i.e.,
there is a substantial gap between the k-th and the (k + 1)-th eigenvalue.
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Let (A1, . . . , Ak) be the k-way partition2 of V returned by an α-approximate k-means algorithm
applied to XV . Then the following statements hold (after suitable renumbering of one of the
partitions):
1. µ(Ai4Pi) 6 αδ · µ(Pi), and
2. φ(Ai) 6 (1 + 2αδ) · φ(Pi) + 2αδ,
where the symmetric difference Ai4Pi = (Ai\Pi) ∪ (Pi\Ai).

Under the stronger gap assumption δ = 2 ·105 ·k5/Υ ∈ (0, 1/2], they showed how to obtain
a partition in time O (m · poly log(n)) with essentially the guarantees stated in Theorem 1.1,
where m = |E| is the number of edges in G and n = |V | is the number of nodes.

However, their algorithmic result does not analyze the standard spectral clustering
paradigm, since it replaces spectral embedding by heat kernel embedding and k-means
clustering by locality sensitive hashing. Therefore, their algorithmic result does not explain
the success of the standard spectral clustering paradigm.

Our Results

We strengthen the approximation guarantees in Theorem 1.1 by a factor of k and simul-
taneously weaken the gap assumption. As a consequence, the variant of Lloyd’s k-means
algorithm analyzed by Ostrovsky et al. [5] applied to3 X̃V achieves the improved approxim-
ation guarantees in time O(m(k2 + lnn

λk+1
)) with constant probability. Table 1 summarizes

these results.
Let O be the set of all k-way partitions (P1, . . . , Pk) with Φ(P1, . . . , Pk) = ρ̂(k), i.e., the

set of all partitions that achieve the order k partition constant. Let

ρ̂avr(k) , min
(P1,...,Pk)∈O

1
k

k∑
i=1

φ(Pi)

be the minimal average conductance over all k-way partitions in O. The minimal average
conductance can be considerably smaller than the order k partition constant. Consider a graph
consisting of one clique of size Sk = f(n) = o(n/k3/2), k− 1 cliques of size (n− f(n))/(k− 1)
each, and k additional edges that connect the cliques in the form of a ring. Then φ(Si) ≈ k2/n2

for 1 6 i 6 k − 1 and φ(Sk) ≈ 1/f(n)2. Thus ρ̂(k) = maxi φ(Si) = φ(Sk) ≈ 1/f(n)2 and
ρ̂avr(k) = (1/k)

∑
16i6k φ(Sk) ≈ k2/n2 + (1/k) · (1/f(n)2) ≈ ρ̂(k)/k.

For the remainder of this paper we denote by (P1, . . . , Pk) a k-way partition of V that
achieves ρ̂avr(k). In the full version of the paper, we give an analogous relation to (5) for
ρ̂avr(k). We state now our main result.

I Theorem 1.2 (Main Theorem).
(a) (Existence of a Good Clustering) Let k > 3. Let G be a graph satisfying the gap

assumption

δ = 204 · k3

Ψ ∈ (0, 1/2], where Ψ ,
λk+1

ρ̂avr(k) . (7)

Let (A1, . . . , Ak) be the k-way partition returned by an α-approximate clustering algorithm
applied to the spectral embedding XV . Then for every i ∈ [1 : k] the following two
statements hold (after suitable renumbering of one of the partitions):

2 The k-means algorithm returns a partition of XV . One may assume w.l.o.g. that all copies of F (u) are
put into the same cluster of XV . Thus the algorithm also partitions V .

3 X̃V is defined as XV but in terms of approximate eigenvectors, see Subsection 2.3.
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Table 1 A comparison of the results in Peng et al. [7] and our results. The parameter δ ∈ (0, 1/2]
relates the approximation guarantees with the gap assumption.

Gap Assumption Partition Quality Running Time

Peng et al. [7] δ = 2 · 105 · k3/Υ
µ(Ai4Pi) 6 αδ · µ(Pi)

φ(Ai) 6 (1 + 2αδ)φ(Pi) + 2αδ
Existential result

This paper δ = 204 · k3/Ψ
µ(Ai4Pi) 6 αδ

103k · µ(Pi)

φ(Ai) 6
(
1 + 2αδ

103k

)
φ(Pi) + 2αδ

103k

Existential result

Peng et al. [7] δ = 2 · 105 · k5/Υ
µ(Ai4Pi) 6 δ log2 k

k2 · µ(Pi)

φ(Ai) 6
(

1 + 2δ log2 k
k2

)
φ(Pi) + 2δ log2 k

k2

O (m · poly log(n))

This paper

δ = 204 · k3/Ψ

δ 6 k/109

4k(XV ) > n−O(1)

µ(Ai4Pi) 6 2δ
103k · µ(Pi)

φ(Ai) 6
(
1 + 4δ

103k

)
φ(Pi) + 4δ

103k

O
(
m
(
k2 + lnn

λk+1

))

1. µ(Ai4Pi) 6 αδ
103k · µ(Pi), and

2. φ(Ai) 6
(
1 + 2αδ

103k

)
· φ(Pi) + 2αδ

103k .
(b) (An Efficient Algorithm) If in addition δ 6 k/109 and4 4k(XV ) > n−O(1), then the

variant of Lloyd’s algorithm analyzed by Ostrovsky et al. [5] applied to X̃V returns in
time O(m(k2 + lnn

λk+1
)) with constant probability a partition (A1, . . . , Ak) such that for

every i ∈ [1 : k] the following two statements hold (after suitable renumbering of one of
the partitions):
3. µ(Ai4Pi) 6 2δ

103k · µ(Pi), and
4. φ(Ai) 6

(
1 + 4δ

103k

)
· φ(Pi) + 4δ

103k .

Part (b) of Theorem 1.2 gives a theoretical support for the practical success of spec-
tral clustering based on approximate spectral embedding followed by k-means clustering.
Moreover, if k 6 poly(log n) and λk+1 > poly(logn), our algorithm works in nearly linear
time. Previous papers [3, 7, 9] replaced k-means clustering by other techniques for their
algorithmic results.

The k-means algorithm in [5] is efficient only for inputs X for which some partition into
k clusters is much better than any partition into k − 1 clusters. The authors proved that
the algorithm is efficient for inputs X satisfying 4k(X ) 6 ε24k−1(X ) for some ε ∈ (0, ε0],
where ε0 = 6/107, stated that the result should also hold for a larger ε0, and mentioned that
they did not attempt to maximize ε0. For the proof of part (b) of Theorem 1.2, we show in
Section 5 that X̃V satisfies this assumption. In this proof, we need δ 6 k · ε0/600 = k/109.

One of the reviewers suggested to include a numerical example. Consider a graph
consisting of k cliques of size n/k each plus k additional edges that connect the cliques in
the form of a ring. Such a graph is about the easiest input for a clustering algorithm. Then
ρ̂avr(k) = ρ̂(k) ≈ (k/n)2. For the gap assumption to hold we need λk+1 > 2 · 204 · k3 · ρ̂avr(k).
Since λk+1 6 2, this implies n > 400 · k2.5. For small k, this is a modest requirement on the
size of the graph.

4 The case 4k(XV ) 6 n−O(1) constitutes a trivial clustering problem. For technical reasons, we have to
exclude too easy inputs.
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For the algorithmic result, we need in addition δ 6 k · ε0/600. For the gap condition
to hold, we need 2 > λk+1 > (600/ε0k) · 204 · k3 · (k2/n2) or n > 4

√
3 · 103 · k2/

√
ε0. For

ε0 = 6/107, this amounts to n > 4
√

5 · 106 · k2, a quite large lower bound on n.
Our statement above that Part (b) of Theorem 1.2 gives a theoretical support for the

practical success of spectral clustering based on approximate spectral embedding followed by
k-means clustering therefore has to be taken with a grain of salt. It is only an asymptotic
statement and does not explain the good behavior on small graphs.

2 Highlights of Our Technical Contribution

2.1 Exact Spectral Embedding – Notation
We use the notation adopted by Peng et al. [7]. Let fj ∈ RV be the eigenvector corresponding
to the j-th smallest eigenvalue λj of LG, and let gi = D1/2χPi

‖D1/2χPi‖
be the normalized indicator

vector associated with the i-th optimal cluster Pi ⊂ V .
Since the eigenvectors {fi}ni=1 form an orthonormal basis of Rn, each normalized indicator

vector gi can be expressed as gi =
∑n
j=1 α

(i)
j fj , for all i ∈ [1 : k]. Its projection into the

subspace spanned by the bottom k eigenvectors is given by f̂i =
∑k
j=1 α

(i)
j fj . Peng et al. [7]

proved that if the gap parameter Υ is large enough then span({f̂i}ki=1) = span({fi}ki=1) and
hence the bottom k eigenvectors can be expressed by fi =

∑k
j=1 β

(i)
j f̂j , for all i ∈ [1 : k]. We

show that similar statements hold with substituted gap parameter Ψ.
A corner stone in the analysis of spectral clustering is to prove the existence of exactly

k directions near which all spectrally embedded vectors are closely concentrated. These
estimation centers are defined by

p(i) = 1√
µ(Pi)

(
β

(1)
i , . . . , β

(k)
i

)T
. (8)

Our analysis crucially relies on the isometric properties of the following square matrix.
Let B ∈ Rk×k be a matrix defined by Bj,i = β

(i)
j , for every i, j ∈ [1 : k].

2.2 Exact Spectral Embedding – Structural Results
The proof of Theorem 1.2 (a) follows the proof-structure of [7, Theorem 1.2] in Peng et al.,
but improves upon it in essential ways.

Our key technical insight is that the matrices BBT and BTB are close to the identity
matrix. The proof of Theorem 2.1 appears in the full version of the paper.

I Theorem 2.1 (Matrix BBT is Close to Identity Matrix). If Ψ > 104 · k3/ε2 and ε ∈ (0, 1)
then for all distinct i, j ∈ [1 : k] it holds

1− ε 6 〈Bi,:,Bi,:〉 6 1 + ε and |〈Bi,:,Bj,:〉| 6
√
ε.

Informally, Theorem 2.1 implies that each normalized indicator vector gi is close to the
corresponding eigenvector fi. This gives a simple and intuitive explanation for the success of
spectral clustering.

To see this, let Fk, F̂k ∈ Rk×k be matrices whose i-th column is fi and f̂i, respectively.
The projection matrix Pk into the k-th principle subspace of LG is given by Pk = FkFT

k and
since F̂kB = Fk, by Theorem 2.1 it follows that F̂kF̂T

k ≈ FkFT
k . Therefore, each projected

indicator vector satisfies f̂i ≈ fi. This implies α(i) ≈ χi and hence we have gi ≈ fi.

ESA 2016



57:6 A Note On Spectral Clustering

Formally, Theorem 2.1 allows us to improve the separation guarantee between any pair of
estimation centers by a factor of k over [7, Lemma 4.3], measured in terms of the Euclidean
distance.

I Lemma 2.2. If δ = 204 · k3/Ψ ∈ (0, 1] then for every i ∈ [1 : k] it holds that
∥∥p(i)

∥∥2 ∈[
1±
√
δ/4
]

1
µ(Pi) .

Proof. By definition p(i) = 1√
µ(Pi)

·Bi,: and Theorem 2.1 yields ‖Bi,:‖2 ∈ [1±
√
δ/4]. J

I Lemma 2.3 (Larger Distance Between Estimation Centers). If δ = 204 · k3/Ψ ∈ (0, 1/2] then
for any distinct i, j ∈ [1 : k] it holds that

∥∥p(i) − p(j)
∥∥2

> [2 ·min {µ(Pi), µ(Pj)}]−1.

Proof. Since p(i) is a row of matrix B, Theorem 2.1 with ε =
√
δ/4 yields〈

p(i)∥∥p(i)
∥∥ , p(j)∥∥p(j)

∥∥
〉

= 〈Bi,:,Bj,:〉
‖Bi,:‖ ‖Bj,:‖

6

√
ε

1− ε = 2δ1/4

3 .

W.l.o.g. assume that
∥∥p(i)

∥∥2
>
∥∥p(j)

∥∥2, say
∥∥p(j)

∥∥ = α ·
∥∥p(i)

∥∥ for some α ∈ (0, 1]. Then by
Lemma 2.2 we have

∥∥p(i)
∥∥2

> (1−
√
δ/4) · [min {µ(Pi), µ(Pj)}]−1, and hence

∥∥∥p(i) − p(j)
∥∥∥2

=
∥∥∥p(i)

∥∥∥2
+
∥∥∥p(j)

∥∥∥2
− 2

〈
p(i)∥∥p(i)
∥∥ , p(j)∥∥p(j)

∥∥
〉∥∥∥p(i)

∥∥∥∥∥∥p(j)
∥∥∥

>

(
α2 − 4δ1/4

3 · α+ 1
)∥∥∥p(i)

∥∥∥2
> [2 ·min {µ(Pi), µ(Pj)}]−1

. J

The observation that Υ can be replaced by Ψ in all statements in [7] is technically easy.
However, this is crucial for Theorem 1.2 (b), since it yields an improved version of [7, Lemma
4.5] showing that a weaker by a factor of k assumption is sufficient. Due to space limitation,
we defer the proof of Lemma 2.4 to the full version of the paper.

I Lemma 2.4. Let (P1, . . . , Pk) and (A1, . . . , Ak) are partitions of the vector set. Suppose
for every permutation π : [1 : k]→ [1 : k] there is an index i ∈ [1 : k] such that

µ(Ai4Pπ(i)) >
2ε
k
· µ(Pπ(i)), (9)

where ε ∈ (0, 1) is a parameter. If δ = 204 · k3/Ψ ∈ (0, 1/2] and ε > 64α · k3/Ψ then

Cost({Ai, ci}ki=1) > 2k2

Ψ α.

With the above Lemmas in place, the proof of Theorem 1.2 (a) is then completed as
in [7]. We give more details in Section 3.

Before we turn to Theorem 1.2 (b), we consider the variant of Lloyd’s algorithm analyzed
by Ostrovsky et al. [5] applied to XV . This algorithm is efficient for inputs X satisfying:
some partition into k clusters is much better than any partition into k − 1 clusters.

I Theorem 2.5. [5, Theorem 4.15] Assuming that 4k(X ) 6 ε24k−1(X ) for ε ∈ (0, 6/107],
there is an algorithm that returns a solution of cost at most [(1− ε2)/(1− 37ε2)]4k(X ) with
probability at least 1−O(

√
ε) in time O(nkd+ k3d).

In Section 4, we establish the assumption of Ostrovsky et al. [5] for XV .
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I Theorem 2.6 (Normalized Spectral Embedding is ε-separated). Let G be a graph that satisfies
the gap assumption δ = 204 · k3/Ψ ∈ (0, 1/2] and δ 6 k · ε/600, where ε = 6/107 is the
Ostrovsky et al.’s constant. Then it holds

4k(XV ) 6 ε24k−1(XV ). (10)

However, Theorem 2.6 is insufficient for Theorem 1.2 (b), since we need a similar result
for the set X̃V formed by approximate eigenvectors. To overcome this issue we build upon
the recent work by Boutsidis et al. [1] which shows that running an approximate k-means
clustering algorithm on approximate eigenvectors obtained via the power method, yields an
additive approximation to solving the k-means clustering problem on exact eigenvectors.

In order to state the connection, we need to introduce some of their notation.

2.3 Approximate Spectral Embedding – Notation
Let Z ∈ Rn×k be a matrix whose rows represent n vectors that are to be partitioned into k
clusters. For every k-way partition we associate an indicator matrix X ∈ Rn×k that satisfies
Xij = 1/

√
|Cj | if the i-th row Zi,: belongs to the j-th cluster Cj , and Xij = 0 otherwise. We

denote the optimal indicator matrix Xopt by

Xopt = arg min
X∈Rn×k

∥∥Z −XXTZ
∥∥2
F

= arg min
X∈Rn×k

k∑
j=1

∑
u∈Xj

‖Zu,: − cj‖22 , (11)

where cj = (1/|Xj |)
∑
u∈Xj Zu,: is the center point of cluster Cj .

The normalized Laplacian matrix LG ∈ Rn×n of a graph G is define by LG = I − A,
where A = D−1/2AD−1/2 is the normalized adjacency matrix. Let Uk ∈ Rn×k be a matrix
composed of the bottom k orthonormal eigenvectors of LG corresponding to the smallest
eigenvalues λ1, . . . , λk. We define by Y , Uk the canonical spectral embedding.

Our approximate spectral embedding is computed by the so called “Power method”.
Let S ∈ Rn×k be a matrix whose entries are i.i.d. samples from the standard Gaussian
distribution N(0, 1) and p be a positive integer. Then the approximate spectral embedding
Ỹ is defined by the following process:

1) B , I +A; 2) Let Ũ Σ̃Ṽ T be the SVD of BpS; and 3) Ỹ , Ũ ∈ Rn×k. (12)

We proceed by defining the normalized (approximate) spectral embedding. We construct
a matrix Y ′ ∈ Rm×k such that for every vertex u ∈ V we add deg(u) many copies of the
normalized row Uk(u, :)/

√
deg(u) to Y ′. Formally, the normalized (approximate) spectral

embedding Y ′ (Ỹ ′) is defined by

Y ′ =


1deg(1)

Uk(1,:)√
deg(1)

· · ·
1deg(n)

Uk(n,:)√
deg(n)


m×k

and Ỹ ′ =


1deg(1)

Ũ(1,:)√
deg(1)

· · ·
1deg(n)

Ũ(n,:)√
deg(n)


m×k

, (13)

where 1deg(i) is all-one column vector with dimension deg(i).
Similarly to (11) we associate to Y ′ (Ỹ ′) an indicator matrix X ′ (X̃ ′) that satisfies

X ′ij = 1/
√
µ(Cj) if the i-th row Y ′i,: belongs to the j-th cluster Cj , and X ′ij = 0 otherwise.

We may assume w.l.o.g. that a k-means algorithm outputs an indicator matrix X ′ such that
all copies of row Uk(v, :)/

√
deg(v) belong to the same cluster, for every vertex v ∈ V .

ESA 2016
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We associate to matrices Y ′ and Ỹ ′ the sets of points XV and X̃V respectively. We present
now a key connection between the spectral embedding map F (·), the optimal k-means cost
4k(XV ) and matrices Y ′, X ′opt:

∥∥∥Y ′ −X ′opt
(
X ′opt

)T
Y ′
∥∥∥2

F
=

k∑
j=1

∑
v∈C?

j

deg(v)
∥∥F (v)− c?j

∥∥2
F

= 4k(XV ), (14)

where each center satisfies c?j = µ(C?j )−1 ·
∑
v∈C?

j
deg(v)F (v) and F (v) = Yv,:/

√
deg(v).

2.4 Approximate Spectral Embedding – Algorithmic Results
Our analysis relies on the proof techniques developed in [1, 2]. By adjusting these techniques
(c.f. [1, Lemma 5] and [2, Lemma 7]) to our setting, we prove (in the full version of the
paper) the following result for the symmetric positive semi-definite matrix B whose largest k
singular values (eigenvalues) correspond to the eigenvectors u1, . . . , uk of LG.

I Lemma 2.7. Let Ũ Σ̃Ṽ T be the SVD of BpS ∈ Rn×k, where p > 1 and S is an n × k
matrix of i.i.d. standard Gaussians. Let γk = 2−λk+1

2−λk < 1 and fix δ, ε ∈ (0, 1). Then for any
p > ln(8nk/εδ)

/
ln(1/γk) with probability at least 1− 2e−2n − 3δ it holds∥∥∥UkUT

k − Ũ ŨT
∥∥∥
F
6 ε.

We establish several technical Lemmas that combined with Lemma 2.7 allow us to apply
the proof techniques in [1, Theorem 6]. More precisely, we prove in Subsection 5.1 that
running an approximate k-means algorithm on a normalized approximate spectral embedding
Ỹ ′ computed by the power method, yields an approximate clustering of the normalized
spectral embedding Y ′.

I Theorem 2.8. Compute matrix Ỹ ′ via the power method with p > ln(8nk/εδ)
/

ln(1/γk),
where γk = (2 − λk+1)/(2 − λk) < 1. Run on the rows of Ỹ ′ an α-approximate k-means
algorithm with failure probability δα. Let the outcome be a clustering indicator matrix
X̃ ′α ∈ Rn×k. Then with probability at least 1− 2e−2n − 3δp − δα it holds∥∥∥∥Y ′ − X̃ ′α (X̃ ′α)T

Y ′
∥∥∥∥2

F

6 (1 + 4ε) · α ·
∥∥∥Y ′ −X ′opt

(
X ′opt

)T
Y ′
∥∥∥2

F
+ 4ε2.

Our main technical contribution is to prove, in Subsection 5.2, that X̃V satisfies the
assumption of Ostrovsky et al. [5]. Our analysis builds upon Theorem 2.6 and Theorem 2.8.

I Theorem 2.9 (Approximate Normalized Spectral Embedding is ε-separated). Let G be a graph
that satisfies the gap assumption δ = 204 · k3/Ψ ∈ (0, 1/2] and δ 6 k · ε/600, where ε = 6/107

is the Ostrovsky et al.’s constant. If the optimum cost5
∥∥Y ′ −X ′opt(X ′opt)TY ′

∥∥
F
> n−O(1)

and the matrix Ỹ ′ is constructed via the power method with p > Ω( lnn
λk+1

), then w.h.p it holds

4k
(
X̃V
)
< 5ε2 · 4k−1

(
X̃V
)
.

Based on the preceding results, we prove Theorem 1.2 (b) in Subsection 5.3.

5
∥∥Y ′ −X ′opt(X ′opt)TY ′

∥∥
F

> n−O(1) asserts a multiplicative approximation guarantee in Theorem 2.8.
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3 The Proof of Part (a) of Theorem 1.2

The proof of part (a.1) builds upon the following Lemmas. Recall that XV contains du copies
of F (u) for each u ∈ V . W.l.o.g. we may restrict attention to clusterings of XV that put all
copies of F (u) into the same cluster and hence induce a clustering of V . Let (A1, . . . , Ak)
with cluster centers c1 to ck be a clustering of V . Its k-means cost is

Cost({Ai, ci}ki=1) =
k∑
i=1

∑
u∈Ai

du ‖F (u)− ci‖2 .

The proofs of Lemma 3.1 and Lemma 3.2 appear in the full version of the paper.

I Lemma 3.1 ((P1, . . . , Pk) is a good k-means partition). If Ψ > 4 ·k3/2 then there are vectors
{p(i)}ki=1 such that Cost({Pi, p(i)}ki=1) 6 (1 + 3k

Ψ ) · k
2

Ψ .

I Lemma 3.2 (Only partitions close to (P1, . . . , Pk) are good). Under the hypothesis of
Theorem 1.2, the following holds. If for every permutation σ : [1 : k]→ [1 : k] there exists an
index i ∈ [1 : k] such that

µ(Ai4Pσ(i)) >
8αδ
104k

· µ(Pσ(i)), then it holds Cost({Ai, ci}ki=1) > 2αk2

Ψ .

We note that Lemma 3.2 follows directly by applying Lemma 2.4 with ε = 64α · k3/Ψ.
Substituting these bounds into (2) yields a contradiction, since

2αk2

Ψ < Cost({Ai, ci}ki=1) 6 α · 4k(XV ) 6 α · Cost({Pi, p(i)}ki=1) 6
(

1 + 3k
Ψ

)
· αk

2

Ψ .

Therefore, there exists a permutation π (the identity after suitable renumbering of one of the
partitions) such that µ(Ai4Pi) < 8αδ

104k · µ(Pi) for all i ∈ [1 : k].
Part (a.2) follows from part (a.1). Indeed, for δ′ = 8δ/104 we have

µ(Ai) > µ(Pi ∩Ai) = µ(Pi)− µ(Pi \Ai) > µ(Pi)− µ(Ai4Pi) >
(

1− αδ′

k

)
· µ(Pi)

and |E(Ai, Ai)| 6 |E(Pi, Pi)|+ µ(Ai∆Pi) since every edge that is counted in |E(Ai, Ai)| but
not in |E(Pi, Pi)| must have an endpoint in Ai∆Pi. Thus

Φ(Ai) = |E(Ai, Ai)|
µ(Ai)

6
|E(Pi, Pi)|+ αδ′

k · µ(Pi)
(1− α·δ′

k ) · µ(Pi)
6

(
1 + 2αδ′

k

)
· φ(Pi) + 2αδ′

k
.

This completes the proof of Theorem 1.2 (a).

4 The Normalized Spectral Embedding is ε-separated

In this section, we prove that the normalized spectral embedding XV is ε-separated.

Proof of Theorem 2.6

We establish first a lower bound on 4k−1(XV ).

I Lemma 4.1. Let G be a graph that satisfies the gap assumption δ = 204 · k3/Ψ ∈ (0, 1/2].
Then for δ′ = 2δ/204 it holds 4k−1(XV ) > 1/12− δ′/k.
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Before we prove Lemma 4.1 we show that it implies (10). By Lemma 3.1 we have 4k(XV ) 6
2k2/Ψ = δ′/k. Then, we apply Lemma 4.1 with δ 6 k · ε/600, where ε = 6/107 is the
Ostrovsky et al.’s constant, yielding

4k−1(XV ) > 1
12 −

δ′

k
= 1

12 −
2

204 ·
δ

k
>

1010

9 · 25 ·
δ

k
= 1
ε2 ·

δ′

k
>

1
ε2 · 4k(XV ).

Proof of Lemma 4.1

Let (P1, . . . , Pk) and (Z1, . . . , Zk−1) be partitions of V . We define a mapping σ : [1 : k−1] 7→
[1 : k] by

σ(i) = arg max
j∈[1:k]

µ(Zi ∩ Pj)
µ(Pj)

, for every i ∈ [1 : k − 1].

We lower bound now the clusters overlapping in terms of the volume between any k-way
and (k − 1)-way partitions of V .

I Lemma 4.2. Suppose (P1, . . . , Pk) and (Z1, . . . , Zk−1) are partitions of V . Then for any
index ` ∈ [1 : k]\{σ(1), . . . , σ(k−1)} (there is at least one such `) and for every i ∈ [1 : k−1]
it holds{

µ(Zi ∩ Pσ(i)), µ(Zi ∩ P`)
}
> τi ·min

{
µ(P`), µ(Pσ(i))

}
,

where
∑k−1
i=1 τi = 1 and τi > 0.

Proof. By pigeonhole principle there is an index ` ∈ [1 : k] such that ` /∈ {σ(1), . . . , σ(k − 1)}.
Thus, for every i ∈ [1 : k − 1] we have σ(i) 6= ` and

µ(Zi ∩ Pσ(i))
µ(Pσ(i))

>
µ(Zi ∩ P`)
µ(P`)

, τi,

where
∑k−1
i=1 τi = 1 and τi > 0 for all i. Hence, the statement follows. J

Proof of Lemma 4.1. Let (Z1, . . . , Zk−1) be a (k − 1)-way partition of V with centers
c′1, . . . , c

′
k−1 that achieves 4k−1(XV ), and (P1, . . . , Pk) be a k-way partition of V achieving

ρ̂avr(k). Our goal now is to lower bound the optimal (k − 1)-means cost

4k−1(XV ) =
k−1∑
i=1

k∑
j=1

∑
u∈Zi∩Pj

du ‖F (u)− c′i‖
2
. (15)

By Lemma 4.2 there is an index ` ∈ [1 : k] \ {σ(1), . . . , σ(k − 1)}. For i ∈ [1 : k − 1] let

pγ(i) =
{
p` , if

∥∥p` − c′i∥∥ >
∥∥pσ(i) − c′i

∥∥ ;
pσ(i) , otherwise.

Then by combining Lemma 2.3 and Lemma 4.2, we have∥∥∥pγ(i) − c′i
∥∥∥2

>
[
8 ·min

{
µ(P`), µ(Pσ(i))

}]−1 and µ(Zi∩Pγ(i)) > τi ·min
{
µ(P`), µ(Pσ(i))

}
,

(16)

where
∑k−1
i=1 τi = 1. We now lower bound the expression in (15). Since

‖F (u)− c′i‖
2
>

1
2

∥∥∥pγ(i) − c′i
∥∥∥2
−
∥∥∥F (u)− pγ(i)

∥∥∥2
,
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it follows for δ′ = 2δ/204 that

4k−1(XV ) =
k−1∑
i=1

k∑
j=1

∑
u∈Zi∩Pj

du ‖F (u)− c′i‖
2
>
k−1∑
i=1

∑
u∈Zi∩Pγ(i)

du ‖F (u)− c′i‖
2

>
1
2

k−1∑
i=1

∑
u∈Zi∩Pγ(i)

du

∥∥∥pγ(i) − c′i
∥∥∥2
−
k−1∑
i=1

∑
u∈Zi∩Pγ(i)

du

∥∥∥F (u)− pγ(i)
∥∥∥2

>
1
2

k−1∑
i=1

µ(Zi ∩ Pγ(i))
8 ·min

{
µ(Pγ(i)), µ(Pσ(i))

} − k∑
i=1

∑
u∈Pi

du
∥∥F (u)− pi

∥∥2

>
1
16 −

δ′

k
,

where the last inequality holds due to (16) and Lemma 3.1. J

5 An Efficient Spectral Clustering Algorithm

Here, we apply the proof techniques developed by Boutsidis et al. [1, 2] to our setting. More
precisely, we prove that any α-approximate k-means algorithm that runs on an approximate
normalized spectral embedding Ỹ ′ computed by the power method, yields an approximate
clustering X̃ ′α of the normalized spectral embedding Y ′.

Furthermore, we prove under our gap assumption that Ỹ ′ is ε-separated. This allows
us to apply the variant of Lloyd’s k-means algorithm analyzed by Ostrovsky et al. [5] to
efficiently compute X̃ ′α. Then we use Theorem 1.2 (a) to establish the desired statement.

This section is organized as follows. In Subsection 5.1, we prove Theorem 2.8. Then in
Subsection 5.2, we present the proof of Theorem 2.9. Based on the results from the preceding
two subsections, we prove Theorem 1.2 (b) in Subsection 5.3.

5.1 Proof of Theorem 2.8
Due to space limits, we defer the proofs of the next Lemmas to the full version of the paper.

I Lemma 5.1. X ′X ′T is a projection matrix.

I Lemma 5.2. It holds that Y ′TY ′ = Ik×k = Ỹ ′
T
Ỹ ′.

I Lemma 5.3. It holds that
∥∥∥Y ′Y ′T − Ỹ ′Ỹ ′T∥∥∥

F
=
∥∥∥Y Y T − Ỹ Ỹ T

∥∥∥
F
.

I Lemma 5.4. For any matrix U with orthonormal columns and every matrix A it holds∥∥UUT −AATUUT∥∥
F

=
∥∥U −AATU

∥∥
F
. (17)

Proof Sketch of Theorem 2.8. By combining Lemma 2.7 and Lemma 5.3, with probability
at least 1− 2e−2n − 3δp we have

∥∥∥Y ′Y ′T − Ỹ ′Ỹ ′T∥∥∥
F

=
∥∥∥Y Y T − Ỹ Ỹ T

∥∥∥
F
6 ε.

Let Y ′Y ′T = Ỹ ′Ỹ ′
T

+ E such that ‖E‖F 6 ε. Based on Lemma 5.2 and Lemma 5.4 we
have that (17) holds for the matrices Y ′ and Ỹ ′. Hence, by Lemma 5.1 we can apply the proof

in [1, Theorem 6] to obtain
∥∥∥∥Y ′ − X̃ ′α (X̃ ′α)T

Y ′
∥∥∥∥
F

6
√
α ·
(∥∥∥Y ′ −X ′opt

(
X ′opt

)T
Y ′
∥∥∥
F

+ 2ε
)
.

The desired statement follows by simple algebraic manipulations. J
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5.2 Proof of Theorem 2.9

In this subsection, we show under our gap assumption that the approximate normalized
spectral embedding Ỹ ′ is ε-separated, i.e. 4k(X̃V ) < 5ε2 · 4k−1(X̃V ). Our analysis builds
upon Theorem 2.6, Theorem 2.8 and the proof techniques in [1, Theorem 6].

We use interchangeably X ′opt and X ′(k)
opt to denote the optimal indicator matrix for the

k-means problem on XV that is induced by the rows of matrix Y ′. Similarly, we denote by
X
′(k−1)
opt the optimal indicator matrix for the (k − 1)-means problem on XV .

Proof Sketch of Theorem 2.9. By Theorem 2.6 we have∥∥∥∥Y ′ −X ′(k)
opt

(
X
′(k)
opt

)T
Y ′
∥∥∥∥
F

6 ε

∥∥∥∥Y ′ −X ′(k−1)
opt

(
X
′(k−1)
opt

)T
Y ′
∥∥∥∥
F

. (18)

We set the approximation parameter in Theorem 2.8 to

ε′ ,
1
4
√
4k(XV ) = 1

4

∥∥∥∥Y ′ −X ′(k)
opt

(
X
′(k)
opt

)T
Y ′
∥∥∥∥
F

> n−O(1), (19)

and we note that by Theorem 2.6 it holds ε′ 6 ε
4
√
4k−1(XV ).

We construct now matrix Ỹ via the power method with p > Ω( lnn
λk+1

). By Lemma 5.3 we

have
∥∥∥Y ′Y ′T − Ỹ ′Ỹ ′T∥∥∥

F
=
∥∥∥Y Y T − Ỹ Ỹ T

∥∥∥
F

and thus by Lemma 2.7 with high probability

it holds that
∥∥∥Y ′(Y ′)T − Ỹ ′Ỹ ′

T∥∥∥
F
6 ε′.

Let Y ′(Y ′)T = Ỹ ′Ỹ ′
T

+ E such that ‖E‖F 6 ε′. By combining Lemma 5.1, Lemma 5.2,
Lemma 5.3 and by applying the proof techniques in [1, Theorem 6] we obtain

√
4k
(
X̃V
)
6 ‖E‖F +

∥∥∥∥∥Y ′ − X̃ ′(k)
opt

(
X̃
′(k)
opt

)T
Y ′

∥∥∥∥∥
F

.

Furthermore, we can show that ln
(

2−λk
2−λk+1

)
> 1

2
(
1− 4δ

204k2

)
λk+1. Then Theorem 2.8 yields

∥∥∥∥∥Y ′ − X̃ ′(k)
opt

(
X̃
′(k)
opt

)T
Y ′

∥∥∥∥∥
2

F

6 (1 + 4ε′) ·
∥∥∥∥Y ′ −X ′(k)

opt

(
X
′(k)
opt

)T
Y ′
∥∥∥∥2

F

+ 4ε′2.

Also, we can show
∥∥∥∥Y ′ −X ′(k)

opt

(
X
′(k)
opt

)T
Y ′
∥∥∥∥2

F

6 1
8·1013 and by the definition of ε′ it follows

√
4k
(
X̃V
)
6 2
√
4k(XV ) 6 2ε ·

√
4k−1(XV ). (20)

Moreover, by applying similar arguments as in the proof of [1, Theorem 6] we can prove that

√
4k−1(XV ) 6

(
1 + ε

2

)√
4k−1

(
X̃V
)
. (21)

The statement follows by combining (20) and (21). J
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5.3 Proof of Part (b) of Theorem 1.2
Let p = Θ( lnn

λk+1
). We can compute the matrix BpS in time O(mkp) and its singular value

decomposition Ũ Σ̃Ṽ T in time O(nk2). Based on it, we construct in time O(mk) matrix Ỹ ′
(c.f. (13)).

By Theorem 2.9, X̃V is ε-separated for ε = 6/107, i.e. 4k
(
X̃V
)
< 5ε2 · 4k−1

(
X̃V
)
.

Hence, by Theorem 2.5 there is an algorithm that outputs in time O(mk2 + k4) a clustering
with indicator matrix X̃ ′α satisfying∥∥∥∥Ỹ ′ − X̃ ′α (X̃ ′α)T

Ỹ ′
∥∥∥∥2

F

6

(
1 + 1

1010

)
·
∥∥∥∥Ỹ ′ − X̃ ′opt

(
X̃ ′opt

)T
Ỹ ′
∥∥∥∥2

F

with constant probability (close to 1), where α = 1 + 1/1010.
Moreover, by applying Theorem 2.8 with ε′ = 1

4·103

∥∥∥Y ′ −X ′opt
(
X ′opt

)T
Y ′
∥∥∥
F

we can

prove that the indicator matrix X̃ ′α yields a multiplicative approximation of XV , i.e.∥∥∥∥Y ′ − X̃ ′α (X̃ ′α)T
Y ′
∥∥∥∥2

F

6

(
1 + 1

106

)∥∥∥Y ′ −X ′opt
(
X ′opt

)T
Y ′
∥∥∥2

F
. (22)

The statement follows by Theorem 1.2 (a) applied to the partition (A1, . . . , Ak) of V that is
induced by the indicator matrix X̃ ′α.
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