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Abstract
Turaev-Viro invariants are amongst the most powerful tools to distinguish 3-manifolds. They are
invaluable for mathematical software, but current algorithms to compute them rely on the enu-
meration of an extremely large set of combinatorial data defined on the triangulation, regardless
of the underlying topology of the manifold.

In the article, we propose a finer study of these combinatorial data, called admissible col-
ourings, in relation with the cohomology of the manifold. We prove that the set of admissible
colourings to be considered is substantially smaller than previously known, by furnishing new
upper bounds on its size that are aware of the topology of the manifold. Moreover, we deduce
new topology-sensitive enumeration algorithms based on these bounds.

The paper provides a theoretical analysis, as well as a detailed experimental study of the ap-
proach. We give strong experimental evidence on large manifold censuses that our upper bounds
are tighter than the previously known ones, and that our algorithms outperform significantly
state of the art implementations to compute Turaev-Viro invariants.
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1 Introduction

In geometric topology, testing if two manifolds are equivalent is one of the most fundamental
algorithmic problems. In fact, the task of comparing the topology of two given manifolds
often stands at the very beginning of a question, and solving it is essential for conducting
research in the field. In the active field of research of 3-manifold topology, this task is
remarkably difficult. As a result, practitioners in computational topology rely on simpler
invariants – properties of a topological space that can tell different spaces apart.

In the discrete setting, among the most useful invariants for 3-manifolds are the Turaev-
Viro invariants [16]. They derive from quantum field theory but can be computed by
purely combinatorial means – much like the famous Jones polynomial for knots. They are
implemented in the major software packages Regina [4] and the Manifold Recogniser [12, 13],
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and they play a key role in developing census databases, which are analogous to the well-
known dictionaries of knots [1, 12]. Their main difficulty is that they are slow to compute:
the best implementations rely on the enumeration of exponentially large sets of combinatorial
data defined on a triangulation.

The Turaev-Viro invariants are a family of invariants (TVr) indexed by an integer r ≥ 3.
For a triangulation T, the Turaev-Viro invariant is based on colourings of the triangulation
T, which are assignements of one of r − 1 distinct colours to each of the edges of T. Only a
subset of colourings satisfy admissibility constraints – which are of combinatorial nature –,
and each admissible colouring defines a weight. The Turaev-Viro invariant TVr(T) is equal
to the sum of these weights over all admissible colourings.

For any r ≥ 3, a naive algorithm to compute TVr(T) on a triangulation T, with m edges,
consists of a simple backtracking procedure enumerating all of the (r − 1)m edge colourings,
checking each of them for admissibility and summing the weights, resulting in a memory
efficient but very slow implementation. More recently, Burton and the authors introduced
a fixed parameter tractable (FPT) algorithm which is linear in the size of the input, and
only singly exponential in the treewidth of the dual graph of T [5]. This is possible by using
the structure of the input to process large groups of admissible colourings simultaneously.
Despite good performance in practice, this approach requires exponential memory and the
running time is very sensitive to the combinatorial structure of the input triangulation, as
opposed to the topology of the underlying manifold.

Algorithmic results exist for specific values of r. For r = 3, the Turaev-Viro invariant
TV3(T) can be interpreted in terms of the cohomology of the manifold, which results in a
polynomial time algorithm [5, 12]. For r = 4 however, the computation of the invariant is
known to be hard for the counting complexity class #P [5, 11]. This gives evidence that a
general efficient solution (for example polynomial) for computing TVr is unlikely to exist.

In this article, we elaborate on the cohomology interpretation of the Turaev-Viro invariants,
successful for the case r = 3, to design more efficient implementations for TVr relying on
an optimised enumeration of admissible colourings. More precisely, we use the admissibility
constraints to connect colourings and cohomology classes of the manifold, and reduce a priori
the number of colourings to be considered algorithmically in order to find all admissible
colourings.

Using this technique, we study the structure of the set of admissible colourings for r = 3
and r = 4. We design new sharper upper bounds on the number of admissible colourings of
a triangulation for r = 4, and deduce an algorithm to compute TV4 which is linear in these
new bounds. This is of particular interest considering the #P-hardness of this computation.
We give experimental evidence on large censuses of triangulations that these upper bounds
are sharp in many cases and significantly better than the naive ones.

We then study in more details admissible colourings that reduce to the trivial cohomology
class. This is a special case of particular importance, as it allows the study of homology
spheres – manifolds involved in the 3-sphere recognition problem – and later becomes a key
ingredient for an improved algorithm to compute TVr, with r odd, on any manifold. We
deduce new sharp upper bounds on the number of colourings of homology spheres for r ≤ 7.

Finally, building on this study at the trivial cohomology class, and work by Kirby and
Melvin [10] and Matveev [12], we introduce an improved algorithm to compute the Turaev-
Viro invariants for odd values of r. By embedding it within existing algorithms, our method
allows a significant exponential speed-up on both backtracking algorithm and FPT algorithm
to compute Turaev-Viro invariants. We provide large scale experiments to show the interest
of the method. In particular, our new enumeration of colourings, combined with the FPT
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algorithm to compute Turaev-Viro, performs up to two orders of magnitude faster than state
of the art implementation, hence opening notably the range of possible practical computations
in 3-manifold topology.

These implementations will appear as features in the 3-manifold software Regina [4].

2 Background

Manifolds and generalised triangulations: Let M be a closed 3-manifold. A generalised
triangulation T of M is a collection of n abstract tetrahedra ∆1, . . . ,∆n together with 2n
gluing maps identifying their 4n triangular faces in pairs, such that the underlying topological
space is homeomorphic to M .

As a consequence of the gluings, vertices, edges or triangles of the same tetrahedron
may be identified. It follows from an Euler characteristic argument, that any n-tetrahedra
v-vertex triangulation of a closed 3-manifold must have 2n triangles and n+ v edges. It is
common in practical applications to have a one-vertex triangulation, in which all vertices of
all tetrahedra are identified to a single point. We refer to an equivalence class defined by the
gluing maps as a single face of the triangulation. The number of tetrahedra n of T is often
referred to as the size of the triangulation. We denote by V , E, F and T the vertices, edges,
triangles and tetrahedra, respectively, of a generalised triangulation.

Generalised triangulations are widely used in 3-manifold topology. They are more general
than simplicial complexes, and can encode a wide range of manifolds, and very complex
topologies, with very few tetrahedra. For instance, one can build 13 400 distinct prime
manifolds with less than 11 tetrahedra [12], and the number of distinct manifolds represented
by generalised triangulations with less than n tetrahedra grows super-exponentially with n.

We refer to [9] for more details on generalised triangulations.

Homology and cohomology: In the following section we give a very brief introduction to
(co)homology theory. For more details see [7].

Let T be a generalised 3-manifold triangulation. For the field of coefficients Z2 := Z/2Z,
the group of p-chains, 0 ≤ p ≤ 3, denoted Cp(T,Z2), of T is the group of formal sums of
p-faces with Z2 coefficients. The boundary operator is a linear operator ∂p : Cp(T,Z2) →
Cp−1(T,Z2) such that ∂pσ = ∂p{v0, · · · , vp} =

∑p
j=0{v0, · · · , v̂j , · · · , vp}, where σ is a face

of T, {v0, . . . , vp} represents σ as a face of a tetrahedron of T in local vertices v0, . . . , vp,
and v̂j means vj is deleted from the list. Denote by Zp(T,Z2) and Bp−1(T,Z2) the kernel
and the image of ∂p respectively. Observing ∂p ◦ ∂p+1 = 0, we define the p-th homology
group Hp(T,Z2) of T by the quotient Hp(T,Z2) = Zp(T,Z2)/Bp(T,Z2). These structures
are vector spaces.

The concept of cohomology is in many ways dual to homology, but more abstract and
endowed with more algebraic structure. It is defined in the following way: The group of
p-cochains Cp(T,Z2) is the formal sum of linear maps of p-faces of T into Z2. The coboundary
operator is a linear operator δp : Cp−1(T,Z2)→ Cp(T,Z2) such that for all φ ∈ Cp−1(T,Z2)
we have δp(φ) = φ ◦ ∂p. As above, p-cocycles are the elements in the kernel of δp+1, p-
coboundaries are elements in the image of δp, and the p-th cohomology group Hp(T,Z2) is
defined as the p-cocycles factored by the d-coboundaries.

We denote by β1(T,Z2) the dimension of H1(T,Z2), called the first Betti number of the
manifold. By duality, this is also the dimension of homology and cohomology groups of
dimension p ∈ {1, 2}, with Z2 coefficients.

ESA 2016
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In Section 3.1 we discuss how 1-cocycles correspond to (sets of) admissible colourings of
the edges of T used in the definition of Turaev-Viro invariants.

Turaev-Viro invariants: In this section we briefly describe invariants of Turaev-Viro type
TVr, parameterised by an integer r ≥ 3. We then have a closer look at the more specialised
original Turaev-Viro invariants TVr,q, which also depend on a second integer 0 < q < 2r.

Let T be a generalised triangulation of a closed 3-manifold M , and let r ≥ 3, be an
integer. Let V , E, F and T denote the set of vertices, edges, triangles and tetrahedra of
the triangulation T respectively. Let I = {0, 1/2, 1, 3/2, . . . , (r − 2)/2} be the set of the first
r − 1 non-negative half-integers. A colouring of T is defined to be a map θ : E → I; that
is, θ “colours” each edge of T with an element of I. A colouring θ is admissible if, for each
triangle of T, the three edges e1, e2, and e3 bounding the triangle satisfy the

parity condition θ(e1) + θ(e2) + θ(e3) ∈ Z;
triangle inequalities θ(ei) ≤ θ(ej) + θ(ek), {i, j, k} = {1, 2, 3}; and
upper bound constraint θ(e1) + θ(e2) + θ(e3) ≤ r − 2.

For a triangulation T and r ≥ 3, its set of admissible colourings is denoted by Adm(T, r).
For each admissible colouring θ and for each vertex w ∈ V , edge e ∈ E, triangle f ∈ F

or tetrahedron t ∈ T we define weights |w|θ, |e|θ, |f |θ, |t|θ ∈ C. The weights of vertices are
constant, and the weights of edges, triangles and tetrahedra only depend on the colours of
edges they are incident to. Using these weights, we define the weight of the colouring to be

|T|θ =
∏
w∈V
|w|θ ×

∏
e∈E
|e|θ ×

∏
f∈F

|f |θ ×
∏
t∈T
|t|θ, (1)

Invariants of Turaev-Viro types of T are defined as sums of the weights of all admissible
colourings of T, that is TVr(T) =

∑
θ∈Adm(T,r) |T|θ.

In [16], Turaev and Viro show that, when the weighting system satisfies some identities,
TVr(T) is indeed an invariant of the manifold; that is, if T and T′ are generalised triangulations
of the same closed 3-manifold M , then TVr(T) = TVr(T′) for all r. We thus sometimes
abuse notation and write TVr(M), meaning the Turaev-Viro type invariant computed for a
triangulation of M .

We refer to [5] for a precise definition of the weights of the original Turaev-Viro invariant
at sl2(C), which not only depend on r but also on a second integer 0 < q < 2r. The exact
definition of these weights is rather involved, but not at all important in order to understand
the findings presented in this article, we thus continue to denote these weights by | · |θ despite
the fact that they not only depend on θ, but also on r and q. We use these weights in our
experiments in Section 4.

For an n-tetrahedra triangulation T with v vertices there is a simple backtracking
algorithm to compute TVr,q(T) by testing the (r− 1)v+n possible colourings for admissibility
and computing their weights. The case r = 3 can however be computed in polynomial time,
due to a connection between Adm(T, 3) and cohomology, see Section 3.1 and [5, 12].

Classical results about Turaev-Viro invariants: Note that the Turaev-Viro invariants TVr,q

are closely related to the more general invariant of Witten and Reshetikhin-Turaev τr,q (∈ C),
due to the following result.

I Theorem 1 (Turaev [15], Roberts [14]). For the invariants of Witten and Reshetikhin-Turaev
τr,q, and the Turaev-Viro invariants, the following equality holds

TVr,q =| τr,q |2 .
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Theorem 1 enables us to translate a number of key results about the Witten and
Reshetikhin-Turaev invariants in terms of Turaev-Viro invariants. Namely, the following
statement holds.

I Theorem 2 (Based on Kirby and Melvin [10]). Let M and N be closed compact 3-manifolds,
and let r ≥ 3, 1 ≤ q ≤ r − 1. Then there exist γr ∈ C, such that for TV′r,1 = γrTVr,1 we
have

TV′r,1(M#N) = TV′r,1(M) · TV′r,1(N).

Additionally, when a manifold M is represented by a triangulation with n tetrahedra,
the normalising factor γr can be computed in polynomial time in n.

Using Turaev-Viro invariants at the trivial cohomology class we have the following identity
for odd degree r.

I Theorem 3 (Based on Kirby and Melvin [10]). Let M be a closed compact 3-manifold, and
let r ≥ 3 be an odd integer. Then

TVr,1(M) = TV3,1(M) · TVr,1(M, [0]).

3 Reduction of colourings at cohomology classes

Let T be a 3-manifold triangulation with v vertices, n+v edges, 2n triangles and n tetrahedra.
Following the definitions in Section 2 above, there are at most (r−1)n+v admissible colourings
for Adm(T, r). Due to the admissibility constraints for colourings, as described in Section 2,
this bound is usually far from being sharp. However, current enumeration algorithms for
admissible colourings do not try to capitalise on this fact (including the parameterised
algorithm from [5]).

In this section we discuss methods that incorporate these constraints in a controlled
fashion when enumerating admissible colourings. More precisely, we present improved upper
bounds on the number of admissible colourings in important special cases (thus reducing a
priori the number of options an enumeration algorithm needs to consider). Moreover, we
give a number of examples where these new upper bounds are actually attained. The bounds
are then used to construct a structure sensitive algorithm to enumerate Adm(T, 4), and to
achieve a significant exponential speed-up for the computation of the Turaev-Viro invariants
TVr,1 where r is odd.

3.1 Turaev-Viro invariants for r=3 and cohomology
There is a close connection between the first cohomology group of a 3-manifold triangulation
T and the admissible colourings of the Turaev-Viro invariants for r = 3. We discuss this
connection under the viewpoint of triangulations which helps setting the scene for improved
bounds on the number of admissible colourings for higher values of r, as presented in
Sections 3.2 and 3.4 below.

I Proposition 4. Let T be a 3-manifold triangulation with v vertices. Then there is a bijection
between Adm(T, 3) and the 1-cocycles of T, and we have |Adm(T, 3)| = 2v+β1(T,Z2)−1.

Proof. An edge colouring θ : E → {0, 1/2} defines a 1-cochain αθ with coefficients in Z2
evaluating to 1 on edges coloured 1/2 and to 0 otherwise. The parity condition on θ is then
equivalent to the boundary of αθ (which is a 2-chain) vanishing over Z2. Moreover, note that
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every colouring θ : E → {0, 1/2} satisfying the parity condition is admissible for r = 3. Thus
θ is admissible if and only if αθ is a cocycle. This proves the first statement. The second
statement follows from the observation that T has exactly 2v+β1(T,Z2)−1 cocycles. J

Let H1(T,Z2) = (Z2)β1(T,Z2) be the first cohomology group of T. Since every 1-cocycle α
in T is a representative of a cohomology class [α] ∈ H1(T,Z2), every admissible colouring in
Adm(T, 3) can be associated to a cohomology class. This correspondence can be generalised
to arbitrary r ≥ 3 with the help of the following observation.

I Proposition 5. Let T be a 3-manifold triangulation with edge set E, r ≥ 3, and θ ∈
Adm(T, r). Then the reduction of θ, defined by θ′ : E → {0, 1/2}; e 7→ θ(e)− bθ(e)c, is an
admissible colouring in Adm(T, 3).

Proof. Let f be a triangle of T with edges e1, e2, and e3. Since θ ∈ Adm(T, r) is admissible,
we have θ(e1) + θ(e2) + θ(e3) ∈ Z. Thus, there are either no or two half-integers amongst
the colours of the edges of f and θ′ ∈ Adm(T, 3). J

We have seen that every colouring θ ∈ Adm(T, r) can be associated to a 1-cohomology
class of T via its reduction θ′ ∈ Adm(T, 3) and Proposition 4. We know from [12, 16] that
this construction can be used to split TVr(T) (and thus also TVr,q(T)) into simpler invariants
indexed by the elements of H1(T,Z2). More precisely, let [α] ∈ H1(T,Z2) be a cohomology
class, then

TVr(T, [α]) =
∑

θ ∈ Adm(T, r)
θ mod 2 ∈ [α]

|T|θ,

where θ mod 2 denotes the reduction of θ, is an invariant of T. The special case TVr(T, [0])
is of particular importance for computations as explained in further detail in Section 3.4.

3.2 Admissible colourings for r=4
We have seen in Proposition 4 that admissible colourings for r = 3 are in one-to-one
correspondence to the 1-cocycles of a triangulated 3-manifold T. This basic but very useful
observation has consequences for the structure of Adm(T, 4). This is particularly interesting
as computing TV4,1 is known to be #P -hard [5, 11]. More precisely, the following statement
holds.

I Theorem 6. Let T be an n-tetrahedron 3-manifold triangulation with v vertices, and let
θ ∈ Adm(T, 3). Furthermore, let kerθ be the number of edges coloured 0 by θ. Then

|Adm(T, 4)| ≤
(
Σθ∈Adm(T,3)\{0}2kerθ

)
+ 2v+β1(T,Z2)−1 (2)

≤ (|Adm(T, 3)| − 1)(2n+v−1 + 1) + 1, (3)

where 0 denotes the all zero colouring. Moreover, both bounds are sharp.

Proof. Let θ ∈ Adm(T, 4), and let θ′ be its reduction, as defined in Proposition 5. If θ′ is the
trivial colouring (that is, if no colour of θ is coloured by 1/2) the colouring θ/2, obtained by
dividing all of the colours of θ by two, must be in Adm(T, 3). It follows from Proposition 4
that exactly 2v+β1(T,Z2)−1 colourings in Adm(T, 4) reduce to the trivial colouring.

If θ′ is not the trivial colouring then θ colours some edges by 1/2. In particular it is not
the trivial colouring. Since the only colours in θ are 0, 1/2, and 1, all edges coloured by 1/2
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in θ are coloured by 1/2 in θ′ and vice versa. Thus, kerθ′ denotes all edges coloured by 0
or 1 in θ. Naturally, there are at most 2kerθ′ such colourings. The result now follows by
adding these upper bounds 2kerθ′ over all non-trivial reductions θ′ ∈ Adm(T, 3), and adding
the 2v+β1(T,Z2)−1 extra colourings with trivial reduction.

For Equation (3) note that each non-trivial colouring in Adm(T, 3) has at least one edge
coloured 1/2 and thus kerθ′ is at most the number of edges minus one.

It follows that for β1(T,Z2) or v sufficiently large this bound cannot be tight. For 1-vertex
triangulations T with β1(T,Z2) = 0 this bound is sharp as explained in Proposition 7.
Looking at all 1-vertex triangulations with β1(T,Z2) = 1 up to six tetrahedra, the cases of
equality in Inequality (3) are summarised in Table 2. See Table 1 for a large number of cases
of equality for Inequality (2). J

3.3 A structure-sensitive algorithm to compute Adm(T, 4)
In this section we describe an algorithm to compute TV4,q – a problem known to be #P -hard
– exploiting the combinatorial structure of the input triangulation. The algorithm is a direct
consequence of the proof of Theorem 6.

Input. A v-vertex n-tetrahedra triangulation of a closed 3-manifold T with set of edges E
1. Compute Adm(T, 3). Following the proof of Proposition 4, it is enough to compute a

basis of the 1-cohomology of T with coefficients in the field with two elements Z2. Then
every cocycle naturally defines an admissible colouring and vice versa. This can be
done in polynomial time by solving a linear system of equations. Adm(T, 3) can then be
enumerated using the cohomology basis.

2. For all θ ∈ Adm(T, 3), enumerate the set of edges kerθ ⊂ E of T coloured zero in θ.
3. For each non-trivial θ ∈ Adm(T, 3), for each subset A ⊆ kerθ: Let θ′ be the edge colouring

that colours (i) all edges in A by 1, (ii) all edges in (E \ kerθ) by 1/2, and (iii) all edges
in (kerθ \A) by 0. For each non-trivial θ, set up a backtracking procedure to check all
such θ′ for admissibility. Add the admissible colourings θ′ to Adm(T, 4).

4. For all colourings θ ∈ Adm(T, 3), double all colours of θ and add the result to Adm(T, 4).

Correctness of the algorithm and running time. Due to Theorem 6 we know that the
above procedure enumerates all colourings in Adm(T, 4). Computing TV4,q(T) thus runs in

O
((

Σθ∈Adm(T,3)\{0 } 2kerθ
)
· n+ 2v+β1(T,Z2)−1

)
arithmetic operations. This upper bound is much smaller than the worst case running time
(r − 1)n+v of the naive backtracking procedure.

In Section 4.3, we provide experimental evidence on a large census of triangulations that
the new upper bounds on the number of admissible colourings from Theorem 6 are tight in
many cases and close to being tight in average, and that our new algorithm to enumerate
the colourings of Adm(T, 4) experimentally exhibits an output-sensitive nature.

3.4 Computing Turaev-Viro invariants at the zero cohomology class
Following Proposition 4 the complexity of enumerating admissible colourings of a 3-manifold
triangulation T not only depends on the size n of T, but also on (i) the number of vertices,
and (ii) the first Betti number of T.

Regarding (i) we show in Section 3.5 that, given T, we can efficiently find a triangulation
T′ of the same 3-manifold of same or smaller size with only one vertex. Regarding (ii) the
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first Betti number of T is a topological invariant and hence an unchangeable part of the
input. Thus, when computing TVr,q(T) by enumerating colourings, this layer of complexity
can not be avoided. However, this observation does not hold for the invariant TVr,q(T, [0])
which is a useful tool for various reasons.

1. First of all and most prominently, in order to compute TVr,q(T, [0]) we only need to
consider admissible colourings which correspond to the zero cohomology class. Following
Proposition 4 for a one-vertex triangulation T, the colourings corresponding to the zero
cohomology class are precisely the ones which reduce to the all zero colouring and thus
can only have integer colours. A similar statement for the case of special spines can be
found in [12, Remark 8.1.2.2].

2. One of the most important tasks of 3-manifold invariants is to distinguish between a 3-
manifold triangulation T and the 3-sphere (this task is known as the 3-sphere recognition
problem). Whenever the homology groups of T and the 3-sphere are different, this
distinction can efficiently be made (i.e., in polynomial time). Hence, 3-sphere recognition
is most interesting when homology fails, that is, when T has the (trivial) homology of the
3-sphere H1(T,Z2) = {[0]}. In this important case we have TVr,q(T) = TVr,q(T, [0]).

3. There are several non-trivial further cases when TVr,q(T) can be obtained from
TVr,q(T, [0]) in polynomial time, see Section 3.5 for details.

For the remainder of this section, instead of considering TVr,q(·, [0]), we follow the related
approach of considering TVr,q(·) and triangulations with vanishing first Betti number. We
will use this study in the next section to derive a faster algorithm to compute TVr,q(·) on all
manifold triangulations for r odd and q = 1. The following facts follow from the observations
made in Sections 3.1 and 3.2.

I Proposition 7. Let T be a 1-vertex triangulation such that β1(T,Z2) = 0. Then
(i) |Adm(T, r)| = 1 for r ≤ 4;
(ii) Let θ ∈ Adm(T, r), then all colours in θ must be integers;
(iii) |Adm(T, r)| ≤

⌊
r
2
⌋n+1

.

In particular, TVr,q(T), r ≤ 4, must be trivial, and manifolds with trivial Z2-cohomology
(a large group of 3-manifolds) can never be distinguished from the 3-sphere by TVr,q, r ≤ 4.

Proof.
(i) It follows from Proposition 4 that Adm(T, 3) = {0} and the statement follows from

Theorem 6.
(ii) Since Adm(T, 3) = {0} all colourings must reduce to the all zero colouring.
(iii) Since all colours in θ must be (a) integers, (b) sum to at most r− 2 on each triangle, and

(c) satisfy the triangle inequality. It follows that all colours must be integers between 0
and b r−2

2 c. The statement now follows from the fact that T has n+ 1 edges. J

The bound from Proposition 7 cannot be sharp since not all triangle colourings (a, b, c) ∈
{0, 1, . . . , b r−2

2 c}
3 are admissible. For 5 ≤ r ≤ 7 we have the following situation.

I Theorem 8. Let T be a 1-vertex n-tetrahedron triangulation such that β1(T,Z2) = 0, then

|Adm(T, 5)| ≤ 2n + 1; |Adm(T, 6)| ≤ 3n + 1; |Adm(T, 7)| ≤ 3n + 1.

Moreover, all these upper bounds are sharp.
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Proof. For r = 5 the admissible triangle colourings are (0, 0, 0), (1/2, 1/2, 0), (1, 1, 0),
(1, 1/2, 1/2), (1, 1, 1), (3/2, 3/2, 0), (3/2, 1, 1/2), up to permutations. By Proposition 5, no
colouring in Adm(T, 5) can contain an edge colour 1/2 or 3/2: Otherwise the reduction of
such a colouring would be a non-trivial colouring in Adm(T, 3), which does not exist (cf.
Proposition 4 and Corollary 7 with v = 1 and β1(T,Z2) = 0). Hence, all edge colours must
be 0 or 1, leaving triangle colourings (0, 0, 0), (1, 1, 0), and (1, 1, 1).

By an Euler characteristic argument, a 1-vertex n-tetrahedron 3-manifold has n+ 1 edges.
Hence the number of colourings of TV5,q is trivially bounded above by 2n+1. Furthermore,
let θ ∈ Adm(T, 5), then either θ is constant 0 on the edges, constant 1 on the edges, or
θ contains a triangle coloured (1, 1, 0). In the last case, the complementary colouring θ′,
obtained by flipping the colour on all the edges, contains a triangle coloured (0, 0, 1) and
thus θ′ 6∈ Adm(T, 5). It follows that |Adm(T, 5)| ≤ 2n + 1.

For r = 6 the admissible triangle colourings are the ones from the case r = 5 above plus
(3/2, 3/2, 1), (2, 1, 1), (2, 2, 0), (2, 3/2, 1/2). Again, due to Proposition 5, no half-integers can
occur in any colouring. Thus, the only admissible triangle colourings are (0, 0, 0), (1, 1, 0),
(1, 1, 1), (2, 1, 1), and (2, 2, 0).

We trivially have |Adm(T, 6)| ≤ 3n+1. Let θ ∈ Adm(T, 6). We want to show, that at most
a third of all non-constant assignment of colours 0, 1, 2 to the edges of T can be admissible.
For this, let θ ∈ Adm(T, 6) and let θ′ be defined by adding 1 (mod 3) to every edge colour.
For θ′ to be admissible, all triangles of θ must be of type (0, 0, 0) and (2, 1, 1). If at least one
triangle has colouring (0, 0, 0), θ must be the trivial colouring. Hence, all triangles are of type
(2, 1, 1) in θ. Replacing 2 by 0 and 1 by 1/2 in θ yields a non-trivial admissible colouring in
Adm(T, 3), a contradiction by Corollary 7. Hence, for every non-trivial admissible colouring
θ, the colouring θ′ cannot be admissible.

Analogously, let θ′′ be defined by adding 2 (mod 3) to every edge colour of θ. For θ′′ to
be admissible, all triangles of θ must be of the type (1, 1, 1), or (2, 2, 0). A single triangle
of type (1, 1, 1) in θ forces θ to be constant. Hence, all triangles must be of type (2, 2, 0).
Dividing θ by four defines a non-trivial colouring in Adm(T, 3), a contradiction.

Combining these observations, at most every third non-trivial assignment of colours 0, 1,
2 to the edges of θ can be admissible. Adding the two admissible constant colourings yields
|Adm(T, 6)| ≤ 3n + 1.

The proof for r = 7 follows from a slight adjustment of the proof for r = 6. Admissible
triangle colourings for colourings in Adm(T, 7) are the ones from r = 6 plus (2, 2, 1). Again,
we want to show that at most every third non-trivial assignment of colours 0, 1, 2 to the
edges of T can be admissible. For this let θ ∈ Adm(T, 7) and let θ′ and θ′′ be defined as
above. For θ′ to be admissible θ must consist of triangle colourings of type (0, 0, 0), (1, 1, 0)
and (2, 1, 1). Whenever θ is non-constant replacing 2 by 0, and 1 by 1/2 yields a non-trivial
colouring in Adm(T, 3) which is not possible. The argument for θ′′ is the same as in the case
r = 6. It follows that |Adm(T, 7)| ≤ 3n + 1.

All of the above bounds are attained by a number of small 3-sphere triangulations. See
Table 2 for more details about 1-vertex triangulations T with β1(T,Z2) = 0 with up to six
tetrahedra and their average number of admissible colourings |Adm(T, r)|, 5 ≤ r ≤ 7. J

There are 27, 202 1-vertex triangulations with vanishing first Betti number and up to 6
tetrahedra. Exactly 142 of them attain equality in all three bounds. For more details about
these cases of equality and the average number of colourings for 5 ≤ r ≤ 7 in the census, see
Table 2.

Note that the sharp bounds from Theorem 8 suggest that the over count of the general
bound from Proposition 7(iii) is only linear in r.
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3.5 An algorithm to compute TVr,1, r odd
In this section we describe a significant exponential speed-up for computing TVr,1(T) in the
case where r is odd and T does not contain any two-sided projective planes1. Note that the
case of r odd is of importance for 3-sphere recognition problem. The main ingredients for
this speed-up are:

The crushing and expanding procedure for closed 3-manifolds as described by Burton,
and Burton and Ozlen, which turns an arbitrary v-vertex triangulation into a number of
smaller 1-vertex triangulations in polynomial time [3, 6];
A classical result about Turaev-Viro invariants due to Turaev [15], Roberts [14], and
Kirby and Melvin [10] stating that there exists a scaled version TV′r,1 = γrTVr,1 which
is multiplicative under taking connected sums2, i.e., TV′r,1(M#N) = TV′r,1(M)TV′r,1(N)
(see Theorem 2);
Another classical result due to the same authors and publications stating that, for r odd,
we have

TVr,1(T) = TV3,1(T) · TVr,1(T, [0]),

and thus TVr,1(T, [0]) and TV3,1(T) are sufficient to compute TVr,1(T) (see Theorem 3);
Proposition 7(ii) stating that computing TVr,1(T, [0]) of a 1-vertex closed 3-manifold
triangulation can be done by only enumerating colourings with all integer colours.

Input. A v-vertex n-tetrahedra triangulation of a closed 3-manifold T

1. If T has more than one vertex, apply the crushing and expanding procedure to T as
described in [3] and [6] respectively. It is not necessary to understand this procedure in
detail. We only need this step to efficiently transform an arbitrary v-vertex n-tetrahedra
triangulation T into a number of triangulations Ti, 1 ≤ i ≤ s, such that the following
properties hold.

Form ≤ s, every triangulation Ti, 1 ≤ i ≤ m, is a 1-vertex ni-tetrahedron triangulation;
For m < ` ≤ s, the topological type of every triangulation T` can be detected in
polynomial time, and must be one of only three types (for which Turaev-Viro invariants
can be pre-computed in constant time);

We have (s−m) +
m∑
i=1

ni ≤ n;

We have T ∼= T1# . . .#Ts, i.e., T is the connected sum of the Ti, 1 ≤ i ≤ s.
If T contains a two-sided projective plane the crushing procedure will detect this fact and
the computation is cancelled. The total running time of this step is polynomial.

2. For 1 ≤ i ≤ m, compute TVr,1(Ti, [0]). This is the only step of this algorithm with an
exponential running time. All other steps can be completed in polynomial time.

3. For all Ti, compute TV3,1(Ti) – a polynomial time procedure, due to the one-to-one
correspondence between admissible colourings in Adm(T, 3) and 1-cocycles of T.

4. Use Theorem 3 (for r odd we have TVr,1(·) = TV3,1(·) TVr,1(·, [0])) to obtain TVr,1(Ti).
5. Scale all values from the previous step to TV′r,1, multiply them and re-scale the product.

The result equals TVr,1(T), by Theorem 2.

1 This is a technical pre-condition for the procedure to succeed. Triangulations not satisfying this
pre-condition are extremely rare.

2 Building the connected sum M#N of two manifolds M and N consists of removing a small ball from
M and N respectively, and glue them together along their newly created boundaries.
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equal size search trees

Figure 1 Number of nodes in the search tree visited by the naive algorithm and the optimised
backtracking procedure for the 500 first 1-vertex triangulations of the Hodgson-Weeks census.

Running time of the proposed algorithm. The crushing and expanding procedure, comput-
ing TV3,1(T)i, 1 ≤ i ≤ s, computing TVr,1(Ti, [0]), m < i ≤ s, and scaling and multiplying
the invariants are all polynomial time procedures [3, 6]. Following Proposition 7(iii) the
running time to compute TVr,1(Ti, [0]), 1 ≤ i ≤ m, is O(br/2cni+1) (remember, Ti is a
1-vertex triangulation). The overall running time is thus O(br/2cn+1). The same procedure
can be applied to improve the fixed parameter tractable algorithm as presented in [5] – which
is also based on enumerating colourings – to get the running time O(nbr/2c6(k+1)k2 log r),
where k is the treewidth of the dual graph of T.

In Sections 4.1 and 4.2 we show that this improvement has also strong practical implic-
ations. In particular, the proposed algorithms allow computations up to several orders of
magnitude faster than state of the art procedures to compute Turaev-Viro invariants.

4 Experiments

Here we run large scale experiments to illustrate the interest and performance of the methods
introduced above. Implementations will appear within the 3-manifold software Regina [4].

We use two data sets for our experiments, both taken from large “census databases” of
3-manifolds to ensure that the experiments are comprehensive and not cherry-picked. The
first census contains all 50 817 closed minimal triangulations that can be formed from n ≤ 11
tetrahedra [2, 12]. This simulates “real-world” computation – the Turaev-Viro invariants
were used to build this census. The second data set contains the triangulations from the
Hodgson-Weeks census of closed hyperbolic manifolds [8]. This shows performance on larger
triangulations, with n ranging from 9 to 20.

The admissible colouring weights may be computed symbolically or numerically, which
acts substantially on running times. In the following, we either avoid this difficulty by
measuring “discrete data” (like size of search spaces) to represent performance, or we indicate
which weight representation we use.
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Figure 2 Number of nodes in the search tree visited by the optimised backtracking procedure
over the naive algorithm for the 1-vertex minimal closed triangulations.

4.1 Computing TVr,1 with the backtracking method, r odd
We compare experimentally the performance of the naive backtracking algorithm with our
proposed backtracking algorithm (Section 3.5) enumerating only colouring at the cohomology
class [0]. To do so, we count the number of nodes in the backtracking search tree visited
by both algorithms for computing TV5,1 (i) for all triangulations with ≤ 11 tetrahedra
in the census of closed minimal triangulations [2] (see Figure 2), and (ii) for the first 500
triangulations of the Hodgson-Weeks census, with 10 ≤ n ≤ 15, [8] (see Figure 1). These
triangulations all have one vertex, and the improvement is solely due to the reduction of the
space of colourings studied above (in particular, the crushing step is not applied).

Because a colouring may be declared non-admissible before colouring all edges of the
triangulation, the standard backtracking algorithm visits generally fewer nodes than the
O((r − 1)n+1), for a triangulation with n tetrahedra, predicted by the worst case complexity
analysis. Despite this fact, the improvements of our algorithm for the minimal triangulations
census range from factors 2 to 117. Improvements in the Hodgson-Weeks census, which
contains much larger triangulations, range from factors 5.6 to 215. On both data sets, the
range of improvements rapidly grows larger as the size of the triangulations increase. We
confirm this observation below.

4.2 Computing TVr,1 with the FPT algorithm, r odd
As demonstrated in [5], the fixed parameter tractable (FPT) algorithm is the most efficient
procedure to compute Turaev-Viro invariants experimentally. Improving the running time of
this implementation is thus highly significant in practice.

We compare the running times of the FPT algorithm from [5] with the optimised FPT
algorithm relying on the enumeration of colourings at the trivial cohomology class, as
presented in Section 3.5. Here, the enumeration of colourings is done within the bags of
the tree decomposition of the dual graph of the triangulation [5]. Turaev-Viro invariants
are computed with floating point arithmetic. Figure 4 represents the running time of both
algorithms on the census of closed minimal triangulations of up to 11 tetrahedra, for r = 5. All
triangulations only have one vertex. We have removed from the timings triangulations with
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Figure 3 Comparison of the running times of the FPT algorithm presented in [5] and the FPT
algorithm with the enumeration procedure introduced in Section 3.5, to compute TV5,1 on the
Hodgson-Weeks census with n ≤ 20 tetrahedra (with one vertex and TV3,1 6= 0). We use the
parameter tw +β1 as a measure of “difficulty” for the computation. For readability, the plot presents
a sparsified cloud (500 uniform random samples for each parameter value).

TV3,1 = 0, as we can conclude in polynomial time, in our implementation, that TVr,1 = 0
using the formula involving TV3,1 in Section 3.5. Consequently, Figure 4 illustrates the
improvement solely due to the enumeration of colourings at the trivial cohomology class.
For our implementation of the FPT algorithm, we include the timings of all steps of the
algorithm presented in Section 3.5; the dominating step is naturally the computation of
TVr,1(T, [0]) (step 2), which is the only exponential step of the procedure.

Figure 4 shows a clear improvement of the running time of our algorithm. Most inter-
estingly, this range of improvement seems to increase (points getting further away from the
diagonal) for triangulations on which the standard FPT algorithm is slower.

To confirm this tendency on larger scales, we run the computational power-intensive
computation of TV11,1 on the first 1000 triangulations of the Hodgson-Weeks census (Figure 3),
with triangulations with up to 20 tetrahedra. We observe that 40% of the total running time
of the standard FPT algorithm over the 1000 triangulations is spent on only 10 of them. On
these 10 inputs, our implementation is up to 130 times faster, and 29 times faster in average,
reducing the total running time for these “hardest” 10 triangulations from several hours to a
few minutes of computation.

4.3 Experiments for computing Adm(T, 4)

In this section, we study experimentally the bounds on the number of admissible colourings
for r = 4, and the efficiency of the algorithm for TV4,1, introduced in Sections 3.2 and 3.3,
depending on them. Table 1 gives details on the bounds given by Theorem 6, and hence the
worst case number of steps of our algorithm to compute TV4,1, and the average number of
steps the backtracking algorithm requires to compute TV4,1. We run the experiments on all
minimal triangulations with up to 6 tetrahedra, sorted by Betti number β1.

We note that the actual number of nodes visited by the backtracking algorithm is
smaller than the worst case bound, but it is significantly larger than the upper bound of
Equation (2) in Theorem 6. Additionally, the bound given by Equation (2) is very close
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beta_1 + tw = 1
beta_1 + tw = 2
beta_1 + tw = 3
beta_1 + tw = 4
beta_1 + tw = 5
beta_1 + tw = 6
beta_1 + tw = 7
equal time

Figure 4 Comparison of the running times of the FPT algorithm from [5] and the FPT algorithm
with the enumeration procedure introduced in Section 3.5, to compute TV5,1 on the census of
minimal triangulations with n ≤ 11 tetrahedra (with one vertex and TV3,1 6= 0). We use the
parameter tw +β1 as a measure of “difficulty” for the computation. For readability, the plot presents
sparsified cloud (500 uniform random samples for each parameter value).

Table 1 “#T” lists the number of triangulations contained in the n-tetrahedra census of minimal
triangulations with first Betti number β1(T,Z2), “# eq. (2)” lists the number of triangulations
satisfying equality in Inequality (2). Below, the average number of nodes of the search tree visited
by the backtracking algorithm (“# tree”), the bound “Eqn. (2)” given by Inequality (2), and the
average number “Av.” of admissible colourings in Adm(T, 4) are listed.

(n, β1) (1, 1) (2, 1) (2, 2) (3, 1) (3, 2) (4, 1) (4, 2) (5, 1) (5, 2) (6, 1) (6, 2) (6, 3)

#T 1 5 1 27 3 205 19 1858 184 21459 2516 34
#eq. (2) 1 5 1 14 1 67 4 261 10 1574 47 0

#tree 12.0 33.0 39.0 46.4 69.0 75.2 110.1 93.1 159.2 120.4 214.5 413.2
Eqn. (2) 4.0 6.0 10.0 7.7 14.7 13.1 21.8 20.4 35.8 34.6 58.0 94.5
Av. 4.0 6.0 10.0 6.3 11.3 8.7 15.3 9.3 18.6 10.7 22.0 41.4

to the average number of admissible colourings of the triangulations, which underlines the
fact that our algorithm for TV4,1 has a practical output-sensitive behaviour in the number
of admissible colourings. Finally, our bounds on |Adm(T, 4)| are sharp on 1985 out of the
26, 312 triangulations of the experiment.

5 Experiments on triangulations with vanishing β1

In this section we provide experimental details on the number of admissible colourings of
triangulations with β1 = 0, and the ability of TVr,1 to distinguish between these manifolds
and the 3-sphere, which is of particular importance in 3-manifold topology.

In Table 2 we provide details on the number of admissible colourings of triangulations
with up to 6 tetrahedra and β1 = 0. In particular, the table shows that the bounds from
Proposition 8 are tight, and much finer in general than the naive bound (r − 1)n+v.

As evidence for the interest of the algorithm to compute TVr,1, r odd, introduced in
Section 3.5, we analyse the ability of TVr,1, r ∈ {3, 5, 7, 9}, to distinguish 3-manifolds



C. Maria and J. Spreer 64:15

Table 2 Number “# trigs.” of 1-vertex triangulations T of manifolds with β1(T,Z2) = 0 and n
tetrahedra, 1 ≤ n ≤ 6. Number “#sharp” of such triangulations satisfying equality in all bounds
from Theorem 8 (third column), and the average number “Adm(T, r)” of admissible colourings in
Adm(T, r), 5 ≤ r ≤ 7 (columns 6, 9, and 12), compared to the naive upper bound “(r − 1)v+n”
(columns 4, 7, and 10) and the new upper bounds given by Theorem 8 (columns 5, 8, and 11).

n #trig. #sharp (5−1)n+v 2n+1 |Adm(T,5)| (6−1)n+v 3n+1 |Adm(T,6)| (7−1)n+v 3n+1 |Adm(T,7)|

1 2 1 16 3 2.50 25 4 3.00 36 4 4.00
2 7 3 64 5 4.00 125 10 6.86 216 10 8.86
3 36 5 256 9 5.61 625 28 12.22 1, 296 28 17.28
4 255 14 1, 024 17 8.31 3, 125 82 23.46 7, 776 82 35.30
5 2305 30 4, 096 33 12.02 15, 625 244 43.00 46, 656 244 70.44
6 24597 89 16, 384 65 17.71 78, 125 730 80.15 279, 936 730 142.23

Table 3 Summary of the ability of TVr,1, 3 ≤ r ≤ 9, to distinguish 3-manifolds with trivial
(integral) homology up to complexity 11 from the 3-sphere. X/Y denotes the success rate, i.e., there
are Y manifolds, X of which can be distinguished from the 3-sphere by the respective invariant.

n TV3,1 TV4,1 TV5,1 TV6,1 TV7,1 TV8,1 TV9,1 TV5,1 and TV7,1

5 0/1 0/1 1/1 0/1 1/1 1/1 1/1 1/1
7 0/1 0/1 1/1 0/1 1/1 0/1 1/1 1/1
8 0/3 0/3 1/3 0/3 3/3 3/3 3/3 3/3
9 0/4 0/4 3/4 0/4 3/4 1/4 3/4 4/4

10 0/8 0/8 5/8 0/8 7/8 3/8 6/8 8/8
11 0/19 0/19 11/19 0/19 16/19 13/19 16/19 18/19

from the 3-sphere. Since homology can be computed in polynomial time, we only consider
3-manifolds M which cannot be distinguished from the 3-sphere using integral homology
(i.e., β1(M,F) = 0, for any choice of field F). There are 36 distinct such 3-manifolds of
complexity at most 11, meaning, they can be triangulated with 11 tetrahedra or less. Due to
Proposition 7(i) we already know that none of them can be distinguished from the 3-sphere
by TV3,1. TV5,1, TV7,1, and TV9,1 distinguish 22, 31, and 30, a combination of TV5,1 and
TV7,1 only fails once, and a combination of all three invariants never fails to distinguish
them from the 3-sphere. See Table 3 for details.

Together with the favourable timings presented in Section 4, this indicates that our new
approach to compute the Turaev-Viro invariants for odd values of r gives a practical fast
way to distinguish manifolds with β1 = 0 from the 3-sphere in many cases.
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