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Abstract
We present the first analysis of Fisher markets with buyers that have budget-additive utility
functions. Budget-additive utilities are elementary concave functions with numerous applications
in online adword markets and revenue optimization problems. They extend the standard case
of linear utilities and have been studied in a variety of other market models. In contrast to
the frequently studied CES utilities, they have a global satiation point which can imply multiple
market equilibria with quite different characteristics. Our main result is an efficient combinatorial
algorithm to compute a market equilibrium with a Pareto-optimal allocation of goods. It relies
on a new descending-price approach and, as a special case, also implies a novel combinatorial
algorithm for computing a market equilibrium in linear Fisher markets. We complement this
positive result with a number of hardness results for related computational questions. We prove
that it is NP-hard to compute a market equilibrium that maximizes social welfare, and it is
PPAD-hard to find any market equilibrium with utility functions with separate satiation points
for each buyer and each good.
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1 Introduction

The concept of market equilibrium is a fundamental and well-established notion in economics
to analyze and predict the outcomes of strategic interaction in large markets. Initiated by
Walras in 1874, the study of market equilibrium has become a cornerstone of microeconomic
analysis, mostly due to general results that established existence under very mild conditions [2].
Since efficient computation is a fundamental criterion to evaluate the plausibility of equilibrium
concepts, the algorithmic aspects of market equilibrium are one of the central domains
in algorithmic game theory. Over the last decade, several new algorithmic approaches to
compute market equilibria were discovered. Efficient algorithms based on convex programming
techniques can compute equilibria in a large variety of domains [12, 22, 25]. More importantly,
several approaches were proposed that avoid the use of heavy algorithmic machinery and
follow combinatorial strategies [17, 26, 29, 32, 20, 19], or even work as a tâtonnement process
in unknown market environments [13, 10, 4]. Designing such combinatorial algorithms
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8:2 Computing Equilibria in Markets with Budget-Additive Utilities

is useful also beyond the study of markets, since the underlying ideas can be applied in
other areas. Variants of these algorithms were shown to solve scheduling [23, 24] and cloud
computing problems [15], or can be used for fair allocation of indivisible items [14].

In this paper, we design a new combinatorial polynomial time algorithm for computing
equilibria in Fisher markets with budget-additive utilities. In a Fisher market, there is a
single seller with a set G = {1, . . . ,m} of goods. W.l.o.g. we assume that the total quantity
of each good is 1. There is a set B = {1, . . . , n} of buyers. Each buyer i has a budget Mi > 0
of money and a utility function ui. For budget-additive utilities, uij ≥ 0 is the utility of
buyer i if one unit of good j is allocated to her. There is a happiness cap ci > 0, and the
utility function is

ui(xi) = min

ci,
∑
j∈G

uijxij

 ,

where xi = (xij)j∈G is any bundle of goods assigned to buyer i. If ui(xi) = ci, then buyer i
is called capped buyer for allocation x. We assume all uij , ci, Mi are rational numbers.

Our goal is to compute an allocation x = (xi)i∈B of goods and prices p = (pj)j∈G
such that the pair (x,p) is a market equilibrium. Given prices p, a demand bundle x∗i
of buyer i is a bundle of goods that maximizes the utility of buyer i for its budget, i.e.,
x∗i ∈ arg max

{
ui(xi) |

∑
j pjxij ≤Mi

}
. Note that

∑
j uijx

∗
ij > ci is allowed. A market

equilibrium (x,p) is a pair such that
p ≥ 0 (prices are nonnegative),∑
i xij ≤ 1 for every j ∈ G (no overallocation),

xi is a demand bundle for every i ∈ B, and
Walras’ law holds: pj(1−

∑
i xij) = 0 for every j ∈ G.

Note that if
∑
i xij < 1, then pj = 0. An equilibrium (x,p) is Pareto-optimal if there is

no equilibrium (x′,p′) such that ui(x) ≤ ui(x′) for all i and ui(x) < ui(x′) for at least one i.
Budget-additive utility functions are a simple class of submodular and concave functions

and a natural generalization of the standard and well-understood case of linear utilities.
These utility functions arise naturally in cases where agents have an intrinsic upper bound
on their utility. For example, if the goods are food and the utility of a food item for a
particular buyer is its calorie content, calories above a certain threshold do not increase
the utility of the buyer. In addition, there are a variety of further applications in adword
auctions and revenue maximization problems [1, 3, 8, 6]. Recently, market models where
agents have budget-additive utilities attracted a significant amount of research interest, e.g.,
for the allocation of indivisible goods in offline [1, 3, 8] and online [6, 27] scenarios, for
truthful mechanism design [7], and for the study of Walrasian equilibrium with quasi-linear
utilities [21, 18, 30]. As simple variants of submodular functions, they capture many of the
inherent difficulties of more general domains. Given this amount of interest, it is perhaps
surprising that they are not well-understood within the classic Fisher and exchange markets.

Results and Contribution. We study Fisher markets with budget-additive utilities. Our
initial observations about these markets reveal that they have different properties than the
ones with CES utilities usually studied in the literature. Due to the satiated nature of the
utilities, capped buyers might not spend all their money or spend money on goods that do not
give them maximum utility per unit of money, so prices and utilities in market equilibrium
are not unique and can be quite different. It is possible to simply ignore the satiation and
assume linear utilities. Then a variety of existing algorithms [17, 29, 20, 19, 4] can be used
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to compute a market equilibrium. It continues to be a market equilibrium for the market
with budget-additive utilities. However, this equilibrium may be undesirable, as in many
cases it does not even satisfy Pareto-optimality of the allocation.

I Example 1. Consider a linear market with two buyers and two goods, u11 = 5, u21 = 2,
and u12 = u22 = 1. The budgets are M1 = 3 and M2 = 1. For the unique equilibrium we
allocate good 1 completely to buyer 1 and good 2 completely to buyer 2, i.e., x11 = x22 = 1.
The buyers’ utilities amount to 5 and 1, resp., and the prices are p1 = 3 and p2 = 1.

Now suppose buyer 1 has a budget-additive utility function with cap c1 = 1. Then (x,p)
described above remains an equilibrium, since both buyers obtain a demand bundle (buyer
1 now has utility 1 instead of 5). Alternatively, suppose we allocate good 1 completely to
buyer 2 and good 2 completely to buyer 1, i.e., x12 = x21 = 1. The utilities amount to 1 and
2, resp., and the prices can be chosen as p1 = 1 and p2 ∈ [0.5, 3]. Here buyer 1 buys a bundle
of goods with optimal utility of 1. Buyer 2 buys a demand bundle since he spends all its
budget on a good that gives him the maximum bang-per-buck ratio. All goods are exactly
allocated, and Walras’ law holds. Thus, it represents another market equilibrium. Note if
p2 < 3, buyer 1 does not spend all of its money, but it is still a demand bundle for because
he achieves the maximum utility. Furthermore, such an equilibrium Pareto-dominates the
one derived from the linear case in terms of utilities. J

We strive to compute a market equilibrium with a Pareto-optimal allocation and focus on
a subset of market equilibria, in which we restrict the allocation to demand bundles which
we call thrifty and modest – buyers spend the least amount of money that can achieve their
optimal utilities and receive a bundle of goods that has a minimality property. In Section 2,
we show that such modest MBB equilibria can be captured by a generalization of the classic
Eisenberg-Gale convex program, their utilities are unique, and their allocation is always
Pareto-optimal (w.r.t. all possible allocations, attainable in market equilibrium or not). We
highlight that the set of modest MBB equilibria can be partially ordered with respect to their
price vectors and forms a lattice. As such, there are modest MBB equilibria with pointwise
largest and smallest prices, resp. Among all modest MBB equilibria they yield maximum
and minimum revenue for the seller, resp.

Section 3 contains our main contribution – a combinatorial algorithm that computes
price and allocation vectors of a modest MBB equilibrium in time O(mn6(log(m+ n) + (m+
n) logU)), where n is the number of agents, m the number of goods, and U the largest integer
in the market parameters. The computed equilibrium has a Pareto-optimal allocation, as
well as pointwise largest prices and maximum revenue among all modest MBB equilibria.

Our algorithm represents a novel approach to compute market equilibria based on the
idea of descending prices. While some parts of our algorithm are in spirit of combinatorial al-
gorithms for linear markets [17, 20, 19, 4], all these approaches are ascending-price algorithms.
This technique and its usual analysis based on the 1-norm of excess money does not apply in
our case, since the norm is non-monotonic and cannot be used to measure progress towards
equilibrium. Surprisingly, our novel descending-price approach overcomes the 1-norm issue,
but we need to address additional challenges in establishing polynomial running time due to
varying and non-increasing active budgets, and in showing that intermediate prices remain
polynomially bounded. Note that, as a special case, this also yields a new combinatorial
descending-price algorithm for linear Fisher markets.

In Section 4 we exploit the lattice structure of modest MBB equilibria and design a
procedure, using which we can turn any modest MBB equilibrium into one with smallest prices
and minimum revenue. In combination with the descending-price algorithm, it computes a
modest MBB equilibrium with minimum revenue within the same asymptotic time bound.

ESA 2016
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Finally, we study two extensions in Section 5. Facing multiple equilibria, a natural goal
is to compute an allocation that maximizes utilitarian social welfare. We prove that this
problem is NP-hard, even when social welfare is measured by a k-norm of the vector of
buyer utilities, for any constant k > 0. Moreover, we consider a variant of budget-additive
utilities with a satiation point for each buyer and each good. They constitute a special class
of separable piecewise-linear concave (SPLC) utilities, where each piecewise-linear component
consists of two segments with the second one being constant. We show that even in this very
special case computing any market equilibrium becomes PPAD-hard.

Related Work. The computation of market equilibria is a central area in algorithmic game
theory. There are a variety of polynomial-time algorithms to compute approximate market
equilibria based on solving different convex programming formulations [12, 22, 25]. Our paper
is closer to work on markets with linear utilities and combinatorial algorithms that compute
an exact equilibrium in polynomial time [17, 29, 20, 19]. Directly related to our approach is
the classic combinatorial algorithm for linear Fisher markets [17]. In contrast, our algorithm
is based on a new descending price approach where buyers are always saturated and goods
have non-negative surplus. Further, the active budgets of buyers vary with the price change,
which creates new challenges in establishing a polynomial bound on the number of iterations
and the representation size of intermediate prices.

Independently of our work, Devanur et al [16] very recently presented the same convex
program for Fisher markets with satiated buyers. They propose a polynomial-time algorithm
for finding an arbitrary modest MBB equilibrium, but it is based on the ellipsoid method
without any explicit running time bound.

Recently, algorithmic work has also started to address unknown markets, where utilities
and budgets of buyers are unknown. Instead, algorithms iteratively set prices and query
a demand oracle. In this domain, tâtonnement dynamics have been studied for Fisher
markets and extensions with concave utilities. For many classes of these markets, a notion of
(1 + ε)-approximate market equilibrium can be reached after a convergence time polynomial
in 1/ε and other market parameters [13, 10, 11, 5]. In some cases, the convergence time
can even be reduced to log(1/ε) [10]. A similar convergence rate is obtained by a more
general algorithm even for general unknown exchange markets with weak gross-substitutes
property, and even for linear markets with non-continuous demands and oracles using suitable
tie-breaking [4].

Allocation of indivisible items to agents with budget-additive utilities is an active area
of research interest. There are constant-factor approximation algorithms for optimizing the
allocation in offline [1, 3, 8] and online [6, 27] scenarios. Closer to our work is the study
of markets with money. The existence of Walrasian equilibrium with quasi-linear utilities
and algorithmic issues of bundling items were studied in [21, 18, 30]. Strategic agents and
truthful mechanisms for budget-additive markets have been analyzed in [7]. There are strong
lower bounds for the approximation ratio of certain classes of truthful mechanisms, and a
truthful mechanism with constant-factor approximation for budget-additive utilities is one of
the most interesting open problems in combinatorial auctions.

2 Preliminaries

For a given price vector p and buyer i, we denote the maximum bang-per-buck (MBB) ratio
by αi = maxj uij/pj , where we make the assumption that 0/0 = 0. Budget-additive utilities
strictly generalize linear utilities: when all ci’s are large enough, they are equivalent to linear
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utilities. If buyer i is uncapped in a market equilibrium (x,p), it behaves as in the linear case,
spends all its budget, and buys only MBB goods (xij > 0 only if uij/pj = αi). Otherwise, if
buyer i is capped in (x,p), it might buy non-MBB goods and not spend all of its budget.
This implies that unlike the case of linear utilities, market equilibrium prices and utilities
are not unique with budget-additive utilities.

It is easy to see that we can obtain one market equilibrium by simply ignoring the
happiness caps and treating the market as a linear one. However, this equilibrium is often
undesirable since it is not always Pareto-optimal.

Our main goal in this paper is to find a market equilibrium that is Pareto-optimal. More
generally, we will also be concerned with finding a (Pareto-optimal) market equilibrium
that can maximize social welfare

∑
i∈B ui(xi). For the former we provide a polynomial-time

algorithm, the latter we prove it to be NP-hard.

Modest MBB Equilibria, Pareto-Optimality, and Uniqueness. The main challenges in
budget-additive markets arise from capped buyers, who may possibly have multiple choices
for the demand bundle. Let us introduce two convenient restrictions on the allocation to
capped buyers.

An allocation xi for buyer i is called modest if
∑
j uijxij ≤ ci. By definition, for uncapped

buyers every demand bundle is modest. For capped buyers, a modest bundle of goods xi
is such that utility breaks even between the linear part and ci, i.e., ci =

∑
j uijxij .

A demand bundle xi is called thrifty or MBB if it consists of only MBB goods: xij > 0
only if uij/pj = αi. As noted above, for uncapped buyers every demand bundle is MBB.

We call a market equilibrium (x,p) a modest MBB equilibrium if xi is modest and MBB
for every buyer i ∈ B. We show an algorithm to compute in polynomial time such an
equilibrium where x is also Pareto-optimal. Such an equilibrium is also desirable because it
captures the behavioral assumption that each buyer is thrifty and spends the least amount
of money in order to obtain a utility maximizing bundle of goods.

Consider the following Eisenberg-Gale program (1), which allows us to find a modest and
Pareto-optimal allocation.

Max.
∑
i∈B

Mi log
∑
j∈G

uijxij

s.t.
∑
j∈G

uijxij ≤ ci i ∈ B

∑
i∈B

xij ≤ 1 j ∈ G

xij ≥ 0 i ∈ B, j ∈ G

(1)

By standard arguments, we consider the dual for (1) using dual variables γi and pj for the
first two constraints, resp., and the KKT conditions read:

1. pj/uij ≥Mi/ui − γi
2. xij > 0 ⇒ pj/uij = Mi/ui − γi

3. pj ≥ 0 and pj > 0 ⇒
∑
i∈B xij = 1

4. γi ≥ 0 and γi > 0 ⇒ ui = ci

Observe that the Lagrange multiplier γi indicates if the cap ci represents a tight constraint
in the optimum solution. The dual variables pj can be interpreted as prices. Note that
conditions 1 and 2 imply that xij > 0 if and only if j ∈ arg minj′ pj′/uij′ = arg maxj′ uij′/pj′ ,
i.e., all agents purchase goods with maximum bang-per-buck. Hence, similarly as for linear
markets [31], the KKT conditions imply that an optimal solution to the EG program (1)

ESA 2016



8:6 Computing Equilibria in Markets with Budget-Additive Utilities

and corresponding dual prices constitute a market equilibrium, in which every agent buys
goods that have maximum bang-per-buck. The KKT conditions postulate this also for agents
whose utility reaches the cap. Thus, the optimal solution to this program is a modest MBB
equilibrium. Furthermore, we obtain the following favorable analytical properties.

I Proposition 2. The optimal solutions to (1) are exactly the modest MBB equilibria. The
utility vector is unique across all such equilibria and each such equilibrium is Pareto-optimal.
In particular, there is a unique set of capped buyers. Non-capped buyers spend all their
money. Capped buyers do not overspend.

While utilities are unique, allocation and prices of modest MBB equilibria might not be unique.
Consider a market with two identical buyers and two goods, where u11 = u12 = u21 = u22 = 1,
c1 = c2 = 1, and M1 = M2 = 5. The unique equilibrium utility of both buyers is u1 = u2 = 1,
which can be obtained for any p1 = p2 = p, where p ∈ [0, 5] and allocation x satisfying
x11 + x12 = 1; x21 + x22 = 1; x11 + x21 = 1; x12 + x22 = 1.

I Example 1 (continued). For our example above, the modest MBB equilibrium obtained
from solving the convex program is x11 = 1/5, x12 = 0, x21 = 4/5 and x22 = 1 with prices
p1 = 10/13 and p2 = 5/13. Buyer 1 spends 2/13, buyer 2 spends the entire budget. The
utilities are 1 and 13/5. It is easy to see that the KKT conditions hold. This equilibrium is
Pareto-optimal and also the best equilibrium in terms of social welfare. J

Structure of Modest MBB Equilibria. Let us characterize the set of price vectors of modest
MBB equilibria, which we denote by P = {p | (x,p) is modest MBB equilibrium }. We
consider the coordinate-wise comparison, i.e., p ≥ p′ iff pj ≥ p′j for all j ∈ G.

I Theorem 3. The pair (P,≥) is a lattice.

Given p and p′, we partition the set of goods into three sets: S0 = {j | pj = p′j}, S1 = {j |
pj < p′j} and S2 = {j | pj > p′j}. Let Γ(T,p) = {i | xij > 0 for some j ∈ T} denote the set
of buyers who are allocated a nonzero amount of any good in set T in the equilibrium (x,p).
The proof of Theorem 3 exploits the following properties about the sets S0, S1 and S2.

I Lemma 4. Given any two modest MBB equilibria (x,p) and (x′,p′), we have
(i) Γ(Si,p) = Γ(Si,p′) for i = 0, 1, 2, i.e., the set of buyers who buy the goods of Si with

respect to prices p and p′are same.
(ii) Γ(S0,p),Γ(S1,p) and Γ(S2,p) are mutually disjoint.
(iii) All buyers in Γ(S1,p) and Γ(S2,p) are capped buyers in both (x,p) and (x′,p′).

Thus, there exists a modest MBB equilibrium with coordinate-wise highest (resp. lowest)
prices. It yields the maximum (resp. minimum) revenue for the seller among all modest MBB
equilibria.

I Example 5. Consider the following market with two buyers and two goods. Let u11 =
u12 = u22 = 1 and u21 = 0. Let M1 = M2 = 1 and c1 = 1. Then x11 = x22 = 1,
x12 = 0, p1 = p2 = 1 is a modest MBB equilibrium with maximum revenue. A modest MBB
equilibrium with minimum revenue has the same allocation and p1 = 0 and p2 = 1.

3 Computing a Modest MBB Equilibrium with Maximum Revenue

In this section, we describe an efficient algorithm to compute a modest MBB equilibrium.
In fact, we compute the one with coordinate-wise highest prices and maximum revenue
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among all modest MBB equilibria. We define the active budget of buyer i at prices p as
Ma
i = min{Mi, ci/αi}, where αi = maxj∈G uij/pj is the MBB ratio. The active budget of

buyer i is the minimum of Mi and the minimum amount of money needed to buy a bundle
of goods with utility ci. If Ma

i = ci/αi, then buyer i is capped, otherwise uncapped.

3.1 Flow Network and Initialization
Given prices p, let A = {(i, j) ⊆ B ×G | uij/pj = αi} be the set of equality edges, and the
bipartite graph (B ∪G,A) be the equality graph. We set up the following flow network Np
using the equality graph by adding a source s and sink t. It has nodes {s, t} ∪B ∪G and
edges (s, i) for i ∈ B, (j, t) for j ∈ G and the equality edges. The edge (s, i) has capacity
Ma
i , and the edge (j, t) has capacity pj . The equality edges have infinite capacity. The flow

in the network corresponds to money. We will maintain the following invariants throughout
the algorithm.

Invariants:
The edges out of s are saturated.
Prices and active budgets never increase.
Total utility of a buyer never decreases. Once a buyer is capped, it stays capped.

We initialize the prices to large values, namely pj =
∑
iMi. W.l.o.g. we will assume that

all budgets, caps, and utilities are integers.
The surplus (residual capacity) of good j is rj = pj − fjt, where fjt is the flow from

good j to t. Then 1− fjt/pj is the fraction of good j that is not sold. We also keep track of
the allocations xij . There might be prices equal to zero, and then the allocation cannot be
computed from the money flow. Goods that have price zero have no surplus. There is no
money flowing through them, although they may be (partially) allocated.

A subset T of buyers is called tight with respect to prices p if
∑
i∈T M

a
i =

∑
j∈Γ(T ) pj ,

where Γ(T ) ⊆ S is the set of goods connected to T in the equality graph.
A balanced flow is a maximum flow in Np which minimizes the 2-norm of surplus vector

r. Let |r| = |r1|+ . . .+ |rn| and ‖r‖ = (r2
1 + . . .+ r2

n)1/2 be the `1 and `2 norm of r, resp.

3.2 The Algorithm
The complete algorithm is shown in Figure 1. We initialize price pj of each good j to∑

iMi. This ensures that the invariants are satisfied, namely a maximum flow in network Np
saturates all edges out of s. We initialize every active budget Ma

i = min{Mi,minj cipj/uij},
and flow f and allocation x equal to zero.

The algorithm is divided into a set of phases, and each phase is further divided into a set
of iterations. A phase starts with the computation of a balanced flow in Np. Let the surplus
of good j be pj − fjt. We pick a good j with maximum surplus, and we compute a set of
goods S containing j and the goods which can reach j in the residual network corresponding
to Np without using nodes s and t. The surplus of each good in S is the same, and maximum
among all goods. We denote by B′ the set of buyers who have equality edges to goods in S,
and by B′c and B′u the sets of capped and uncapped buyers in B′, resp. Note that xij = 0
for all i ∈ B′ and j 6∈ S, since xij > 0 would imply j ∈ S.

We begin with an iteration, where we use a factor x to set the price of each good j ∈ S
to xpj and the active budget of each buyer i ∈ B′c to xMa

i . The prices and active budgets of
the remaining goods and buyers remain unchanged. We decrease x ≤ 1 continuously until

ESA 2016
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Input: A market with a set of buyers B and a set of goods G;
Budget Mi, happiness cap ci, and utility parameters uij , ∀i ∈ B, j ∈ G;

Output: Equilibrium prices p, allocation x;
n← |B|; m← |G|; U ← maxi∈B,j∈G{Mi, ci, uij}; ε← 1/((m+ n)U4(m+n));
Initialize price pj ←

∑
iMi for each good j;

Initialize active budget Ma
i ← min{Mi,minj cipj/uij} for each buyer i;

fij ← 0, xij ← 0, ∀i ∈ B, j ∈ G;
Repeat // phase

f ← balanced flow in Np; xij ← fij/pj if pj 6= 0; rj ← pj − fjt;
δ ← maxj rj ; Pick a good j with surplus δ;
S ← {j} ∪ {k ∈ G | k can reach j in the residual network w.r.t. f in Np \ {s, t}};
Repeat // iteration

B′ ← Set of buyers who have incident equality edges to S;
B′c ← Set of capped buyers in B′ (a buyer i is capped if Ma

i = minj cipj/uij);
B′u ← B′ \B′c (set of uncapped buyers);
x← 1; Set prices and active budgets as follows:

pj ← xpj , ∀j ∈ S; Ma
i ← xMa

i , ∀i ∈ B′c;
Decrease x continuously down from 1 until one of the following events occurs
Event 1: An uncapped buyer becomes capped
Event 2: A new equality edge appears

Recompute Np;
f ← balanced flow in Np; xij ← fij/pj if pj 6= 0;
S ← S ∪ {j ∈ G | j can reach S in the residual network w.r.t. f in Np \ {s, t}};

Event 3: A subset of B′ becomes tight // phase ends
Until Event 3 occurs;

Until |r| ≤ ε;
Recompute Np;
f ← balanced flow in Np; xij ← fij/pj if pj 6= 0;

Figure 1 The complete algorithm.

some structural change happens. Our goal here is to decrease prices as much as possible. By
changing prices in this manner, all the equality edges between B′ and S stay intact and the
equality edges between B′ and G \ S become non-equality.

A possible structural change is that an uncapped buyer becomes capped. When a buyer
i ∈ B′ is uncapped, Mi < minj cipj/uij . Prices are decreasing, so this may become an
equality. We term the first such change Event 1. Then we move buyer i from B′u to B′c.

Another possible change is that a new equality edge appears from a buyer in B \B′ to
a good in S. Prices of goods in S are decreasing, so goods in S are becoming attractive
to buyers outside B′. Note that there cannot be a new equality edge from a buyer in B′
to a good outside S. We term the first such change Event 2. Then we recompute the flow
network Np and a balanced flow in Np. Next, we compute the set S′ of goods j ∈ G \ S that
can reach a good in S in the residual graph corresponding to Np without using the nodes s
and t. Due to the property of balanced flows, the surplus of each good in S′ is at least the
surplus of some good in S. Finally, we add goods in S′ to S.

Apart from the structural changes, we also maintain the invariants. The only invariant
that can become violated with these changes is that the edges out of s are saturated. Hence,
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we need to stop when a subset T of B′ becomes tight. Clearly, if prices are decreased further,
then buyers in T will not be saturated, so we stop decreasing prices at this stage. We term
this Event 3, and then the phase ends. We show in Lemma 10 below that during a phase,
the 2-norm of the surplus vector decreases geometrically. The last phase ends when the total
surplus becomes tiny. In fact, we will show that the surplus is actually zero at this point.
We recompute a balanced flow and terminate.

When the prices of a set of goods hit zero in an iteration of the algorithm, then we do
not change the allocation of these goods, and all the buyers interested in these goods must
be capped. Since each buyer gets a modest allocation before the prices hit zero, the same
allocation remains modest. None of the goods in the set is completely allocated. We delete
these goods and the buyers to which they are allocated from consideration.

I Example 1 (continued). Consider our algorithm applied to the example market above. We
initialize p1 and p2 to M1 +M2 = 4. The active budgets become Ma

1 = minj c1pj/uij = 4/5
andMa

2 = 1. The edges (1, 1) and (2, 1) are equality edges and the balanced flow is f11 = 4/5,
f21 = 1, and f12 = f22 = 0. The surpluses are r1 = 4 − 9/5 = 11/5 and r2 = 4 − 0 = 4.
Thus S = {2}. We decrease p2 to xp2. At x = 1/2, the edge (2, 2) becomes an equality edge.
Now p2 = 2. The balanced flow does not change and hence r1 = 11/5 and r2 = 2. Thus
S = {1}. We decrease Ma

1 to 4x/5 and p1 to 4x. At x = 5/16, B′ becomes tight. We now
have Ma

1 = 1/4 and p1 = 5/4. The balanced flow is f11 = 1/4 and f21 = 1. Thus r1 = 0 and
r2 = 2. So S = {2}. We change p2 to p2x. At x = 5/16, the edge (2, 2) becomes an equality
edge. Now p2 = 5/8. The balanced flow is f11 = 1/4, f21 = 11/16, and f22 = 5/16. Then
r1 = r2 = 5/16. Thus S = {1, 2}. We now decrease Ma

1 to x · 1/4, p1 to 5x/4 and p2 to 5x/8.
At x = 8/13, B′ becomes tight and we have p1 = 10/13, p2 = 5/13, Ma

1 = 2/13, x11 = 1/5,
x21 = 4/5, x22 = 1, f11 = 2/13, f21 = 8/13, and f22 = 5/13. J

3.3 Analysis
I Lemma 6. The invariants hold during the run of the algorithm.

Phases consist of iterations, which end with Event 1, 2, or 3. A phase ends with Event 3.

I Lemma 7. Each phase has at most 2n iterations.

Our next goal is to show that the 2-norm of the surplus vector decreases substantially
during a phase. Let r and r′ be the surplus vectors at the beginning and at the end of a phase,
resp. For the purpose of our analysis we also maintain an intermediate flow f continuously
as we change prices in each iteration; this flow is not maintained by the algorithm. When
we recompute a balanced flow during Event 2, then f will be reset to the balanced flow.
It is defined as ∀i ∈ B′c : fij ← xfij and ∀i ∈ B′u : fij ← fij . f ensures that all buyers are
saturated. If the surplus of a good j becomes zero corresponding to f , then we keep its
surplus equal to zero and reroute extra flow from j to some other good with positive surplus,
using a path in the residual network corresponding to f . If there is no such path, then
this implies Event 3 has occurred, in which case the current phase is done. Consider an
intermediate iteration t. With respect to f , let rt = (rt1, . . . , rtm) be the surplus vector at the
beginning of iteration t, and let r̃t = (r̃t1, . . . , r̃tm) be the surplus vector before we recompute
a balanced flow in iteration t if Event 2 occurs.

I Lemma 8. r̃tj ≤ rtj , ∀j ∈ G, and ‖rt+1‖ ≤ ‖r̃t‖ ≤ ‖rt‖.

I Lemma 9. [17] Suppose f and f∗ are a feasible and a balanced flow in Np, resp., and
r and r∗ are the surplus vectors w.r.t. f and f∗, resp. If r∗j = rj − δ for some good j and
δ > 0, then ‖r∗‖2 ≤ ‖r‖2 − δ2.
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I Lemma 10. ‖r′‖2 ≤ (1− 1/4mn)‖r‖2.

Proof. Consider the value of γ = min{rj | j ∈ S} during a phase. When the phase begins,
γ = δ, and when it ends γ = 0. Recall that S only grows, and when we add a new good k to
S, then the surplus of k is at least the surplus of some good already in S. This implies that
γ does not change when we add new goods to S.

Let t1, . . . , tl be the iterations where γ decreases, and let δi > 0 be the amount of decrease
in iteration ti. Further we break each δi into two parts δi1 and δi2 such that δi = δi1 + δi2.
Here δi1 is the amount of decrease due to the flow change before we recompute balanced flow,
and δi2 is the amount of decrease due to recomputation of balanced flow. Next consider only
positive δi1’s and δi2’s. Clearly, l ≤ 2n and

∑
i:δi1>0,δi2>0(δi1 + δi2) ≥ δ. Using Lemmas 8

and 9, we have ‖r′‖2 ≤ ‖r‖2− (δ2
11 + δ2

12 + · · ·+ δ2
l1 + δ2

l2) ≤ ‖r‖2− δ2/4n. Since ‖r‖2 ≤ mδ2,
we have ‖r′‖2 ≤ (1− 1/4mn)‖r‖2. J

Polynomial Running Time. In each iteration, the prices of goods in S are multiplied by
a value that itself depends on the prices. It is not obvious why the size of the numbers
in the computation is polynomially bounded. Here we show that, indeed, the sizes of all
intermediate prices and flows in our algorithm remain polynomially bounded.

I Lemma 11. All goods in S are connected by equality edges at all times. There is no flow
from buyers in B′ to goods outside S.

Cap-events occur only at a cap-event prices. A cap-event price is any price p withMi = cip/uij
for some i and j. Let Pc = {Miuij/ci | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Let A′ be any subset of the edge set with positive utility such that the graph formed by
it is connected. Let B′ and G′ be the buyers and goods in this connected graph. The prices
in the component have only one degree of freedom, i.e., we can select one of the prices, say p,
as a base price and express any other price in the component as αp, where α is a rational
whose numerator and denominator are products of at most m utilities. Consider an arbitrary
partition of B′ into capped buyers B′c and uncapped buyers B′u; B′u must be nonempty. The
budget of a capped buyer is of the form cαp, where c is a cap and α is as above. If there are
no surpluses, p must satisfy that (budget of capped buyers + budget of uncapped buyers)
equals sum of the prices (in the component). We call a price that can be obtained in this
way a submarket price; note that not all submarket prices can actually occur. Let Pm be the
set of submarket prices.

Let Pi be the set consisting of the initial price and zero. A price is 1-linked if it is of the
form (U1/U2)p where p ∈ Pc ∪ Pm ∪ Pi and U1 and U2 are products of at most n utilities
each. A price is 2-linked if it of the form (U1/U2)p, where p is 1-linked and U1 and U2 are
products of at most n utilities each.

I Lemma 12. Assuming that all budgets, happiness caps and utilities are integers bounded by
U , 1-linked and 2-linked prices are rational numbers whose bit-length is at most log (m+ n) +
3(m+ n) logU .

I Lemma 13. At the beginning of a phase, all prices are 1-linked. During a phase, prices
outside S are 1-linked. At the end of each iteration, prices in S are 2-linked.

I Theorem 14. The algorithm in Figure 1 computes a modest MBB equilibrium.

Proof. When the algorithm terminates, we claim that at this stage total surplus
∑
j rj = 0.

This will imply that the algorithm in Figure 1 computes a market equilibrium. Consider any
good j and the component C of the equality graph containing good j. The total surplus
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∑
j∈C rj in the component is

∑
j∈C pj −

∑
i∈CM

a
i . This is non-negative and less than ε. All

prices and active budgets of capped buyers can be expressed in terms of one price variable p
using equality relations. By Lemma 12, p is a rational number with bounded denominator,
and the above inequalities imply

∑
j∈C rj = 0. Thus rj = 0 for all j. J

Let xts denote the value of x when Event 3 occurs in the algorithm. Next we show that
xts can be computed using at most n max-flow computations. This is a generalization of a
procedure in [17] for computing tight set in case of linear Fisher markets.

I Lemma 15. xts can be computed using at most n max-flow computation.

Maximum Revenue. Finally, we show that our algorithm gives a modest MBB equilibrium
with maximum revenue among all modest MBB equilibria.

I Lemma 16. Consider the price vector p at the end of any phase of the algorithm. We
have p ≥ p′ for any price vector p′ ∈ P of a modest MBB equilibrium.

For the main result in this section, assume that all budgets, happiness caps and utilities are
integers bounded by U .

I Theorem 17. The algorithm in Figure 1 computes a modest MBB equilibrium with
maximum revenue in O(mn6(log(m+ n) + (m+ n) logU)) time.

Proof. In the beginning, the 2-norm of surplus vector r satisfies ‖r‖2 ≤ mn2U2. By
Theorem 14, the algorithm will terminate before the norm becomes ‖r′‖2 = 1/m(m +
n)2U8(m+n). Let k denote the number of phases when the surplus becomes r′. From
Lemma 10, we have ‖r‖2(1−1/4mn)k = ‖r′‖2, which implies that the total number of phases
in the algorithm is O(mn(log(m+ n) + (m+ n) logU)).

In each phase, we have at most 2n iterations, and in each iteration we need to compute
the maximum 0 ≤ x ≤ 1 when one of the three events occurs. Let xc, xeq and xts respectively
denote the maximum value of x where Event 1, 2 and 3 occurs. Clearly, xc can be obtained
in O(n) time, xeq can be obtained in O(mn) time, and xts can be obtained using at most n
max-flow computations due to Lemma 15. Further, we recompute a balanced flow in case of
Event 2 which further requires at most n max-flow computations [17]. Since a max-flow can
be obtained in O(n3) time, each iteration can be implemented in O(n4) time. Hence, the
total running time of the algorithm is O(mn6(log(m+ n) + (m+ n) logU)). J

We conjecture that the running time in Theorem 17 can be reduced by a factor of Õ(n2)
using the perturbation technique from [19] which requires a max-flow to be computed only
in a network with forest structure. We have not worked out the details.

4 Computing a Modest MBB Equilibrium with Minimum Revenue

In this section, we show how to transform in polynomial time any modest MBB equilibrium
into one with minimum revenue using the postprocessing procedure in Fig. 2.

I Theorem 18. The algorithm in Figure 2 computes a modest MBB equilibrium with
minimum revenue.

Proof. It is easy to check that throughout the algorithm, (x,p) always remains a modest
MBB equilibrium. Assume by contradiction that at the end of the algorithm, (x,p) is not
an equilibrium with smallest prices. Let (x′,p′) be an equilibrium with smallest prices, and
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Input: A market with a set of buyers B and a set of goods G;
Budget Mi, happiness cap ci, and utility parameters uij , ∀i ∈ B, j ∈ G;
Any modest MBB equilibrium (x,p);

Output: A modest MBB equilibrium (x,p) with minimum revenue;
Initialize active budget M ′i ← min{Mi,minj cipj/uij} for each buyer i;
S ← {j|pj > 0 and j does not have incident equality edges to any uncapped buyer};
While S 6= ∅

B′ ← Set of buyers who have incident equality edges to S;
x← 1; Define prices and active budgets as follows:

pj ← xpj , ∀j ∈ S; Ma
i ← xMa

i , ∀i ∈ B′c;
Decrease x continuously down from 1 until one of the following events occurs
Event 1: x becomes zero;
Event 2: A new equality edge appears
Recompute Np and S;

EndWhile

Figure 2 The postprocessing algorithm for an equilibrium with minimum revenue.

define S1 = {j | pj > p′j}. By Lemma 4 property (3), all buyers in Γ(S1,p) are capped
buyers. Because prices of goods in set S1 decrease from p to p′, every buyer i incident to
S1 in the equality graph with prices p will only have equality edges to S1 with prices p′.
Therefore we have i ∈ Γ(S1,p′) = Γ(S1,p) (the equality is again by Lemma 4). This implies
Γ(S1,p) is also the set of buyers who have incident equality edges to S1 with prices p. Hence,
set S is nonempty for the While loop, and the algorithm should not terminate. J

5 Extensions

In the previous section, we proposed an algorithm for computing a modest MBB equilibrium,
which has a Pareto-optimal allocation. When we depart from the set of such equilibria, then
utilities in market equilibrium are not uniquely determined. In fact, we show that market
equilibria with maximum social welfare might not be modest MBB equilibria, and computing
such optimal equilibria becomes NP-hard. As a corollary, we note that the proof can also be
used to show NP-hardness for optimizing any constant norm of utility values.

I Theorem 19. It is NP-hard to compute a market equilibrium that maximizes social welfare.

I Corollary 20. It is NP-hard to compute a market equilibrium (x,p) that maximizes∑
i(ui(x))ρ, for every constant ρ > 0.

There are several ways of introducing satiation points into the utility function. Instead of
a global cap, let us assume there is a cap cij for the utility buyer i can obtain from good j.
A good-based budget-additive utility of buyer i is then ui(xi) =

∑
j min(cij , uijxij). This

variant turns out to be an elementary special case of separable piecewise-linear concave
(SPLC) utilities, in which every piece consists of a linear segment followed by a constant
segment. We show that even finding a single market equilibrium here becomes PPAD-hard.
The proof adjusts a construction put forward in [9].

I Theorem 21. It is PPAD-hard to compute a market equilibrium in Fisher markets with
good-based budget-additive utilities.
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