
A Formal Exploration of Nominal Kleene Algebra
Paul Brunet1 and Damien Pous∗2

1 Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP
2 Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP

Abstract
An axiomatisation of Nominal Kleene Algebra has been proposed by Gabbay and Ciancia, and
then shown to be complete and decidable by Kozen et al. However, one can think of at least four
different formulations for a Kleene Algebra with names: using freshness conditions or a presheaf
structure (types), and with explicit permutations or not. We formally show that these variations
are all equivalent.

Then we introduce an extension of Nominal Kleene Algebra, motivated by relational models
of programming languages. The idea is to let letters (i.e., atomic programs) carry a set of names,
rather than being reduced to a single name. We formally show that this extension is at least as
expressive as the original one, and that it may be presented with or without a presheaf structure,
and with or without syntactic permutations. Whether this extension is strictly more expressive
remains open.

All our results were formally checked using the Coq proof assistant.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.3 Formal Languages, F.4.1
Mathematical Logic

Keywords and phrases Nominal sets, Kleene algebra, equational theory, Coq

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.22

1 Introduction

Gabbay and Ciancia introduced a nominal extension of Kleene algebra [3], as a framework
for trace semantics with dynamic allocation of resources. The associated semantics extends
formal languages into nominal languages, where words have a nominal structure. Kozen et
al. recently proved the completeness of the proposed axiomatisation [6], and proposed a
coalgebraic treatment [5] yielding decidability of the equational theory.

They use the following syntax for nominal regular expressions:

e, f ∶∶= a ∈ Σ ∣ 0 ∣ 1 ∣ e + f ∣ e ⋅ f ∣ e⋆ ∣ νa.e ,

where Σ is the alphabet, and νa.e makes it possible to generate a fresh letter (or name) a
before continuing as e. For instance, the expression νa.νb.(a⋅b) denotes the language of all
words of length two consisting of two distinct letters.

While such a syntax is natural from a nominal point of view, other choices are possible.
For instance, one might expect expressions to be typed or classified according to their set of
free names. Similarly, name permutations, which are available in any model, can be reified at
the syntactic level. We first list four axiomatisations of the corresponding presentations—one

∗ This author was funded by the European Research Council (ERC) under the European Union’s Horizon
2020 programme (CoVeCe, grant agreement No 678157); this work has also been supported by the
project ANR 12IS02001 PACE.

© Paul Brunet and Damien Pous;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 22; pp. 22:1–22:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


22:2 A Formal Exploration of Nominal Kleene Algebra

of them corresponding to Gabbay and Ciancia’s axiomatisation, and we prove that all choices
are in fact equivalent. For the sake of the proofs, we need to introduce the positive fragments,
where the constant 0 denoting the empty language is excluded; these fragments are interesting
because they are stable: any proof of an equality whose members belong to the fragment
only uses expressions from that fragment.

Kleene algebra are known to be complete not only with respect to language models,
but also relational models. There, the letters from the alphabet are interpreted as binary
relations, and the regular operations correspond to standard operations on binary relations:
union, composition, reflexive transitive closure. This makes it possible to interpret imperative
programs, seen as state transformers: binary relations between memory states. Kozen
actually designed an extension of Kleene algebra, Kleene algebra with tests [4], which makes
it possible to represent not only the control flow of such programs, but also the tests and
conditions appearing in while loops and branching statements.

Extending Kleene algebra with names seems appropriate to model imperative programs
with local variables, where parts of the memory is visible only locally. The previous notion
of nominal Kleene algebra is however not really appropriate for this purpose: letters of the
alphabet (i.e., atomic programs, instructions) are equated with names bound by the νa.e
construct (i.e., memory locations). In contrast, the instruction x← y that assigns to variable
x the value of variable y should be an elementary construction depending on the names x
and y. For this reason, we provide an extension of the syntax where letters carry a list of
names. (We could use arbitrary nominal sets, but we restrict to a concrete representation in
this work for the sake of simplicity.) The typed version of this extension is more appropriate
for modelling imperative programs with local variables; like above for plain nominal Kleene
algebra, we show that the various presentations are equivalent. We moreover show that the
extension is conservative: plain nominal Kleene algebra can be encoded into the extended
ones. Whether a converse encoding is possible remains open.

Outline. We define the various theories in Section 2 and we compare them in Section 3.
In Section 4 we provide a relational interpretation for our extended model. We conclude in
Section 5.

Notation. We write ℘f (A) for the set of finite subsets of A. The set of natural numbers is
written N. Composition of two functions f and g is written f ○ g; it maps x to f (g (x)).

2 Expressions and proofs

2.1 Atoms and letters
Let A be an infinite set of atoms with decidable equality. We consider in this paper finitely
supported permutations of atoms, simply called permutations in the following. They are
bijections π such that there is a finite set A ⊆ A such that a ∉ A⇒ π (a) = a. The inverse
of a permutation π is written π−1. The identity permutation is denoted by ⎧⎩⎫⎭, and the
permutation exchanging a and b, and leaving every other atom unchanged, is written ⎧⎩a b⎫⎭.
Finally, if π is a permutation and A is a finite set of atoms, π (A) ∶= {π (a) ∣ a ∈ A} is the
image of A under π.

We consider as letters an arbitrary nominal set L[2, 7], which we assume to be decidable.
Such a set is specified through the data of its set of elements, a function ♮ () ∶ L → ℘f (A)
mapping every element to its support, and an action of the group of permutations on L.



P. Brunet & D. Pous 22:3

These functions must satisfy the following axioms:

∀x ∈ L,∀π, (∀a ∈ ♮ (x) , π(a) = a)⇒ π (x) = x. (1)
∀x ∈ L,∀π, ♮ (π (x)) = π (♮ (x)) . (2)
∀x ∈ L,∀π,π′, π (π′ (x)) = π ○ π′ (x) . (3)

2.2 Expressions and sets of expressions
We define a single type for expressions, containing all possible operators, and we define
several fragments of it afterwards. Doing so makes it possible to share several definitions,
enabling important code-reuse in our proof scripts.

▸ Definition 1 (Expressions). The set E of expressions is composed of terms formed over the
following syntax, where the letter A is a finite set of atoms, π denotes a permutation, a is an
atom and l is a letter:

e, f ∶= 0 ∣ 1 ∣ e + f ∣ e ⋅ f ∣ e⋆ ∣ νa.e ∣ l ∣ a ∣ ⟨π⟩ e ∣ �A ∣ idA ∣ wa.e.

Product (⋅), sum (+) and Kleene star (⋅⋆) are the regular operations, together with the
associated constants 0 and 1, νa is name restriction. Variables can be either letters l or
atoms a. We include a syntactic construction for explicit permutations ⟨π⟩. The remaining
entries (�A, idA, and wa) are for the presheaf presentation; we discuss them in Section 2.2.2

2.2.1 Untyped expressions
▸ Definition 2 (Untyped expression). An expression e is untyped if it neither contains the
operator wa nor the constants �A and idA. The set of untyped expressions is written U.

We define freshness only for untyped expressions:

▸ Definition 3 (Freshness). An atom a is fresh for e if the judgement a # e can be inferred
in the following system.

a # 1 a # 0
a ∉ ♮ (l)
a # l

a ≠ b
a # b

a # e a # f

a # e + f

a # e a # f

a # e ⋅ f
a # e

a # e⋆ a # νa.e

a # e

a # νb.e

π−1 (a) # e

a # ⟨π⟩ e .

Accordingly, the support of an untyped expression e, written ♮ (e), is the unique set such
that ∀a, a # e⇔ a ∉ ♮ (e).

2.2.2 Typed expressions
For the presheaf approach, we replace freshness assumptions with type derivations. In order
to enforce uniqueness of types, we replace the constants 0 and 1 from the untyped syntax by
the annotated constants �A and idA, and we use explicit weakenings (wa).

▸ Definition 4 (Typed expressions). For any e ∈ E and A ∈ ℘f (A), e has the type A if the
judgement e ∶ A can be inferred in the following system:

idA ∶ A �A ∶ A
l ∈ L
l ∶ ♮ (l)

a ∈ A
a ∶ {a}

e ∶ A f ∶ A
e + f ∶ A

e ∶ A f ∶ A
e ⋅ f ∶ A

e ∶ A
e⋆ ∶ A

e ∶ A ∪ {a} a ∉ A
νa.e ∶ A

e ∶ A ∖ {a} a ∈ A
wa.e ∶ A

e ∶ π−1 (A)
⟨π⟩ e ∶ A

MFCS 2016



22:4 A Formal Exploration of Nominal Kleene Algebra

If this is the case, then e is typed. The set of typed expressions is written T.

▸ Remark. This type system is syntax directed and yields a simple decision procedure.

2.2.3 Expressions over letters or atoms
A significant motivation for this work was to study the differences between having atoms or
letters as variables in expressions. Hence we define two other subsets.

▸ Definition 5 (Atomic expressions, literate expressions). An expression e is called atomic
(respectively literate) if it does not contain letters (respectively atoms) as variables. The set
of atomic expressions is E ⟨A⟩, and the set of literate expressions is E ⟨L⟩.

Intuitively, there are two main differences between having atoms or letters as variables.
First, a letter may depend on many atoms. Second, two letters with the same support can
still be different, whereas the following equivalence holds :

∀a, b ∈ A, a = b⇔ (∀c ∈ A, c # a⇔ c # b) .

2.2.4 Positive expressions
For the sake of proofs, we also define the classes of expressions without 0 or �A as a sub-
expression. A motivation for excluding these is that in any reasonable system 0 ≡ 0 ⋅ e. Hence
if there is an atom a not fresh for e, we would have two equivalent expressions with different
sets of fresh variables.

▸ Definition 6 (Positive expression). An expression e is positive if it does not contain 0 nor
�A as a sub-expression. The set of positive expressions is E+.

For concision, we write E+ ⟨L⟩ for E ⟨L⟩ ∩E+, and E+ ⟨A⟩ for E ⟨A⟩ ∩E+.

2.2.5 Explicit permutations
Our syntax includes for explicit permutations ⟨π⟩, while permutations are usually considered
as external operations. This allows one to manipulate permutations inside the expressions,
and we shall see that this addition does not raise the complexity of the problem.

Nevertheless, we need to formally define the semantics of permutations on expressions.

▸ Definition 7 (Action of a permutation on an expression). Let e ∈ E be an expression and π a
permutation. The action of π on e, written π & e, is defined as follows:

π & 1 ∶= 1 π & 0 ∶= 0 π & (wa.e) ∶= wπ(a). (π & e)
π & idA ∶= idπ(A) π & �A ∶= �π(A) π & (νa.e) ∶= νπ(a). (π & e)
π & a ∶= π (a) π & l ∶= π (l) π & (⟨π′⟩ e) ∶= ⟨⎧⎩⎫⎭⟩ (π ○ π

′) & e
π & (e⋆) ∶= (π & e)⋆ π & (e ⋅ f) ∶= π & e ⋅ π & f π & (e + f) ∶= π & e + π & f

Expressions without explicit substitutions are called clean.

▸ Definition 8 (Clean expressions). An expression e is clean if it never uses the operator ⟨π⟩.
The set of clean expressions is C.

Applying permutations preserves all classes we have listed so far:



P. Brunet & D. Pous 22:5

Ax ⊢ f = e
Ax ⊢ e = f

Ax ⊢ e = f Ax ⊢ f = g
Ax ⊢ e = f Ax ⊢ e = f (e, f) ∈ Ax

(a) Equivalence and axiom rules.

Ax ⊢ 0 = 0 Ax ⊢ 1 = 1 Ax ⊢ idA = idA Ax ⊢ �A = �A

Ax ⊢ l = l Ax ⊢ a = a
Ax ⊢ e = g Ax ⊢ f = h
Ax ⊢ e + f = g + h

Ax ⊢ e = g Ax ⊢ f = h
Ax ⊢ e ⋅ f = g ⋅ h

Ax ⊢ e = f
Ax ⊢ e⋆ = f⋆

Ax ⊢ e = f
Ax ⊢ νa.e = νa.f

Ax ⊢ e = f
Ax ⊢ wa.e = wa.f

Ax ⊢ e = f
Ax ⊢ ⟨π⟩ e = ⟨π⟩ f

(b) Congruence rules.

Ax ⊢ e + f = f + e Ax ⊢ e + (f + g) = (e + f) + g Ax ⊢ e + e = e

Ax ⊢ e ⋅ (f + g) = (e ⋅ f) + (e ⋅ g) Ax ⊢ (e + f) ⋅ e = (e ⋅ g) + (f ⋅ g)

Ax ⊢ e ⋅ (f ⋅ g) = (e ⋅ f) ⋅ g
Ax ⊢ f + e ⋅ g ⩽ g
Ax ⊢ e⋆ ⋅ f ⩽ g

Ax ⊢ f + g ⋅ e ⩽ g
Ax ⊢ f ⋅ e⋆ ⩽ g

(c) Constant-free Kleene algebra axioms.

Figure 1 Modular deduction system.

▸ Lemma 9. For any subset of expressions S chosen from {T,U,E ⟨A⟩ ,E ⟨L⟩ ,E+,C}, for
any permutation π, and for any expression e ∈ E, e ∈ S⇔ π & e ∈ S. Furthermore, if e has
the type A then π & e ∶ π (A), and if a is fresh for e then π (a) # π & e.

(Note the equivalence in the first point, which is why we keep a residual empty permutation
when we apply a permutation to an expression of the shape ⟨π⟩ e.)

2.3 Proofs

A generic framework for proofs

We now describe a generic framework for defining equational theories over E. Given a relation
Ax ⊆ E ×E, we define the judgement Ax ⊢ e = f to hold if it can be inferred in the system
displayed in Figure 1 (where Ax ⊢ e ⩽ f is a shorthand for Ax ⊢ e + f = f).

Notice that we have “hardwired” some laws of Kleene Algebra (KA) in this system, on
the basis that they should hold for any reasonable equational system for Nominal Kleene
Algebra. However, as we have two sets of constants, we cannot put inside the generic system
the Kleene Algebra laws dealing with them. For instance when we consider expressions over
the untyped syntax, the fact that e ⋅ 1 = e will be stated inside Ax. It is a simple matter to
check that whatever Ax, the relation Ax ⊢ _ = _ is an equivalence relation and Ax ⊢ _ ⩽ _
is a preorder.

MFCS 2016



22:6 A Formal Exploration of Nominal Kleene Algebra

Sets of axioms

In Figures 2-6, we present a number of possible sets of axioms, which may be combined to
axiomatise the different subsets we consider. All the axioms displayed here are implicitly
universally quantified.

The first groups of axioms correspond to the axioms of KA for 1, declined in a typed and
an untyped fashion. We then do the same for 0 and �A, first with the KA axioms, and then
for its interactions with ⟨π⟩, νa and wa, always separating between the typed and untyped
cases. These sets of axioms for constants are presented in Figures 2 and 3.

We then introduce sets of axioms to handle permutations. The axiom propagating wa is
set apart, as it only makes sense for typed expressions. This group is displayed in Figure 4.
Notice that no law speaks about zeros, as it already has been dealt with in (3a).

The sets of axioms in Figure 5 are simple distributive laws of the restriction and weakening
operators.

The next group, displayed in Figure 6, constitutes the core of the nominal theory of
expressions. The untyped axioms are mostly the classic nominal axioms, taken from [6]. The
only new axiom here is (6b), where we use syntactic permutations rather than semantic ones.
The typed axioms are for the most part straightforward reformulations of the previous ones.
Notice that in the typed case, we do not need to use freshness conditions, but rather typing
statements. The last law of the set (6f) reflects the fact that for an untyped expression e, if
a ≠ b then a # e⇔ a # νb.e.

2.4 Theories

A theory is given by a relation Ax, listing the axioms, and a set S from which we take
expressions. As expressions may be typed or untyped, atomic or literate, clean or not and
positive or not, there are 16 theories, listed in Table 1.

Notice that every subset of expressions mentioned in this table is associated with a single
theory. In the following, for concision, we may refer to a theory by simply giving its base set.
It is also worth mentioning that for every set S, the theories for E ⟨L⟩ ∩ S and E ⟨A⟩ ∩ S use
the same set of axioms.

The theory E ⟨A⟩ ∩ U ∩ C corresponds precisely to the axiomatisation of NKA given
in [6]. In our view, the best theory for defining the interpretation of a program would be
E+ ⟨L⟩ ∩U ∩C, but a relational interpretation is best defined in E+ ⟨L⟩ ∩T.

A difficulty is that if we have a theory (S,Ax), with two expressions e, f ∈ S such that
Ax ⊢ e = f , it may be the case that the proof uses expressions outside of S. This is generally
what happens in systems with 0 (or �A): if e ∉ S and 0 ∈ S, then:

Ax ⊢ 0 = 0 ⋅ e Ax ⊢ 0 ⋅ e = 0
Ax ⊢ 0 = 0

This is a bad property when one wants to prove results by structural induction on proofs.
This phenomenon disappears with stable theories:

▸ Definition 10. A theory (S,Ax) is stable if for any expressions e, f ∈ E such that Ax ⊢ e = f ,
e ∈ S if and only if f ∈ S.

All of our positive theories (those included in E+) are stable.



P. Brunet & D. Pous 22:7

e ⋅ 1 =e
1 ⋅ e =e

1 + e ⋅ e⋆ ⩽e⋆

1 + e⋆ ⋅ e ⩽e⋆

(a) Untyped identity axioms.

e ⋅ idA =e (if e ∶ A)
idA ⋅ e =e (if e ∶ A)

idA + e ⋅ e⋆ ⩽e⋆ (if e ∶ A)
idA + e⋆ ⋅ e ⩽e⋆ (if e ∶ A)

(b) Typed identity axioms.

Figure 2 Identity axioms.

e + 0 =e
e ⋅ 0 =e (if e ∈ U)
0 ⋅ e =e (if e ∈ U)

⟨π⟩0 =0
νa.0 =0

(a) Untyped zero axioms.

e + �A =e (if e ∶ A)
e ⋅ �A =e (if e ∶ A)
�A ⋅ e =e (if e ∶ A)

⟨π⟩�A =�π(A)
νa.�A =�A∖{a} (if a ∈ A)
wa.�A =�A∪{a} (if a ∉ A)

(b) Typed zero axioms.

Figure 3 Zero axioms.

⟨π⟩ (e + f) = ⟨π⟩ e + ⟨π⟩ f
⟨π⟩ (e ⋅ f) = ⟨π⟩ e ⋅ ⟨π⟩ f
⟨π⟩ (e⋆) = (⟨π⟩ e)⋆

⟨π⟩ (νa.e) =νπ(a). ⟨π⟩ e
⟨π⟩ ⟨π′⟩ e = ⟨π ○ π′⟩ e

⟨π⟩1 =1
⟨π⟩ idA =idπ(A)
⟨⎧⎩⎫⎭⟩ e =e
⟨π⟩a =π (a) (if a ∈ A)
⟨π⟩ l =π (l) (if l ∈ L)

(a) General permutation axioms.

⟨π⟩ (wa.e) =wπ(a). ⟨π⟩ e

(b) Permutation vs. wa

Figure 4 Permutation axioms.

wa. (e + f) =wa.e +wa.f
wa. (e⋆) = (wa.e⋆)

wa. (e ⋅ f) =wa.e ⋅wa.f
wa. (idA) =idA∪{a} (if a ∉ A)
wa. (wb.e) =wb. (wa.e)

(a) Weakening.

νa. (e + f) =νa.e + νa.f
νa. (νb.e) =νb. (νa.e)

(b) Restriction.

Figure 5 Distributive laws of νa,wa.

MFCS 2016



22:8 A Formal Exploration of Nominal Kleene Algebra

νb.e =νa.⎧⎩a b⎫⎭ & e (if a # e)

(a) Untyped α-conversion with &.

νb.e =νa.⟨⎧⎩a b⎫⎭⟩ e (if a # e)

(b) Untyped α-conversion with ⟨π⟩.

νb.e =νa.⎧⎩a b⎫⎭ & e (if νb.e ∶ A and a ∉ A)

(c) Typed α-conversion with &.

νb.e =νa.⟨⎧⎩a b⎫⎭⟩ e (if νb.e ∶ A and a ∉ A)

(d) Typed α-conversion with ⟨π⟩.

νa.e =e (if a # e)
νa.f ⋅ e =νa. (f ⋅ e) (if a # e)
e ⋅ νa.f =νa. (e ⋅ f) (if a # e)

(e) Untyped nominal axioms.

νa.wa.e =e (if νa.wa.e ∶ A)
(νa.f) ⋅ e =νa. (f ⋅wa.e)
e ⋅ (νa.f) =νa. (wa.e ⋅ f)
νb.wa.e =wa.νb.e (if a ≠ b)

(f) Typed nominal axioms.

Figure 6 Nominal axioms.

Table 1 Theories.

Name Set Axioms
NKAmpu E+ ⟨L⟩ ∩U (2a) (4a) (5b) (6b) (6e)NKAspu E+ ⟨A⟩ ∩U
NKAnmpu E+ ⟨L⟩ ∩U ∩C (2a) (5b) (6a) (6e)NKAnspu E+ ⟨A⟩ ∩U ∩C
NKAmu E ⟨L⟩ ∩U (2a) (3a) (4a) (5b) (6b) (6e)NKAsu E ⟨A⟩ ∩U
NKAnmu E ⟨L⟩ ∩U ∩C (2a) (3a) (5b) (6a) (6e)NKAnsu E ⟨A⟩ ∩U ∩C
NKAmpt E+ ⟨L⟩ ∩T (2b) (4a) (4b) (5a) (5b) (6d) (6f)NKAspt E+ ⟨A⟩ ∩T
NKAnmpt E+ ⟨L⟩ ∩T ∩C (2b) (5a) (5b) (6c) (6f)NKAnspt E+ ⟨A⟩ ∩T ∩C
NKAmt E ⟨L⟩ ∩T (2b) (3b) (4a) (4b) (5a) (5b) (6d) (6f)NKAst E ⟨A⟩ ∩T
NKAnmt E ⟨L⟩ ∩T ∩C (2b) (3b) (5a) (5b) (6c) (6f)NKAnst E ⟨A⟩ ∩T ∩C



P. Brunet & D. Pous 22:9

E+ ⟨L⟩ ∩ T

E+ ⟨L⟩ ∩U

E ⟨L⟩ ∩ T

E ⟨L⟩ ∩U

E+ ⟨L⟩ ∩ T ∩C

E+ ⟨L⟩ ∩U ∩C

E ⟨L⟩ ∩ T ∩C

E ⟨L⟩ ∩U ∩C

E+ ⟨A⟩ ∩ T

E+ ⟨A⟩ ∩U

E ⟨A⟩ ∩ T

E ⟨A⟩ ∩U

E+ ⟨A⟩ ∩ T ∩C

E+ ⟨A⟩ ∩U ∩C

E ⟨A⟩ ∩ T ∩C

E ⟨A⟩ ∩U ∩C

Figure 7 The two cubes as sets.

3 Ordering theories

3.1 Definitions
We define two preorders to compare theories. The first one is the strongest one:

▸ Definition 11 (Embedding preorder). A theory (S,Ax) can be embedded into (S′,Ax′),
written (S,Ax) ≼ (S′,Ax′) if there is a function φ such that for any e ∈ S, φ (e) ∈ S′, and for
any e, f ∈ S, Ax ⊢ e = f ⇔ Ax′ ⊢ φ (e) = φ (f). In that case we say that φ is an embedding
of (S,Ax) into (S′,Ax′).

When a theory can be embedded into a second one, then every model of the latter one
gives rise to a model former one. However, some intuitively equivalent theory cannot be
compared using this preorder. For instance, E+ ⟨A⟩ ∩T cannot be embedded into E+ ⟨A⟩ ∩U.
Indeed, while the typed expressions id{a} and id{a,b} are not equal (they have different types),
they have the same untyped behaviour and both of them should be mapped to the untyped
constant 1. To this end, we introduce a slightly weaker preorder:

▸ Definition 12 (Reduction preorder). A theory (S,Ax) reduces to (S′,Ax′), which we denote
by (S,Ax) ≪ (S′,Ax′), if for any pair (e, f) ∈ S ×S there is a pair of expressions (e′, f ′) ∈ S′
such that Ax ⊢ e = f ⇔ Ax′ ⊢ e′ = f ′.

▸ Lemma 13. If (S,Ax) ≪ (S′,Ax′) and if (S′,Ax′) is decidable, then so is (S,Ax).

▸ Remark. This lemma assumes an effective proof of (S,Ax) ≪ (S′,Ax′): there must be a
way to build the pair e′, f ′ from the pair e, f . Our (Coq) proofs below have this property.

3.2 Embeddings
We summarise the results we obtained using Coq on Figure 7. (The scripts are available
online [1]). A plain arrow is drawn between two theories if the source of the arrow can be
embedded into the target of the arrow, and a dashed arrow when the source reduces to the
target. Thanks to the decidability result for E ⟨A⟩ ∩U ∩C [5], this ensures that all atomic
theories are decidable.

We discuss in more details how we obtained some of these results.

3.2.1 Reducing to positive fragments
The first step consists in getting rid of the constants 0 and �A, so that we can focus on stable
theories (Definition 10). We only present here the untyped case. In other words we choose a

MFCS 2016



22:10 A Formal Exploration of Nominal Kleene Algebra

theory (S,Ax), with S taken from the set {E ⟨A⟩ ∩U,E ⟨A⟩ ∩U ∩C,E ⟨L⟩ ∩U,E ⟨L⟩ ∩U ∩C},
the corresponding positive theory being (S ∩E+,Ax ∖ (3a)).

▸ Definition 14. If e is an untyped expression, extract (e) is the unique normal form of e
with respect to the following confluent rewriting system:

e + 0→ e 0 + f → f e ⋅ 0→ 0 0 ⋅ f → 0 νa.0→ 0 ⟨π⟩0→ 0 0⋆ → 1.

The interesting property of this function is that if Ax ⊢ e = 0, then extract (e) is syntactically
equal to 0, and extract (e) ∈ E+ otherwise. Furthermore, for every e ∈ S, Ax ⊢ extract (e) = e.
The formal proof then relies on two key observations:
1. If (e, f) ∈ Ax ∖ (3a), then Ax ∖ (3a) ⊢ extract (e) = extract (f).
2. If (e, f) ∈ (3a), then extract (e) = extract (f).
This allows to prove by induction on proofs that:

Ax ⊢ e = f ⇒ Ax ∖ (3a) ⊢ extract (e) = extract (f) .

Because the positive axiomatisation is included in Ax, we also get:

Ax ∖ (3a) ⊢ extract (e) = extract (f)⇒ Ax ⊢ extract (e) = extract (f) .

The fact that extract (e) is provably equal to e with the axioms Ax allows to close the proof
of equivalence, with the entailment:

Ax ⊢ extract (e) = extract (f)⇒ Ax ⊢ e = f.

However, if Ax ⊢ e = 0 then extract (e) ∉ E+. This means that we cannot directly use
extract () as an embedding between theories. We obtain the reduction as follows: when
given the pair e, f , we compute extract (e) and extract (f). If both of these are equal to
zero, then when map the pair to equal positive expressions, say 1,1. If both of them are
non-zero, then we produce extract (e) , extract (f). Otherwise we produce different positive
expressions, say 1, a in the atomic case and 1, l in the literate case.

3.2.2 From presheaves to freshness, and back
Let (S,Ax) be a positive untyped theory, meaning S ⊆ E+ ∩U, and (S′,Ax′) be the corres-
ponding positive typed theory. We show here how to transport S into S′, and vice versa.
This corresponds to the vertical arrows on Figure 7. The key tools in this case are the erasure
and retyping functions.

▸ Definition 15 (Erasure). The erasure of e ∈ T, written ⌊e⌋, is the expression obtained from
e by removing all weakenings (wa), and replacing all idA with 1 and all �A with 0.

▸ Lemma 16. If e ∈ S′ then ⌊e⌋ ∈ S, and if e ∶ A then ♮ (⌊e⌋) ⊆ A.

▸ Definition 17 (Retyping). Let e ∈ U, we define the retyping of e, written ⌈e⌉, by structural
induction:

⌈0⌉ ∶=�∅ ⌈1⌉ ∶=id∅ ⌈e + f⌉ ∶=w♮(f)∖♮(e). ⌈e⌉ +w♮(e)∖♮(f). ⌈f⌉
⌈a⌉ ∶=a ⌈l⌉ ∶=l ⌈e ⋅ f⌉ ∶=w♮(f)∖♮(e). ⌈e⌉ ⋅w♮(e)∖♮(f). ⌈f⌉
⌈e⋆⌉ ∶= ⌈e⌉⋆ ⌈νa.e⌉ ∶=νa. ⌈e⌉ (if a ∈ ♮ (e))

⌈⟨π⟩ e⌉ ∶= ⟨π⟩ ⌈e⌉ ⌈νa.e⌉ ∶=νa.wa. ⌈e⌉ (if a ∉ ♮ (e))

The notation wA.e is justified by the law wa.wb.e = wb.wa.e, holding in every typed theory.



P. Brunet & D. Pous 22:11

▸ Lemma 18. e ∈ S entails ⌈e⌉ ∈ S′. Furthermore, ⌈e⌉ has the type ♮ (e).

These functions allow one to go back and forth between S and S′:

▸ Lemma 19. If e ∈ S, then e = ⌊⌈e⌉⌋. If e ∶ A, then:

(6f) (5a) (4b) ⊢ e = wA∖♮(⌊e⌋). ⌈⌊e⌋⌉ .

Furthermore, if S ⊆ C, we may remove the axiom (4b).

From this lemma, we obtain that the retyping function is an embedding of S into S′. But it
also shows a problem for the other direction. For instance the expressions e and wa.e have
different types, and are thus different, but they will be mapped to the same expression. For
this reason, we cannot use the erasure function to embed S′ into S.

Nevertheless, we can use it to show that S′ is simpler than S. Given a pair of expressions
e, f ∈ S′, if e and f have the same type, then we produce the pair ⌊e⌋ , ⌊f⌋ which is equiprovable.
If it is not the case, we purposely produce different expressions, as in the previous section.

3.2.3 From atomic to literate
We assume there is an atom α ∈ A and an element λ ∈ L with ♮ (λ) = {α}. We show the
transformation from E+ ⟨A⟩∩U to E+ ⟨L⟩∩U, which corresponds to the central horizontal top
arrow on Figure 7. Let NKApu be the set of axioms (2a), (4a), (5b), (6b), (6e) corresponding
to the theory of these sets.

▸ Definition 20 (From atoms to letters.). Given an expression e ∈ E+ ⟨A⟩ ∩ U, we obtain
the expression ⇃e⇂ ∈ E+ ⟨L⟩ ∩ U by replacing every atomic variable a by ⟨⎧⎩a α⎫⎭⟩λ. We
write ⇃E+ ⟨A⟩ ∩U⇂ for the set of expressions f ∈ E+ ⟨L⟩ ∩U, such that there is an expression
e ∈ E+ ⟨A⟩ ∩U such that f = ⇃e⇂.

For any expression e, e ∈ ⇃E+ ⟨A⟩ ∩U⇂ if and only if each literate variable in e has the
identifier x. It is also worth noting that ⇃_⇂ preserves freshness: a # e⇔ a # ⇃e⇂. As for
typed and untyped expressions, we define an inverse operation.

▸ Definition 21 (Going back). The inverse operation is only defined on literate expressions
whose variables carry the identifier x, and thus have a singleton support. The expression ↿e↾
is then obtained by replacing every variable by the single atom in its support.

The function ↿_↾ is the inverse of ⇃_⇂, ⇃_⇂ preserves NKApu-equality, and ↿_↾ preserves
NKApu-equality on the image of ⇃_⇂.

▸ Lemma 22. ∀e ∈ E+ ⟨A⟩ ∩U, NKApu ⊢ e = ↿⇃e⇂↾.

▸ Lemma 23. ∀e, f ∈ E+ ⟨A⟩ ∩U, NKApu ⊢ e = f ⇒ NKApu ⊢ ⇃e⇂ = ⇃f⇂.

▸ Lemma 24. ∀e, f ∈ E+ ⟨L⟩ ∩U ∩ ⇃E+ ⟨A⟩ ∩U⇂, NKApu ⊢ e = f ⇒ NKApu ⊢ ↿e↾ = ↿f↾.

By putting all together, we obtain that ⇃_⇂ is an embedding of E+ ⟨A⟩ ∩U into E+ ⟨L⟩ ∩U.

4 Relational interpretation of literate expressions

Our main motivation for developing the typed syntax was to define a relational interpretation
of expressions. As explained in the introduction, the classical way of interpreting a program
as a relation is to consider memory states as functions, associating values to memory cells. A

MFCS 2016



22:12 A Formal Exploration of Nominal Kleene Algebra

program is then simply a relation between memory states. Furthermore, in most high level
programming languages, one cannot access every part of the memory: a variable should be
declared before it is used. There are also constructs allowing one to declare a local variable,
which is hidden from the rest of the program. Both of these considerations can be encoded
by considering functions with a finite domain: the set of memory locations that are visible in
the current scope.

Let us be more precise. Consider that the set A of atoms corresponds to memory locations,
and that locations may contain values from an arbitrary set V. A memory state of domain
A ∈ ℘f (A) is then a function from A to V, and an expression of type A will be interpreted
as a binary relation over memory states of domain A (whence the presheaf structure).

Regular operations are interpreted using the standard operations on binary relations;
in particular, idA is interpreted as the identity relation on VA. To interpret letters, we
need to fix an equivariant map φ that assign to a letter x a relation between memory states
with domain ♮ (x). Several choices are possible for the operations of restriction (νa) and
weakening (wa), yielding slightly different theories. Here is a possibility which gives rise to a
model of our theory: if R is a relation over VA, then we define

νa.R ∶={(f↾A, g↾A) ∣ (f, g) ∈ R} ; (if a ∈ A)
wa.R ∶={(f, g) ∣ (f↾A, f↾A) ∈ R and f(a) = g(a)} . (if a ∉ A)

(Where f↾A is the restriction of a function f ∈ VB for some superset B of A.)
Note that this model is not free: for all relations R,S we have νa.(R ⋅S) ⊆ (νa.R) ⋅ (νa.S),

which is not an inequation provable from the axioms.

Example.

Consider the program swap (x, y) that exchanges the contents of the variables x and y. The
natural implementation of this program is the following: let t in t← x;x← y; y ← t.

The instruction x← y may be represented by a nominal element assign (x,y) with
support {x,y}, and such that π (assign (x,y)) = assign (π (x) , π (y)). Accordingly, the
program swap is represented by the following expression, where the location is hidden using
a top-level restriction.

νt. (assign (t,x) ⋅ assign (x,y) ⋅ assign (y,t)) .

Alternatively, one can obtain an expression with a single letter using explicit permutations:
let a1 and a2 be two atoms, and set a ∶= assign (a1, a2). The instruction x← y may be
represented by ⟨⎧⎩x a1⎫⎭⎧⎩y a2⎫⎭⟩a, and the program swap by

νt. (⟨⎧⎩t a1⎫⎭⎧⎩x a2⎫⎭⟩a) ⋅ (⟨⎧⎩x a1⎫⎭⎧⎩y a2⎫⎭⟩a) ⋅ (⟨⎧⎩y a1⎫⎭⎧⎩t a2⎫⎭⟩a) .

5 Future work

We leave two questions for future work. First, is it possible to reduce the literate theory of
nominal Kleene algebra to that of atomic nominal Kleene algebra? If not, is there a free
language theoretic model for which we could obtain decidability?

Second, is there a free relational model for our literate theory?

Acknowledgements. We would like to thank Daniela Petrisan and Alexandra Silva for the
discussions that have led to this work.



P. Brunet & D. Pous 22:13

References
1 Paul Brunet. Web appendix to this abstract, 2016. http://perso.ens-lyon.fr/paul.

brunet/nka.
2 Murdoch Gabbay and Andrew Pitts. A new approach to abstract syntax involving binders.

In Logic in Computer Science, 1999. Proceedings. 14th Symposium on, pages 214–224. IEEE,
1999.

3 Murdoch James Gabbay and Vincenzo Ciancia. Freshness and name-restriction in sets
of traces with names. In Foundations of Software Science and Computational Structures,
FoSSaCS 2011, pages 365–380. Springer, 2011.

4 Dexter Kozen. Kleene algebra with tests. Transactions on Programming Languages and
Systems, 19(3):427–443, May 1997. doi:10.1145/256167.256195.

5 Dexter Kozen, Konstantinos Mamouras, Daniela Petrisan, and Alexandra Silva. Nominal
Kleene Coalgebra. In Automata, Languages, and Programming, ICALP 2015, pages 286–
298. Springer, 2015.

6 Dexter Kozen, Konstantinos Mamouras, and Alexandra Silva. Completeness and incom-
pleteness in Nominal Kleene Algebra. In Relational and Algebraic Methods in Computer
Science, RAMiCS 2015, pages 51–66. Springer, 2015.

7 Andrew M Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57.
Cambridge University Press, 2013.

MFCS 2016

http://perso.ens-lyon.fr/paul.brunet/nka
http://perso.ens-lyon.fr/paul.brunet/nka
http://dx.doi.org/10.1145/256167.256195

	Introduction
	Expressions and proofs
	Atoms and letters
	Expressions and sets of expressions
	Untyped expressions
	Typed expressions
	Expressions over letters or atoms
	Positive expressions
	Explicit permutations

	Proofs
	Theories

	Ordering theories
	Definitions
	Embeddings
	Reducing to positive fragments
	From presheaves to freshness, and back
	From atomic to literate


	Relational interpretation of literate expressions
	Future work

