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—— Abstract

Impagliazzo et al. proposed a framework, based on the logic fragment defining the complexity
class SNP, to identify problems that are equivalent to k-CNF-SAT modulo subexponential-time
reducibility (serf-reducibility). The subexponential-time solvability of any of these problems
implies the failure of the Exponential Time Hypothesis (ETH). In this paper, we extend the
framework of Impagliazzo et al., and identify a larger set of problems that are equivalent to k-
CNF-SAT modulo serf-reducibility. We propose a complexity class, referred to as Linear Monadic

NP, that consists of all problems expressible in existential monadic second order logic whose
expressions have a linear measure in terms of a complexity parameter, which is usually the
universe size of the problem.

This research direction can be traced back to Fagin’s celebrated theorem stating that NP co-
incides with the class of problems expressible in existential second order logic. Monadic NP, a
well-studied class in the literature, is the restriction of the aforementioned logic fragment to exis-
tential monadic second order logic. The proposed class Linear Monadic NP is then the restriction
of Monadic NP to problems whose expressions have linear measure in the complexity parameter.

We show that Linear Monadic NP includes many natural complete problems such as the
satisfiability of linear-size circuits, dominating set, independent dominating set, and perfect code.
Therefore, for any of these problems, its subexponential-time solvability is equivalent to the
failure of ETH. We prove, using logic games, that the aforementioned problems are inexpressible
in the monadic fragment of SNP, and hence, are not captured by the framework of Impagliazzo et
al. Finally, we show that FEEDBACK VERTEX SET is inexpressible in existential monadic second
order logic, and hence is not in Linear Monadic NP, and investigate the existence of certain
reductions between FEEDBACK VERTEX SET (and variants of it) and 3-CNF-SAT.
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On Existential MSO and its Relation to ETH

1 Introduction

Motivation and related work

The area of exact algorithms seeks moderately exponential-time algorithms for NP-hard
problems that improve on the trivial brute-force algorithms. This area of research has been
gaining a lot of traction in the last two decades. Nowadays, there is a large set of important
NP-complete problems such that for each problem there is a long list of exact algorithms, each
improving slightly on the running time of the preceding one; we refer the interested reader
to [19] for exposure to the area of exact algorithms. Perhaps the most well-known—and
important—NP-hard problem is the satisfiability of Boolean formulas in conjunctive normal
form, abbreviated CNF-SAT. Its importance stems from its practical relevance as well as
from the canonical role it plays for the complexity class NP, being the first problem shown to
be complete for this class. Despite all the exercised efforts over the last several decades, the
best algorithms remain equivalent (in terms of the upper bound on their running time) to the
trivial brute-force algorithm that solves CNF-SAT in time O*(2"),! where n is the number of
Boolean variables in the input formula. It has become a common belief among a significant
number of researchers in the area of exact algorithms that no O*(2")-time algorithm, for any
constant ¢ < 1, exists for CNF-SAT. If we restrict the clause-width to be at most k (where
k > 3) in the instances of CNF-SAT, we obtain the k-CNF-SAT problem, for which there
is a long list of moderately exponential-time algorithms culminating in the currently-best
deterministic algorithm (for a general value of k) running in time O((2 —2/(k + 1))™) [12].

The sequence of improvements in the running time of moderately exponential-time
algorithms for k-CNF-SAT, as well as for other NP-complete problems, led researchers to
ask whether we can “indefinitely” keep improving the running time of exact algorithms for
these problems. More formally, it triggered the question of whether an algorithm solving
kE-CNF-SAT in time O(2°(™), or equivalently in time O(2°") for every £ > 0, exists; an
algorithm with such running time is referred to as a subexponential-time algorithm. In their
seminal paper, Impagliazzo et al. [22] investigated this question. They proved that the
existence of a subexponential-time algorithm for k-CNF-SAT, for any integer-constant k > 3,
is related to its membership in the class SNP, introduced in [30]. The class SNP consists
of all search problems expressible by second-order existential formulas whose first-order
part is universal; we shall refer to the aforementioned logic fragment as SNP logic. For a
problem in SNP, they defined a complexity parameter based on its SNP logic expression.
They introduced the notion of completeness for the class SNP under serf-reductions, which
are subexponential-time complexity preserving reductions with respect to the aforementioned
complexity parameter, and identified a class of problems that are complete for SNP under
serf-reducibility; the subexponential-time solvability of any of these problems with respect to
its corresponding complexity parameter implies the subexponential-time solvability of all
problems in SNP. They proved that many well-known NP-hard problems are SNP-complete
under serf-reducibility with respect to a complexity parameter that is linear in the natural
universe size of the problem, including k-CNF-SAT (universe is the Boolean variables in
the formula), VERTEX COVER, INDEPENDENT SET, and ¢-COLORABILITY (¢ > 3) (universe
is the vertex set of the graph), for which extensive efforts to develop subexponential-time

Kanj was partially supported by DFG, project NI 369/12. Ganian, de Haan and Szeider were partially
supported by FWF| projects P 26200 and P 26696. Ganian is also affiliated with FI MU, Brno, Czech
Republic.

1 The O* notation suppresses a polynomial factor in the input length.
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algorithms have been made in the last three decades with no success. This led them
to formulate the Exponential Time Hypothesis (ETH), stating that k-CNF-SAT is not
solvable in subexponential-time, which is equivalent to the statement that not all SNP
problems are solvable in subexponential time. ETH has become a standard hypothesis in
complexity theory for proving hardness results that is closely related to the computational
intractability of a large class of well-known NP-hard problems, measured from a number of
different angles, such as subexponential-time complexity, fixed-parameter tractability, and
approximation [6, 7, 10, 28, 29].

Our results

The SNP logic framework developed by Impagliazzo et al. [22] captures some well-known
NP-complete problems that are serf-reducible to k-CNF-SAT with respect to their universe
size, but fails to capture many others. Using logic games, we prove in Section 3 that there are
many natural NP-complete problems that are not captured by this SNP logic framework, and
yet are serf-reducible to k~-CNF-SAT. Examples of such problems include the satisfiability
problem for linear-size circuits (LINEAR CIRCUIT-SAT), DOMINATING SET, INDEPENDENT
DOMINATING SET, and PERFECT CODE. The restrictedness of the SNP-based framework,
due to the restrictedness of SNP logic to allowing only universal quantifiers in the first order
part, prevents the expressibility of problems such as the aforementioned ones, as we show
in this paper that none of these problems can be expressed in SNP logic with a complexity
parameter that is linear in the natural universe size of the problem.

We propose a complexity class, referred to as Linear Monadic NP, that captures more
problems than the SNP-based framework of Impagliazzo et al. [22]. Fagin’s celebrated
theorem [15] states that NP coincides with the class of properties expressible in existential
second-order logic. The class monadic NP, introduced by Fagin et al. [16], is the restriction
of NP to problems expressible in monadic second-order logic in which the second-order part
is existential, that is, all second-order variables have arity at most one (i.e., set variables),
and no universal quantification is allowed over these relations. The class monadic NP is a
well-studied complexity class, and several properties have been shown to be inexpressible in
the logic fragment defining this class [2, 3, 16, 23, 25]. We show in this paper that the class
monadic NP plays an important role as well in identifying problems that are equivalent to k-
CNF-SAT under serf-reducibility. We define a measure (for expressions), and use it to define
a logic fragment, Linear Ezistential Monadic Second-Order Logic (LEMSO), consisting of the
restriction of existential monadic second-order logic to expressions whose measure is linear in
the complexity parameter, where the complexity parameter is defined as in Impagliazzo et
al. [22]. The class Linear Monadic NP consists of all search problems expressible in LEMSO.
All natural problems described in [22] including k-CNF-SAT, INDEPENDENT SET, VERTEX
COVER, ¢-COLORABILITY, which are complete for SNP under serf-reducibility with respect
to their natural universe size (number of variables/vertices), are also complete for Linear
Monadic NP under serf-reducibility. In fact, each problem in the class of problems defined
by Impagliazzo et al. [22] consisting of all problems expressible in the SNP logic with a linear
complexity parameter (as defined in [22]) is in Linear Monadic NP. We prove that problems
such as LINEAR CIRCUIT-SAT, DOMINATING SET, and INDEPENDENT DOMINATING SET
are in Linear Monadic NP (and are actually complete for Linear Monadic NP), but are
not expressible in the SNP logic, thus showing that the set of problems expressible in the
SNP logic with a linear complexity parameter is a proper subset of Linear Monadic NP.
This implies that the subexponential-time solvability of any of the aforementioned problems
is equivalent to the failure of ETH. Our inexpressibility proofs use the framework of logic
games, namely the Ajtai-Fagin game and the Ehrenfeucht-Fraissé game.
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Finally, we show using logic games that FEEDBACK VERTEX SET is inexpressible in EMSO,
and hence is not in Linear Monadic NP. Whereas it can be easily shown that 3-CNF-SAT is
serf-reducible to FEEDBACK VERTEX SET (by composing the two folklore polynomial-time
reductions from 3-CNF-SAT to VERTEX COVER and from VERTEX COVER to FEEDBACK
VERTEX SET), it is open whether a serf-reduction exists in the other direction. We show that
there is a polynomial-time reduction from FEEDBACK VERTEX SET to 3-CNF-SAT with
a quasi-linear increase in the universe size, and define a variant of FEEDBACK VERTEX
SET that is equivalent to 3-CNF-SAT under serf-reducibility.

2 Preliminaries

2.1 Satisfiability

The CNF-SATISFIABILITY problem, shortly CNF-SAT, is given a formula F' in the CNF
form, decide whether or not F' is satisfiable. The width of a clause in a CNF formula F' is the
number of literals in the clause. The k-CNF-SAT problem, where k > 2, is the restriction of
the CNF-SAT problem to instances in which the width of each clause is at most k. It is well
known that the k-CNF-SAT problem for k£ > 3 is NP-complete [20]. LINEAR CNF-SAT is
the restriction of CNF-SAT to formulas with a linear number of clauses with respect to the
number of variables.

A circuit is a directed acyclic graph. The vertices of indegree 0 are called the variables
or input gates, and are labeled either by positive literals x; or by negative literals T;. The
vertices of indegree larger than 0 are called the gates and are labeled with Boolean operators
A or V. A special gate of outdegree 0 is designated as the output gate. We do not allow
negation gates in the circuit since, by De Morgan’s laws, a general circuit can be efficiently
converted into the above circuit model. The size of a circuit C, denoted |C|, is the number
of gates in it. A circuit C' is satisfiable if there is a truth assignment to the input variables of
C that makes C evaluate to 1. The CIRCUIT-SATISFIABILITY problem, shortly CIRCUIT-SAT,
is given a circuit C, decide whether or not C is satisfiable. LINEAR CIRCUIT-SAT is the
restriction of CIRCUIT-SAT to circuits of linear size with respect to the number of variables.

2.2 Subexponential time and SNP

For any n € N, by [n] we denote the set {1,2,...,n}. The time complexity functions used in
this paper are assumed to be proper complexity functions.

It is clear that CNF-SAT is solvable in time 2"|F|(), where F is the input instance and
n is the number of variables in F'. We say that CNF-SAT is solvable in subexponential time
if there exists an algorithm that solves the problem in time 2°(")|F|°(Y). Using the results
of [8] and [17], the above definition is equivalent to the following: CNF-SAT is solvable in
subexponential time if there exists an algorithm that for all e = 1/¢, where ¢ is a positive
integer, solves the problem in time 2°”|7|©(),

Let @ and @’ be two problems, and let ;1 and p/ be two parameter functions defined on
instances of @ and @Q’, respectively. In the case of CNF-SAT, p and g’ will be the number
of variables in the instances of these problems. A subexponential-time Turing reduction
family [22], see also [17], shortly a serf-reduction?, is an algorithm A with an oracle to Q'
such that there are computable functions f, g : N — N satisfying: (1) given a pair (I,¢)

2 Serf-reductions were introduced in [22]. Here we use the definition given in [17]. There is a slight
difference between the two definitions, and the latter definition is more flexible for our purposes.
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where I € Q and € = 1/¢ (£ is a positive integer), A decides I in time f(1/e)25#(D)|[|O0);
and (2) for all oracle queries of the form “I’ € Q"7 posed by A on input (I,¢), we have
w(I') < g(1/e)(u(I) +log |11).

The class SNP consists of all search problems expressible by second-order existential
formulas whose first-order part is universal [30]; that is, search problems expressible by second-
order formulas of the form 3Ry ...3R, V21 ...Vz, ®(S, R1,..., Ry, 21,..., %), where S is the
input structure, Ry, ..., R, are (bound) relations, 21, ..., 2, are first-order variables, and ®
is a quantifier-free Boolean formula. We will refer to the preceding logic fragment as the SNP
logic. Impagliazzo et al. [22] defined a complexity parameter for each such expression equal
to > | |R;|*, where |R;| and a;, i =1,...,¢, are the encoding length of R; and its arity,
respectively. For monadic relations, the number of bits needed to describe R;, is the size of
the universe on which R; is interpreted, and hence, as noted in [22], the complexity parameter

in this case is linear in the universe size. They formulated the Exponential Time Hypothesis
(ETH) stating that k-CNF-SAT (for any k& > 3) cannot be solved in subexponential time
20(7) wwhere n is the number of variables in the input formula. Therefore, there exists ¢ > 0
such that k-CNF-SAT cannot be solved in time O(2°"). ETH is equivalent to the statement
that not all SNP problems are solvable in subexponential time.

3 Linear Monadic NP and Serf-Reducibility to Linear Circuit-Sat

In this section, we present a fragment of existential second-order logic that extends the SNP
logic introduced by Impagliazzo et al. [22] in the sense that it captures a larger set of problems
that are serf-reducible to 3-CNF-SAT. The logic fragment we propose is a restriction of
the well-studied existential monadic second-order logic (EMSO) that defines the complexity
class Monadic NP (modulo standard syntactic augmentations to allow the expression of
optimization problems). To define this logic fragment, we introduce a measure/function that
associates with each expression in EMSO a value in terms of the complexity parameter of the
expression, and we define Linear Monadic NP to be the restriction of Monadic NP to those
expressions whose measure is linear in the complexity parameter. The complexity parameter
of the expression we use is the same parameter defined by [22] for expressions in SNP: If
Ry, ..., Ry are the existentially-quantified second-order relations in the expression, where R;
has arity «;, for ¢ = 1,..., ¢, then the complexity parameter of the expression is Zgzl |R; |

We note that the SNP logic does not restrict the existentially quantified relations to be
monadic, and we could have opted to do the same in this paper (i.e., not restrict ourselves
to monadic relations and Monadic NP), and the results in this paper would not have been
affected. However, observe that the aforementioned complexity parameter defined by [22]
and also used by us, when interpreted on a given structure (graph, CNF-formula, etc.)
yields a parameter that is equal to Y ;_, |U|*, where U is the natural universe on which
the relations Ry,..., R, are interpreted. Hence, this parameter can only be linear in the
universe size (number of vertices in a graph, number of variables in a formula, etc.) if
all relations in the expression are monadic; otherwise, the complexity parameter will be
at least quadratic. To be able to use serf-reductions to claim that a subexponential-time
algorithm for 3-CNF-SAT yields a subexponential-time algorithm for the search problem
under consideration with respect to a complexity parameter that is linear in the universe
size of the problem, the existentially-quantified relations in the SNP logic expression of the
problem need to be monadic. We will refer to this fragment of SNP logic as monadic SNP
logic, which, by the above, is the fragment of interest in the framework of Impagliazzo et
al. [22] when studying the equivalence between natural problems modulo serf-reducibility.

42:5
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We refer to the corresponding complexity class as Monadic SNP. By the same token, and
without loss of generality, in this paper we restrict ourselves to Monadic NP.

3.1 Linear Monadic NP

The fragment of existential second-order logic that we consider is based on an inductively
defined measure. Intuitively, this measure captures the size of the Boolean circuit that can
be constructed for a concrete instance of the problem that is satisfiable if and only if there is
an assignment to the second-order variables that makes the first-order part of the formula
true.

We consider EMSO formulas with a single free monadic second-order variable, to be able
to express optimization problems where solutions of a given (exact) size are sought.

In particular, let ¢(S) = 3Ry ...3R; Q121...Qrzr ©(S,R1,...,Rq,21,...,%) be an
existential second-order logic formula, where S is a free monadic second-order variable,
where R1, ..., Ry are (bound) monadic second-order variables, where z1, ..., 2z, are first-order
variables and Q1,...,Q, € {3,V}, and where ® is quantifier-free.

Moreover, let A be an optimization problem consisting of inputs (I, N), where I is a
relational structure over the same relational vocabulary as ®, and where N is a positive
integer.

We say that ¢(.5) expresses the problem A if for each input (I, N) it holds that (I, N) € A
if and only if there is an interpretation Sy of S in I of size exactly N such that I = ¢(Sp).

More generally, we also consider existential second-order logic formulas ¢(S) where the
first-order part does not need to be in prenex form, that is, first-order quantifications and
Boolean connectives can freely alternate.

Without loss of generality, we suppose that formulas ¢(S) are in negation normal form.

For search problems that do not involve an optimization component (e.g., 3-CNF-SAT),
we can simply omit the free variable S in the logic expression and the integer N in the
problem input. All definitions and results extend straightforwardly to this setting.

For optimization problems where solutions of a given minimum or maximum size are
sought, it suffices to investigate the variant of the problem involving solutions of exactly
the given size, because it can easily be shown that there is a serf-reduction between these
different problem variants.

Our size measure s is based on inductively defined measures, sy and s3, that we define
below. All measures take as input a second-order logic formula, and return an arithmetic
expression over the single variable n. For any formula ¢(.5) that expresses a search problem A,
intuitively, the expression s(¢(S)) = f(n) denotes an upper bound on the size of the Boolean
circuit that expresses a given instance in terms of the input size n.

We inductively define these measures as follows. Here we let Q range over {V,3}, and we
let @ denote the unique quantifier in {V,3}\{Q}. Moreover, we let o range over {A,V}, and
we let a denote any atom.
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s(AR; ) = s(); (1) s(rot) =14 s(¥1) + s(¢2); (2)
n if 1 does not contain any occurrence of Q;
sQuv) = {1 +50(Qz ) otherwise; )

( ) =14+n- 85(¢); 4) sg(a) = sg(—a) = 0; (6)

( ) =n-sq(¥); (5)

5Q (Y1 01ha) = sq(12) if ¢y contains no occurrences of second-order variables; (7)
(

sQ(1 01ha) = sg(11) if ¢ contains no occurrences of second-order variables; (8)

for the case where both 1 and 15 contain second-order variables, we let:
53(Y1 Vha) = s3(1) +s3(2);  (9)  sv(¥1 Vo) = 1+ s3(Y1) +s3(v2);  (11)
sv(1 A2) = sy(P1) +sv(¥2); (10)  sa(¥r Avh2) =1+ sw(hn) +sv(¥2).  (12)

The intuition behind the definition of the measure is that s(¢(S)) measures the size of the
Boolean circuit C' that is needed to express the formula ¢(S) when interpreted over the
input I; s(p(S)) returns an arithmetic expression with a single symbol, n, that is interpreted
as the size of the universe U of the relational structure I. The variables of C' are of the
form 27 ., representing whether an element e in the domain of I is chosen to be part of
the interpretation of the monadic second-order variable T'. The circuit C then encodes the
first-order part of .

The computation of s(¢) works as follows. The existential second-order quantifiers are
disregarded, and the outermost Boolean connectives are dealt with in a straightforward
inductive manner.

For every maximal subformula ¢ that starts with a first-order quantifier @, there are two
options. Either ¢ contains only first-order quantifiers of a single type—in which case the
measure s returns n for this subformula—or ¥ contains quantifiers of both types. In the
latter case, the size of the (sub)circuit to represent ¢ is measured inductively using sq.

The measure sg keeps track of what logic gate is the parent of the subcircuit representing
the subformula 1 (i.e., @ =V corresponds to an A-gate as parent and @ = 3 corresponds to
an V-gate as parent), and increases the size only if the subcircuit cannot be integrated /merged
with its parent gate. For example, if the output gate of the subcircuit is an A-gate, and its
parent is also an A-gate, these two gates can be merged into a single large A-gate.

» Definition 1. We define Linear Monadic NP to be the class of NP search problems such
that each is expressible using an EMSO formula ¢(S) with s(¢(S)) = O(n).

The following theorem shows that LINEAR CIRCUIT-SAT can serve as the canonical
satisfiability problem for Linear Monadic NP:

» Theorem 2. Let A be a problem in Linear Monadic NP, and suppose that A is expressible
using an EMSO formula ¢(S), where s(¢(S)) = O(n). Then A is serf-reducible to LINEAR
CIRCUIT-SAT, where the parameter of A is the size of the universe of the input structure,
and that for LINEAR CIRCUIT-SAT is the number of variables of the circuit.

Sketch of Proof. Let A be a search problem with input of the form (I, N), where I is a
relational structure with universe U, and N € N, such that A is expressed by the EMSO
formula ¢(S) =3Ry,..., Ry ®(R1,..., Ry, S), with s(¢(S)) = O(n).

We know that ® consists of first-order formulas 1, ..., y¥r—each starting with a first-
order quantifier—that are combined using the connectives A and V, and that s(v;) = O(n)
for each i € [k].

42:7
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We reduce the problem to LINEAR CIRCUIT-SAT by transforming each such formula 1); into
a sequence of (subexponentially many) circuits C; 1,. .., C;p, where each such circuit C; , is
of size linear in |U|.

If 9); contains only universal first-order quantifiers, or only existential first-order quantifiers,
constructing such a sequence of circuits can be done using known results [22, Theorems 1
and 2].

Otherwise, if ¢; contains both universal and existential first-order quantifiers, we trans-
form 1; into a single circuit C; inductively, breaking the formula v; into its subformulas and
constructing subcircuits for each subformula.

Intuitively, this circuit C; is constructed by ‘unfolding’ universal quantifiers into A-gates
and existential quantifiers into V-gates. Using the inductive definition of the measure s in
Equations (1)—(12), and by our assumption that s(¢;) is a linear function in n, we can derive
that this construction yields a circuit C; that is of size linear in |U|. <

» Definition 3. A problem A is Linear Monadic NP-complete under serf-reducibility if (1) it
is in Linear Monadic NP and (2) every problem in Linear Monadic NP is serf-reducible to A.

» Corollary 4. LINEAR CIRCUIT-SAT is Linear Monadic NP-complete under serf-reducibility.

Note that all problems in Monadic SNP [22] are in Linear Monadic NP. This is because
every EMSO expression (in negation normal form) that contains no first-order quantifier
alternations has a linear measure—due to Equation (3). Because LINEAR CIRCUIT-SAT is
serf-reducible to 3-CNF-SAT [24], Corollary 4 implies the following:

» Corollary 5. FEvery Monadic SNP-complete problem is Linear Monadic NP-complete
under serf-reducibility. Therefore, a Linear Monadic NP-complete problem is solvable in
subexponential time if and only if ETH fails.

The above implies that the well-known SNP-complete problems k-CNF-SAT (k > 3),
c-COLORABILITY, INDEPENDENT SET, CLIQUE, and VERTEX COVER, among others, are
Linear Monadic NP-complete. (Note that every problem that is complete for Linear Monadic
NP under serf-reducibility is clearly hard for SNP under serf-reducibility.)

3.2 Applications: Expressing Natural Optimization Problems

We saw in the previous subsection that LINEAR CIRCUIT-SAT is in Linear Monadic NP. We
prove in Subsection 3.3 that LINEAR CIRCUIT-SAT is not in monadic SNP. The same can
be shown for problems that are serf-equivalent to LINEAR CIRCUIT-SAT, such as LINEAR
HirTiNG SET and LINEAR SET COVER. In this subsection, we give several examples of
natural graph problems that are in Linear Monadic NP, but are inexpressible in monadic
SNP logic as will be shown in Subsection 3.3. The definition of these natural problems can
be found in [14].

Our first example is DOMINATING SET, with the number of vertices as the complexity
parameter. This problem can be expressed using the following formula ¢pg(.S):

pps(S) =V (S(z) vV Iy(S(y) A E(x,y)))-
From Equations (1)—(12), we get that s(eps(S)) =n + 1. In effect:

s(pps(9)) = s[ve (S(z) vV Iy(S(y) A E(z,y)))] 1+ sy[Va (S(x) V Iy(S(y) A E(z,y)))]
L+n-sy[(S(x) v IY(S(y) A B, Z/))))] L+n- (14 s3[S(x)] + sa[Fy(S(y) A E(z, y))])

14+n-(14+0+4+n-s3[S(y) A E(z,y)] 1+n-(1+0+n-s3[S(y)])
1+n-(1+0+n-0) n+ 1.
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It follows that DOMINATING SET is in Linear Monadic NP. Our second example is the
RED-BLUE DOMINATING SET problem [11], with the number of vertices as the complexity
parameter. The expression is prp.ps(S) = Va (=S (2)VR(2))AVy(—B(y)V3Iz(S(2) AE(z,v))),
for which it can be easily verified that s(prp.ps(S)) = 2n + 2.

Similarly, we can express the problem NON-BLOCKER [14], with the number of vertices
as complexity parameter, using the following formula png(S) =V (=S(z) V Iy (-S(y) A
E(z,y))). It can be easily verified that s(enp(S)) = n + 1, and hence NON-BLOCKER is in
Linear Monadic NP.

The INDEPENDENT DOMINATING SET problem [11] is also in Linear Monadic NP because
it can be expressed as a conjunction of the two expressions for DOMINATING SET and
INDEPENDENT SET. Specifically, the formula ¢ips(S) = ¢ps(S) A [VaVy (—E(x,y) V -S(x) Vv
—S(y))] expresses the problem and s(¢ps(S)) = 2n + 2.

A similar expression to the above shows that the DOMINATING CLIQUE problem [9] is
also in Linear Monadic NP.

Further examples of problems that are in Linear Monadic NP are DISTANCE-r DOMINAT-
ING SET [21], »~THRESHOLD DOMINATING SET [14], and r~-DOMATIC PARTITION [32], for
any integer-constant 7.

We give the expression for r-DOMINATING SET below, whose measure can verified to be
O(n). The expressions for the other two problems are omitted.

wrps(S) =Ve Iy Ty2... 3y [(((x=y1) VE@, 1) Ao A(Yr—1 = yr) V E(yr—1,9r)) A S(yr)].

Finally, the PERFECT CODE problem [11] is in Linear Monadic NP because it can be expressed
using the following formula ¢pc(.S), for which it can be verified that s(ppc(S)) = 3n + 3:

ppc(S) = [VaVy (mE(z,y) V =S(z) V =S)] A V2 (S(2) V Iy (S(y) A E(z,9)))] A
[V2VaVy (=S(x) vV =S(y) V —E(z, z) V ~E(y, 2))].

Via standard reductions from 3-CNF-SAT, it can be easily shown that all the problems
discussed above are complete for Linear Monadic NP under serf-reducibility. Therefore, we
have the following;:

» Corollary 6. For any of the problems DOMINATING SET, RED-BLUE DOMINATING SET,
INDEPENDENT DOMINATING SET, DOMINATING CLIQUE, r-THRESHOLD DOMINATING SET,
DISTANCE-r DOMINATING SET, r-DOMATIC PARTITION, and PERFECT CODE, the following
holds: the problem is solvable in subexponential time if and only if ETH fails.

3.3 Inexpressibility in Monadic SNP Logic

We prove in this subsection that DOMINATING SET is inexpressible in monadic SNP logic,
and show how the proof can be straightforwardly adapted to other considered problems. In
particular, we show that there exists no formula ¢ in this logic with one free set variable such
that (G, S) |= ¢(S) if and only if S is a dominating set in G. This shows that the greater
freedom in quantifier alternation offered by our new logic fragment is necessary to express
this problem. Before we give a formal proof of this result, we will need several notions from
the area of logic; we refer the reader to Libkin’s book [26]. The key tool we use to prove
inexpressibility is the so-called Ajtai-Fagin game [1, 26], defined below.

» Definition 7. Let P be a property of graphs equipped with a single set, let I" be a fragment
of FO logic, and let ¢,k € N. Then the (P, ¢, k,T')-Ajtai-Fagin game is a 2-player game
between the duplicator and the spoiler which proceeds in the following 4 steps:
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1. The duplicator selects a graph G equipped with a set S such that (G, S) € P.

The spoiler selects ¢ subsets Uy, ..., Uy of V(G).

3. The duplicator selects a graph G’ equipped with a set S’ and also ¢ subsets Uj,...,U; of
V(G).

4. The duplicator wins if and only if he can prove that (G, S,Uy,...,U;) and
(G',8",U1,...,U,)) agree on I'[k].

N

» Proposition 8 ([1, 26]). The duplicator has a winning strategy in the (P, ¢, k,T')-Ajtai-
Fagin game if and only if P is not definable by any formula with a single free set variable S
of the form 31X, ...,3X,x (S, X1,...,Xy), where x is a formula in T

The final ingredient we need is a result which links the number of quantifier alternations
in an FO formula to the moves of the Ehrenfeucht-Fraissé game. The j-alternations k-round
Ehrenfeucht-Fraissé game is a restriction of the standard Ehrenfeucht-Fraissé game to at most
j alternations (“switches”) of the structure where the spoiler makes his moves. As a special
case of a result by Pezzoli [31], it follows that the duplicator wins the 0-alternations k-round
Ehrenfeucht-Fraissé game on (A, B) if and only if A and B agree on all universal first-order
formulas of quantifier rank at most k. We are now ready to prove our inexpressibility result.

» Lemma 9. DOMINATING SET is inexpressible in monadic SNP logic.

Sketch of Proof. We use the Ajtai-Fagin game and describe a winning strategy for the
duplicator for every fixed ¢,k € N. In Step 1, the duplicator selects a graph G which consists
of 22¢ . k 4+ 1 copies of K5, and a set S which contains a single vertex from each copy of Koy;
observe that S is a dominating set of G. In Step 2, the spoiler arbitrarily selects his subsets
Ui, ...,U; of vertices of G.

Before proceeding to Step 3, we need to find a “sufficiently frequent” configuration in
(G,Uy,...,Up) for the duplicator to exploit. Let the type T'(v) of a vertex v € G be defined
as T'(v) = {i | v € U;}. Let a,b be vertices of G which form a K5 such that b € S. Then the
configuration C(a,b) of a,b is the tuple (T'(a), T'(b)). Since the number of distinct types is
upper-bounded by 2¢, the number of distinct configurations is upper-bounded by 2%¢. By
construction, there must exist some configuration which occurs at least k + 1 times in G; let
us now fix an arbitrary such configuration (77, 75).

In Step 3, the duplicator selects a graph H equipped with a set Q). The graph H consists
of a copy of G and one isolated vertex p. Let f be a bijection witnessing the isomorphism
from H — p to G, then the duplicator selects H and also the vertex-subsets Wy,..., W, of H
as follows: (1) for each vertex w € H — p, w € Q if and only if f(w) € S; (2) for each vertex
w € H —p and each i € [{], w € W; if and only if f(w) € U;; and (3) p € W; if and only if
1 eTy.

In Step 4, it suffices to prove that (G, S,Uy,...,Up) and (H,Q,Wi,...,W,) agree on all
first-order formulas with alternation number 0 and quantifier rank at most k. This is done by
giving a winning strategy for the duplicator in the 0-alternations k-round Ehrenfeucht-Fraissé
game. On a high level, if the spoiler chooses to play on G, then the duplicator can precisely
copy the spoiler’s moved on H. On the other hand, if the spoiler decides to play on H then
the duplicator can also precisely copy all spoiler’s moves on G with the exception of a move
on p; there, the duplicator uses the fact that the configuration (77, 7%) is sufficiently frequent
to find a suitable replacement for p in G. <

The same technique can be applied to prove the inexpressibility of other problems
considered in Subsection 3.2. For some, it suffices to merely adapt the above construction,
while for others, such as LINEAR CIRCUIT-SAT, new constructions are required.
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4 Feedback Vertex Set

In the previous section, we gave a logic fragment such that every problem that is expressible
in this logic fragment is serf-reducible to 3-CNF-SAT. A natural question to ask is whether
there exist NP-complete problems that are not serf-reducible to 3-CNF-SAT, under some
plausible complexity-theoretic hypothesis. This question has been answered by several works.
For instance, Calabro et al. [4] showed that, unless ETH fails, the restriction of CNF-SAT to
instances in which the number of clauses is super-linear in the number of variables is not
serf-reducible to 3-CNF-SAT. More unlikely complexity-theoretic consequences befall if we
replace CNF-SAT restricted to instances with super-linear number of clauses with “harder”
satisfiability problems (e.g., general CNF-SAT or CIRCUIT-SAT). While the aforementioned
problems are all expressible in EMSO, their expressions yield super-linear measures.

We also saw in the previous section that many natural graph problems, such as c-
COLORABILITY (for any integer-constant ¢ > 0), INDEPENDENT SET, VERTEX COVER and
DOMINATING SET are serf-reducible to 3-CNF-SAT, which raises the question of whether
there is any natural graph problem that is not serf-reducible to 3-CNF-SAT. While it
is not difficult to define a graph problem that, unless ETH fails, is not serf-reducible to
3-CNF-SAT, we do not know of any natural graph problem for which the aforementioned
statement can be proved. In this section, we propose FEEDBACK VERTEX SET as a possible
such candidate problem. The reason we believe that FEEDBACK VERTEX SET might be such
a problem is that FEEDBACK VERTEX SET implicitly embodies a HITTING SET problem [5]
(or a satisfiability problem) with possibly exponentially-many cycles to hit. Whereas in
CNF-SAT and in HITTING SET the sets/clauses are given explicitly (i.e., are part of the
input), which allows us to quantify over the set of all sets/clauses, and hence, express these
problems in monadic NP, the cycles in an instance of FEEDBACK VERTEX SET are implicitly
encoded in the input graph. Moreover, enumerating all the cycles in a graph may require
exponential time, which surpasses the allowed time in a serf-reduction.

While we are unable to prove that FEEDBACK VERTEX SET is not serf-reducible to
3-CNF-SAT (assuming ETH does not fail), we could prove that FEEDBACK VERTEX SET is
inexpressible in EMSO, which rules out the possibility of using the proposed framework in
this paper to show that FEEDBACK VERTEX SET is serf-reducible to 3-CNF-SAT. We leave
it as an open problem whether FEEDBACK VERTEX SET is serf reducible to 3-CNF-SAT. We
also show in this section that there is a polynomial-time reduction from FEEDBACK VERTEX
SET to 3-CNF-SAT that maps an instance of FEEDBACK VERTEX SET with n vertices
to an equivalent instance of 3-CNF-SAT with O(nlgn) variables, and define a variant of
FEEDBACK VERTEX SET that is equivalent to 3-CNF-SAT under serf-reducibility.

4.1 Inexpressibility of FEEDBACK VERTEX SET in EMSO

Recall that, by Theorem 2, we could obtain a serf-reduction from FEEDBACK VERTEX
SET to 3-CNF-SAT if there existed an EMSO formula ¢(X) with linear measure such that
(G, S) E ¢(S) if and only if S is a feedback vertex set in G. In this subsection, we will prove
that this approach cannot work; in particular, we show that feedback vertex set is not even
expressible in EMSO. Our first step lies in showing that acyclicity is inexpressible by an
EMSO sentence. However, instead of using the Ajtai-Fagin game (which would require a
highly technical specification of a strategy for the duplicator), our proof will rely on the
classical notion of Hanf-locality. We refer to Libkin’s book [26] for the omitted definitions.

» Lemma 10. Acyclicity is inexpressible in EMSO.
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Sketch of Proof. Suppose for a contradiction that acyclicity is definable by an EMSO
sentence ¥ = 377 ... Zy 9. Since ¥ is a first-order sentence, it is Hanf-local. Let G be a path
of length at least r. Since G is acyclic, we have G = U. Let Uy,...,U,, witness this fact,
that is, (G,Uy,...,Un) E ¢. Let a,b be vertices of distance at least 2d + 2 from each other
such that NéG’Ul""’U’")(a) is isomorphic to N;G’Ul"“’U"‘)(b). Let p be the unique endpoint
of the path that is closer to b than to a, and let a’ be the unique neighbor of a which is closer
to p (than the other neighbor of a), and let b’ be that of b. We construct a new graph G’
by removing edges aa’ and bb’ from G and adding edges ab’ and ba’ into G. We have that,
for every vertex c, N{gG’Ul""’U’”)(c) &Y N{gG,’Ul""’U’”)(c). Observe that G’ is not acyclic. To
complete the proof, we use the Hanf-locality to prove that G’ also satisfies ¥. |

» Lemma 11. FEEDBACK VERTEX SET is inexpressible in EMSO logic.

4.2 Reductions between 3-CNF-SAT and FEEDBACK VERTEX SET

We now examine the existence of polynomial-time serf-reductions between 3-CNF-SAT and
FEEDBACK VERTEX SET. Based on the framework in [13], we can show that it is unlikely
that 3-CNF-SAT is polynomial-time serf-reducible to FEEDBACK VERTEX SET:

» Proposition 12. Unless the polynomial-time hierarchy collapses to its third level, 3-CNF-
SAT is not polynomial-time serf-reducible to FEEDBACK VERTEX SET.

While we are unable to rule out—under plausible conditions—the existence of a polynomial-
time serf-reduction from FEEDBACK VERTEX SET to 3-CNF-SAT, we give a polynomial-time
reduction from FEEDBACK VERTEX SET to 3-CNF-SAT at the cost of a logarithmic factor
increase in the number of variables in the 3-CNF-SAT instances. This reduction relies on
the following characterization of FEEDBACK VERTEX SET that we prove: A graph G has a
feedback vertex set of cardinality k if and only if there is a bijection ¢ : V(G) — [n] such
that, for all uwv,uw € E(G), we have

(p(u) > k) A(p(v) > k) A(p(w) > k) = (p(v) > @(u)) V (e(w) > @(u).

Using the above characterization, we can reduce FEEDBACK VERTEX SET to 3-CNF-
SAT by encoding each vertex using a block of 1gn Boolean variables, and adding polynomially-
many 3-CNF clauses, each of logarithmic width, encoding the existence of a function ¢
satisfying the above property. We have:

» Theorem 13. There is a polynomial-time many-one reduction that takes an instance (G, k)
of FEEDBACK VERTEX SET and produces an equivalent instance F' of CNF-SAT such that F
has O(nlgn) variables, n®Y) clauses, and width O(lgn), where n = n(G).

We now define a variant of FEEDBACK VERTEX SET, denoted MONOCHROMATIC 3-
FEEDBACK VERTEX SET, that we show to be equivalent under serf-reducibility to 3-CNF-
SAT. An instance of MONOCHROMATIC 3-FEEDBACK VERTEX SET consists of a graph
G and a nonnegative integer k. Each edge e € E(G) is associated with a set of colors,
denoted Colors(e). The question is to decide if there exists a subset Q@ C V(G) of vertices of
cardinality at most &k such that, for every 3-cycle C' in G satisfying [ . E(C) Colors(e) # 0, C
contains at least one vertex of . That is, () breaks every 3-cycle in G whose edges can all be
assigned the same color from their color lists. It can be easily shown that MONOCHROMATIC
3-FEEDBACK VERTEX SET is NP-complete by adapting the standard reduction from VERTEX
COVER to FEEDBACK VERTEX SET (the color lists of all edges are singletons and consist
of the same color). By d-MONOCHROMATIC 3-FEEDBACK VERTEX SET, where d > 1, we
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denote the restriction of MONOCHROMATIC 3-FEEDBACK VERTEX SET to instances in which

the total number of colors assigned is at most d (that is, | U.c () Colors(e)| < d). We have:

» Theorem 14. For any integer d > 10, 3-CNF-SAT and d-MONOCHROMATIC 3-FEEDBACK
VERTEX SET are equivalent under serf-reductions. Therefore, d-MONOCHROMATIC 3-
FEEDBACK VERTEX SET is solvable in subexponential time if and only if ETH fails.

» Remark. A natural question to ask is whether serf-reducibility to 3-CNF-SAT is equivalent
to the notion of self-sparsification (as in the sparsification lemma for 3-CNF-SAT): The
existence of a subexponential-time self-reduction that reduces an instance of the problem to
an equivalent instance whose (instance) size is linear in the designated parameter. These two
notions, in general, seem to be orthogonal. On one hand, it can be shown that FEEDBACK
VERTEX SET is self-sparsifiable [18, 27], but this does not seem to imply that FEEDBACK
VERTEX SET is serf-reducible to 3-CNF-SAT. On the other hand, CLIQUE is serf-reducible
to 3-CNF-SAT, but unless ETH fails, CLIQUE is not self-sparsifiable since this would imply
that CLIQUE is solvable in subexponential time.
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