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Abstract
Computing set joins of two inputs is a common task in database theory. Recently, Van Gucht,
Williams, Woodruff and Zhang [PODS 2015] considered the complexity of such problems in the
natural model of (classical) two-party communication complexity and obtained tight bounds for
the complexity of several important distributed set joins.

In this paper we initiate the study of the quantum communication complexity of distributed
set joins. We design a quantum protocol for distributed Boolean matrix multiplication, which
corresponds to computing the composition join of two databases, showing that the product of
two n × n Boolean matrices, each owned by one of two respective parties, can be computed
with Õ(

√
n`3/4) qubits of communication, where ` denotes the number of non-zero entries of the

product. Since Van Gucht et al. showed that the classical communication complexity of this
problem is Θ̃(n

√
`), our quantum algorithm outperforms classical protocols whenever the output

matrix is sparse. We also show a quantum lower bound and a matching classical upper bound
on the communication complexity of distributed matrix multiplication over F2.

Besides their applications to database theory, the communication complexity of set joins is
interesting due to its connections to direct product theorems in communication complexity. In
this work we also introduce a notion of all-pairs product theorem, and relate this notion to
standard direct product theorems in communication complexity.
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1 Introduction

Background

Set joins are basic operations in relational database theory. The notion of set join was
introduced to the database community more than forty years ago by Codd [6] to express
operations combining two tables in relational databases. This seminal paper considered, in
particular, the composition join: given two (relational) databases A and B, A represented as a
subset of {1, . . . ,m}×{1, . . . , n} and B as a subset of {1, . . . , n}×{1, . . . ,m}, the composition
join of A and B is the set {(i, j) | ∃k : (i, k) ∈ A and (k, j) ∈ B} ⊆ {1, . . . ,m} × {1, . . . ,m}.
Many other join operations have been defined so far and have found many applications (see,
e.g., [3, 6, 9, 15, 17, 18, 19, 23]).
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The computational complexity of join operations is naturally an important issue. Very
recently Van Gucht, Williams, Woodruff and Zhang [23] have investigated this question in
the two-party communication complexity model where one party owns the first database, the
second party owns the second database, and both parties collaborate to compute the join of
these two databases using as little communication as possible. This model is interesting for
two main reasons. First, it models the natural and practical task of distributed computation
of join operations. Second, in the communication complexity setting it is possible to show
strong lower bounds on the complexity of problems. Indeed, one of the main contributions
of [23] was to show quantitative differences between the (communication) complexities of
various join operations.

Many join operations studied in database theory actually correspond to fundamental and
well-studied computational tasks in other areas of computer science. The composition join
mentioned above, in particular, corresponds to Boolean matrix multiplication, one central
problems in theoretical computer science: if we represent the database A by an m × n

matrix MA and B by an n×m matrix MB (such that MA[i, j] = 1 if and only if (i, j) ∈ A,
and similarly for MB), the matrix representation of the composition join of A and B is
precisely the output of the Boolean matrix multiplication of MA and MB (i.e., the m×m
matrix C such that C[i, j] =

∨n
k=1MA[i, k] ∧MB[k, j]). The result by Van Gucht et al. on

the communication complexity of the composition join [23] shows that the communication
complexity of Boolean matrix multiplication is Θ̃(n

√
`) for the square case m = n (a more

complicated formula is also given for the rectangular case), where ` denotes the number of
non-zero entries in the product C. Since the parameter ` represents the sparsity of the output
matrix, algorithms and communication protocols with complexity depending explicitly on `
are sometimes called output-sensitive and have been studied in several settings other than
communication complexity as well [2, 5, 11, 16].

Our Results

In this paper we initiate the study of the quantum communication complexity of distributed
set joins. Our main result is about the set joins related to matrix multiplication. We first show
that the quantum communication complexity of the composition join (i.e., Boolean matrix
multiplication) is O(

√
n`3/4 logm) (Theorem 7). This is better than the best possible classical

protocol, which costs Ω(n
√
`) as mentioned above. We also consider matrix multiplication

over the binary field and show that its quantum communication complexity (and actually
even its classical communication complexity) is Õ(n

√
`) (Theorem 8). We give a matching

lower bound as well (Theorem 11).
These bounds are also interesting since they confirm and substantiate our current under-

standing of the power of quantum algorithms for problems related to matrix multiplication.
Indeed, while matrix multiplication over a field seems harder than Boolean matrix multi-
plication for quantum computers, we currently do not have any technique to prove such a
statement in the time complexity setting. Our results prove this statement in the communi-
cation complexity setting, for instances with sparse output matrices.

In addition to these concrete results, this work presents several interesting new open
problems. An OR lemma is a composition lemma that says that the quantum communi-
cation complexity of the function f∨m(a1, . . . , am, b1, . . . , bm) =

∨m
i=1 f(ai, bi) is at least

Ω(
√
mQ(f)), where Q(f) is the quantum query complexity of f . We show that our upper

bound for composition join is tight up to logarithmic factors assuming the problem of Boolean
matrix multiplication satisfies an OR lemma (Proposition 14). We give further evidence that
our upper bound is indeed tight by showing that it is tight at extreme values of `, when
` = O(1) (Proposition 12) and when ` = Ω(n2) (Proposition 13).
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We believe that proving lower bounds on set joins is a very interesting area of future
research, as doing so may give insight into direct product theorems in communication
complexity, as well as lower bounds in quantum query complexity for problems that involve
read-many formulas, in which different parts of the input are used multiple times, which
makes it difficult to prove lower bounds using standard composition theorems.

Organization

The remainder of this paper is organized as follows. In Section 2, we give the necessary prelim-
inaries, including quantum communication complexity, and the groundwork for studying the
quantum communication complexity of set joins. In Section 3, we present our communication
protocol for composition join. In Section 4, we present our classical communication protocol
and matching quantum lower bound for matrix multiplication over F2. Finally, in Section 5,
we give some evidence that our upper bound for composition join is tight, by reducing a
matching lower bound to a plausible OR lemma.

2 Preliminaries

2.1 Notation
Let 2[n] denote the set of subsets of [n]. A subset S of [n] := {1, . . . , n} can be represented
by an n-bit string, and we will sometimes conflate these two notions. Let S[i] denote the
i-th bit of the string corresponding to S, so S[i] = 1 if and only if i ∈ S. For any x ∈ {0, 1}n,
we let |x| denote the Hamming weight, which is the size of the corresponding subset of [n].
Similarly, for a Boolean matrix A (i.e., a matrix with entries in {0, 1}), let |A| denote the
number of 1s in A. Given an m × n Boolean matrix A and an n ×m Boolean matrix B,
we write the Boolean product A ∗ B and let AB denote their product over the finite field
F2 = {0, 1}. Morever, for any integer k ∈ [n] we let A[·, k] denote the k-th column of A and
B[k, ·] the k-th row of B.

2.2 Quantum Communication Complexity
A communication problem is a function f : A×B → Y whose input has two parts, a ∈ A,
which we call Alice’s input, and b ∈ B, which we call Bob’s input. In the model of
communication complexity, first defined by Yao [25], Alice and Bob want to run a protocol
such that, at the end of the protocol, Alice and Bob both output f(a, b) with high probability,
and they want to minimize the number of bits they need to communicate in order to achieve
this.

In the model of quantum communication, also introduced by Yao [26], Alice and Bob
are allowed a quantum communication channel (for a detailed introduction to the theory
of quantum information, see [24]) and they want to minimize the number of quantum
bits (qubits) they need to communicate in order to compute the function. More precisely,
a quantum communication protocol consists of finite inner product spaces X and Y, a
measurement {Π, I−Π} on Y , and unitary operators {Ui}Ti=1, such that for odd i, Ui acts on
X ⊗C, where C = C2 is a single-qubit system, and for even i, Ui acts on C ⊗Y . The protocol
is said to have quantum communication complexity T . The protocol is said to compute f
with bounded error 1/3 if for all (a, b) ∈ A × B, there exist states ρa and ρb on X and Y
respectively, such that

|Tr ((IX ⊗ IC ⊗Π)UT . . . U1(ρa ⊗ |0〉〈0| ⊗ ρb))− f(a, b)| ≤ 1/3.

MFCS 2016
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That is, Alice begins the protocol in some state ρa depending on her input, and Bob begins
the protocol in some state ρb depending on his input, and Alice also has an additional system,
C, initialized to |0〉,which will be used for communication with Bob. Alice applies U1 to
X ⊗ C, and then sends C to Bob, who applies U2 to C ⊗ Y, before sending C back to Alice.
They continue until they have applied all T unitaries, at which point, Bob measures Y, and
the outcome determines f(a, b) with error at most 1/3.

The bounded error quantum communication complexity of f , denoted Q(f), is the mini-
mum T such that there exists a quantum communication protocol computing f with bounded
error 1/3 with quantum communication complexity T . We will also consider the bounded
error quantum communication complexity of partial functions f : D → {0, 1} for D ⊆ A×B.

There are many variants of this model, including the setting of one-way communication
complexity, in which Alice can send messages to Bob, but Bob cannot send messages to Alice,
and only Bob is required to output the correct answer. We let Q1(f) denote the one-way
communication complexity of f .

An important problem in the study of quantum communication complexity is the problem
of set disjointness, which is defined as follows.

Set Disjointness, DISJn
Alice’s input: a ∈ {0, 1}n
Bob’s input: b ∈ {0, 1}n
Output: DISJn(a, b) =

∨n
i=1 aibi

It is well known that Q(DISJn) = Θ(
√
n) [4, 10, 1, 21], beating the classical communication

complexity of Θ(n) [12, 20]. When one of the two input sets is small, we can do even better
as shown in the following elementary lemma.

I Lemma 1 (Set disjointness for small sets). The bounded error quantum communication
complexity of DISJn(a, b) is O

(√
min{|a|,|b|}
|a∩b|+1 logn

)
. Furthermore, if DISJn(a, b) = 1, then

the protocol also returns a uniform random i ∈ a ∩ b.

Proof. To begin the protocol, Alice sends Bob |a| using d log2 ne bits of communication, and
Bob sends Alice |b| using d log2 ne bits of communication. If |a| < |b|, Alice and Bob perform
Grover search on the set SA = {i ∈ [n] : ai = 1} for an index i ∈ SA such that fB(i) = 1,
where fB(i) = bi. They do this as follows. Alice computes |π(SA)〉 =

∑
i∈SA

1√
|a|
|i〉. In

order to perform the search, Alice and Bob must alternate RA = 2|π(SA)〉〈π(SA)| − I and
RB =

∑
i∈[n](−1)bi |i〉〈i|, O

(√
|a|

|a∩b|+1

)
times. Clearly Alice can implement RA, and Bob

can implement RB, so they can implement this algorithm using O
(√

|a|
|a∩b|+1

)
rounds of

communication, each time communicating a d log2 ne-qubit state. Bob measures some i ∈ [n],
and sends i, fB(i) to Alice. Both Alice and Bob output fB(i). If |a| ≥ |b|, they do the
protocol obtained by reversing Alice and Bob’s roles. J

The algorithm in Lemma 1 actually finds a witness i ∈ a ∩ b, which is slightly stronger
than what is required to solve DISJ. We will also consider the problem of finding the entire
intersection:

Find-all Set Intersection, DISJalln
Alice’s input: a ∈ {0, 1}n
Bob’s input: b ∈ {0, 1}n
Output: DISJalln(a, b) = {i ∈ [n] : ai = bi = 1}
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In this case, we also have an advantage when a or b is small, as shown in the following lemma.

I Lemma 2 (Find-all set intersection for small sets). The bounded error quantum communica-
tion complexity of DISJalln(a, b) is O(

√
|a ∩ b|min{|a|, |b|} logn).

Proof. Alice and Bob run the following protocol.
1. S ← ∅, ã← a, b̃← b.
2. Repeat:

a. Use the protocol for DISJn(ã, b̃) to obtain i ∈ ã ∩ b̃. If DISJn(ã, b̃) = 0, output S.
b. S ← S ∪ {i}, ãi ← 0, b̃i ← 0.

This protocol has communication complexity
|a∩b|∑
i=1

√
min{|a|, |b|}
|a ∩ b| − i+ 1 logn = Θ

(√
|a ∩ b|min{|a|, |b|} logn

)
qubits. J

2.3 Set Joins and Direct Product Theorems
In this paper, we consider various set join problems. For any predicate Pn : 2[n]×2[n] → {0, 1},
we can define a set join, as follows.

P-Set Join, P⊗mn
Alice’s input: A = (A1, . . . , Am), Ai ⊆ [n]
Bob’s input: B = (B1, . . . , Bm), Bi ⊆ [n]
Output: {(i, j) ∈ [m]× [m] : Pn(Ai, Bj) = 1}

When Pn is the predicate such that Pn(A,B) = 1 if and only if A∩B 6= ∅, the resulting join
is called the composition join or sometimes set-intersection-non-empty join. As mentioned in
the introduction, this join is equivalent to Boolean matrix multiplication, where we consider
A1, . . . , Am to be the rows of a matrix A ∈ {0, 1}m×n, and B1, . . . , Bm to be the columns of
a matrix B ∈ {0, 1}n×m.

Consider a related construction: the direct product.

Direct product, P(m)
n

Alice’s input: A = (A1, . . . , Am), Ai ⊆ [n]
Bob’s input: B = (B1, . . . , Bm), Bi ⊆ [n]
Output: {i ∈ [m] : Pn(Ai, Bi)}

Unlike set joins, such problems are well-studied, and much is known. Clearly, we have
Q(P(m)

n ) = O(mPn logm) for any predicate Pn. Intuitively, one can usually expect that the
resources needed to solve m instances of Pn scale as at least m times the resources needed
to solve one instance, that is: Q(P(m)

n ) = Ω(mQ(Pn)). This is called a (weak) direct product
theorem for Pn. In fact, we can sometimes prove a stronger statement: that even solving
P(m)
n with success probability 2−m requires Ω(mQ(Pn)) quantum communication. Such a

statement is called a strong direct product theorem. Although such a statement likely holds
for many problems in quantum communication complexity, it can be very difficult to prove
(see, e.g., [22] and the references therein).

In the case of set joins, it is also easy to see that Q(P⊗mn ) = O(m2Q(Pn) logm), however,
unlike the case of direct products, this naive upper bound is often not tight. For example, let
Q1(Pn) denote the one-way communication complexity of Pn. Then we have the following:

MFCS 2016
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I Theorem 3. For any predicate Pn, Q(P⊗mn ) ≤ O(mQ1(Pn) logm).

Proof. Consider an optimal one-way quantum communication protocol for Pn. Let ρ(A) be
the mixed state on at most Q1(Pn) qubits that Alice sends Bob and let U(B) be the unitary
that Bob applies to ρ(A)⊗ |0〉〈0|W ⊗ |0〉〈0|A, for some workspace W and single-qubit answer
register A, so that he measures Pn(A,B) in the answer register with probability at least 2/3.

We construct a (one-way) protocol for P⊗mn as follows. Let Alice have input A1, . . . , Am,
and Bob B1, . . . , Bm. For every i ∈ [m], Alice sends Bob (ρ(Ai))⊗c logm, where c is a large
enough constant. For each i, j ∈ [m], Bob applies U(Bj)⊗c logm to (ρ(Ai) ⊗ |0〉〈0|W ⊗
|0〉〈0|A)⊗c logm. He then computes the majority of the answer registers in a new single-qubit
register, which he measures. Let ρ(Ai, Bj) := U(Bj)(ρ(Ai) ⊗ |0〉〈0|W ⊗ |0〉〈0|A)U(Bj)† =∑
b,b′∈{0,1} ρb,b′ ⊗ |b〉〈b′|, so the state Bob measures is (up to permuting registers):

∑
x,x′∈{0,1}`

⊗̀
i=1

ρxi,x′
i
⊗ |x〉〈x′| ⊗ |maj(x)〉〈maj(x′)|,

where maj(x) = 1 if |x| ≥ `/2 and 0 otherwise. Assume that Pn(Ai, Bj) = 1, as the 0 case is
nearly identical. Then the probability of success in a single round is Tr(ρ1,1) ≥ 2/3, so the
probability of success upon measuring the majority register is:

∑
x∈{0,1}`:
|x|≥`/2

Π`
i=1 Tr(ρxi,xi

) =
b`/2c∑
k=0

(
`

k

)
Tr(ρ1,1)k(1−Tr(ρ1,1))`−k ≥ 1− e−Ω(`) = 1−m−Ω(1),

where the inequality follows from Hoeffding’s inequality, and the constant in Ω(1) depends on
c. Thus, Bob gets the correct answer with high probability, but furthermore, this measurement
causes negligible damage to the state ρ(Ai, Bj)⊗`, so Bob can apply (U(Bj)†)⊗` to recover
ρ(Ai)⊗`, to be used again. The error in the state remains negligible as long as Bob does this
no more than mO(1) times. J

Call a theorem of the form Q(P⊗mn ) = Ω(min{mn,m2Q(Pn)}) a (weak) all-pairs product
theorem. The min{mn, ·} is to account for the fact that we always have a trivial upper
bound of mn, and so if we did not include this, the statement would always be false for
some values of m and n. In this work, we give an example of a set-join for which an all-pairs
direct product theorem does not hold — in particular, in Section 3 we will give an upper
bound of O(m3/2√n) for the composition join, showing that this problem does not satisfy
an all-pairs product theorem. Although we show that such a statement holds for matrix
multiplication over F2, in that case, we have min{mn,m2Q(Pn)} = mn for all m and n, so
the best strategy is always for Alice to send her whole input to Bob, rather than for Alice
and Bob to compute m2 instances of Pn. It is an open question whether or not there exists
a predicate for which an all-pairs product theorem holds in a non-trivial sense — that is, the
best strategy is to compute m2 instances of Pn.

3 Composition Join (Boolean Matrix Multiplication)

In this section, we give an upper bound on the communication complexity of Boolean matrix
multiplication (equivalent to computing the composition join), proving our main theorem.
As in [23], we consider the following promise version of the problem, in which the output has
at most ` ones.
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Boolean Matrix Multiplication, BMMm,n,`

Alice’s input: A ∈ {0, 1}m×n
Bob’s input: B ∈ {0, 1}n×m
Promise: |A ∗B| ≤ `
Output: BMMm,n,`(A,B) = A∗B = {(i, j) ∈ [m]×[m] : ∃k ∈ [n], A[i, k] = B[k, j] = 1}

The communication protocol we give is inspired by the query-optimal quantum algorithm for
Boolean matrix multiplication given in [11]. The algorithm of [11] is based on a subroutine
for a problem called graph collision. For any family of bipartite graphs G on n vertices, the
communication version of graph collision on G is as follows.

Graph Collision, GCG
Alice’s input: fA ∈ {0, 1}n
Bob’s input: fB ∈ {0, 1}n
Output: GCG(fA, fB) =

∨
(i,j)∈G fA(i)fB(j)

An efficient protocol for this problem can easily be constructed in the communication
complexity setting:

I Lemma 4 (Graph collision). Q(GCG(fA, fB)) = O(
√

min{|fA|, |fB |}) for any family of
bipartite graphs G.

Proof. Alice sends Bob |fA|, and Bob sends Alice |fB | using 2 logn bits of communication.
If |fA| ≤ |fB |, Alice sets a = fA and Bob sets b = {i ∈ [n] : ∃j ∈ [n], (i, j) ∈ G, fB(j) = 1}.
Otherwise, Alice sets a = {j ∈ [n] : ∃i ∈ [n], (i, j) ∈ G, fA(i) = 1} and Bob sets b = fB.
They finally compute DISJ(a, b). J

When we solve graph collision as a subroutine, we will actually want to additionally find
all graph collisions in a particular instance. That is, we will want to solve the following
problem.

Find All Graph Collisions, GCallG
Alice’s input: fA ∈ {0, 1}n
Bob’s input: fB ∈ {0, 1}n
Output: GCallG(fA, fB) = {(i, j) ∈ G : fA(i) = fB(j) = 1}

The following upper bound for GCallG is a corollary of the previous lemma (its proof is
similar to the proof of Lemma 2).

I Corollary 5 (Find all graph collisions). Q(GCallG(fA, fB)) = O(
√
λmin{|fA|, |fB |}), where

λ = |{(i, j) ∈ G : fA(i) = fB(j) = 1}|.

The final ingredient we need before presenting our quantum communication protocol
for Boolean matrix multiplication is a quantum communication protocol that searches for
a 1-instance among n independent instances of a communication problem. Its proof is
fairly straightforward and simply combines quantum search with the original communication
protocol.

I Lemma 6 (Search over communication instances). Let f : X × Y → {0, 1} be a com-
munication problem with bounded error quantum communication complexity Q(f). Let
F : Xn × Y n → {0, 1} be the problem of finding some i ∈ [n] such that f(xi, yi) = 1. Then
Q(F ) = O(

√
n
tQ(f) logn), where t = |{i ∈ [n] : f(xi, yi) = 1}|.

MFCS 2016
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Proof. Alice creates |π〉 =
∑
i∈[n]

1√
n
|i〉. Alice and Bob implement quantum search by

repeating the reflections

R1 = 2|π〉〈π| − I and R2 =
∑
i∈[n]

(−1)f(xi,yi)|i〉〈i|

O(
√
n/t) times. Each implementation of R2 is accomplished as follows. Let Alice’s state be∑

i∈[n] αi|i〉. Alice performs the mapping |i〉 7→ |i, i〉, to get
∑
i∈[n] αi|i, i〉 and sends half of

the state to Bob. Conditioned on their quantum state, Alice and Bob perform the protocol
for f using input (xi, yi), that is, they perform the protocol on a superposition of inputs.
This leaves the state

∑
i∈[n] αi|i, f(xi, yi)〉A|i, f(xi, yi)〉B (here we assume, without loss of

generality, that the final state in the protocol for f does not contain any garbage). Alice then
maps this state to

∑
i(−1)f(xi,yi)|i, f(xi, yi)〉A|i, f(xi, yi)〉B . They run the protocol in reverse

to uncompute f(xi, yi), leaving
∑
i αi(−1)f(xi,yi)|i〉A|i〉B . Bob sends his half to Alice, so she

can uncompute it, leaving the state
∑
i αi(−1)f(xi,yi)|i〉, and thus implementing R2. J

We are now ready to state and prove our main theorem.

I Theorem 7 (Upper bound for Boolean matrix multiplication). For all ` ∈ {1, . . . ,m2},

Q(BMMm,n,`) = O(
√
n`3/4 logm).

Proof. Alice and Bob run the following communication protocol.
1. Alice and Bob individually store the all-zero matrix C of size m×m.
2. Repeat:

a. Alice and Bob jointly find k ∈ [n] such that GCC(A[·, k], B[k, ·]) = 1. If none exists,
Alice and Bob output C.

b. Alice and Bob jointly compute S ← GCallC(A[·, k], B[k, ·]).
c. Alice and Bob individually compute C ← C + S.

In this protocol Alice and Bob each maintain a matrix C containing the 1s of the
product A ∗ B found by the protocol so far. They repeatedly search for a new k ∈ [n]
such that fkA = A[·, k] and fkB = B[k, ·] have graph collisions with respect to the graph
given by the complement of C. When they find such a k, they compute all graph col-
lisions. Suppose they find {k1, . . . , kt} before there are no more k to be found, and let
λi be the number of ones found at round i. By Lemma 4 and Lemma 6, in round i

step 2a costs O
(√

n
t−i+1 min{|fki

A |, f
ki

B |} logm
)
. By Corollary 5, in round i step 2b costs

O

(√
λi min{|fki

A |, |f
ki

B |} logm
)
. Thus, the total cost is at most:

t∑
i=1

(√
n

t− i+ 1

√
min{|fki

A |, |f
ki

B |}+
√
λi min{|fki

A |, f
ki

B |}
)

logm.

Note that for any k, every (i, j) such that fkA(i) = fkB(j) = 1 implies that (A ∗B)[i, j] = 1,
so we necessarily have ` ≥ |fkA| · |fkB |. We therefore have min{|fkA|, |fkB |} ≤

√
` for all k ∈ [n],

and thus, the total cost is at most (up to constants):

`1/4
t∑
i=1

(√
n

t− i+ 1 +
√
λi

)
logm ≤ `1/4

√nt+

√√√√t

t∑
i=1

λi

 logm

≤ `1/4(
√
nt+

√
t`) logm,
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where in the first line we use the fact that
∑t
i=1 i

−1/2 = Θ(
√
t) and Cauchy-Schwartz

inequality, and in the second line we use the fact that
∑t
i=1 λi = `, since ` is the total

number of ones we find over all rounds. Finally, observe that since t is the number of distinct
witnesses k ∈ [n] found, t ≤ n, and since we find at least one new 1 in every round except
the last, we also have t ≤ `+ 1. Thus, the total communication is at most

(`1/4
√
n+ `3/4)

√
min{n, `} logm = O

(
`3/4
√
n logm

)
,

as claimed. J

4 Matrix Multiplication over Finite Fields

In this section we consider matrix multiplication over finite fields and give tight bounds (up
to possible polylogarithmic factors) on its communication complexity. We work out here
only the case of square matrices over the binary field. Formally, the problem we consider is
the following.

Square matrix multiplication over F2, MMn,`

Alice’s input: A ∈ Fn×n2
Bob’s input: B ∈ Fn×n2
Promise: |AB| ≤ `
Output: the matrix AB ∈ Fn×n2

The main result of this section is the following upper bound on the classical (and thus
quantum) communication complexity of this problem.

I Theorem 8 (Upper bound for matrix multiplication over F2). The classical communication
complexity of MMn,` is Õ(n

√
`).

We will need two lemmas to prove Theorem 8. The first lemma is a finite-field version of a
result related to compressed sensing used in [23]. The proof of this finite-field version can be
found in [7].

I Lemma 9. For any positive integer n and any integer κ ∈ {1, . . . , n}, there are a distribution
on random matrices M ∈ FO(κ)×n

2 and a reconstruction function Rec(·) such that for any
vector x ∈ Fn2 with at most κ non-zero entries the inequality

Pr
M

[
Rec(Mx) = x

]
> 0.99.

holds (i.e., Rec(·) applied on Mx returns x with high probability).

The second lemma shows how to use Freivalds’ technique to detect non-zero columns of a
matrix product. Similar ideas were used in [8].

I Lemma 10. Let m and n be two positive integers. Consider the setting where Alice has
for input a matrix A ∈ Fm×n2 and Bob has for input a matrix B ∈ Fn×n2 . Alice and Bob can
detect, with high probability, which columns of AB contain at least one non-zero entry with
Õ(n) communication.

Proof. Consider the following procedure: Alice takes a vector v uniformly at random in Fm2 ;
Alice sends the row-vector vTA ∈ Fn2 to Bob; Bob sends the row-vector vTAB ∈ Fn2 to Alice.
This procedure has communication complexity 2n and, for each column of AB, enables Alice
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and Bob to decide with probability at least 1/2 whether this column contains at least one
non-zero entry. By repeating this procedure a logarithmic number of times, Alice and Bob
are able to find, with high probability, which columns of AB contain at least one non-zero
entry. J

We are now ready to prove Theorem 8.

Proof of Theorem 8. We assume for convenience that both
√
` and n/

√
` are integers (the

general case is handled similarly). We will say that a column of AB is dense if it contains at
least 0.9

√
` non-zero entries, and say that a column of AB is sparse if it contains at most

1.1
√
` non-zero entries (note that a column can be both sparse and dense). The protocol is

as follows.
1. Alice and Bob partition the columns of AB into dense columns and sparse columns:

they compute a set of indexes S ⊆ {1, . . . , n} such that, for any j ∈ {1, . . . , n}, the j-th
column of AB is dense if j ∈ S and sparse if j /∈ S.

2. Alice and Bob compute all entries of all columns of AB with index in S.
3. Alice and Bob compute all entries of all the columns of AB with index in [n] \ S.

Step 1 can be done probabilistically with Õ(n) bits of communication by repeating the
following procedure: Alice constructs a (n/

√
`)× n matrix A′ by selecting n/

√
` rows of A

uniformly at random; Alice and Bob then use the protocol of Lemma 10 (with A′ as Alice’s
input and B as Bob’s input) to decide which columns of A′B have more than one non-zero
entry. Repeating this procedure a logarithmic number of times enables Alice and Bob to
decide, with high probability, which columns of AB are not dense: for a non-dense column
of AB (i.e., a column with less than 0.9

√
` non-zero entries) the corresponding column of

A′B will not contain any non-zero entry with high probability (on the choice of A′). The
indices of the other columns are collected in S. The indices in S thus correspond only to
dense columns of AB. While the set S may not contain the indices of all the dense columns
of AB, it can be seen from a similar argument that all non-sparse columns of AB (i.e., the
columns with at least 1.1

√
` non-zero entries) will be put in S, which means that all indices

in [n] \ S correspond to columns of AB that are sparse.
Step 2 can be done with O(|S|n) = O(

√
`n) bits of communication (note that |S| ≤ 1

0.9
√
`

since AB has only at most ` non-zero entries): Bob simply sends the entries B[i, j] for all
(i, j) ∈ {1, . . . , n} × S, and then Alice computes AB[i, j] for all (i, j) ∈ {1, . . . , n} × S.

Step 3 can be done with Õ(n
√
`) bits of communication using Lemma 9 with κ = d1.1

√
`e,

by repeating the following procedure a logarithmic number of times: Alice chooses a random
matrix M as in Lemma 9 and sends MA to Bob; for each j ∈ {1, . . . , n} \ S, Bob computes
Rec(MAz) where z denotes the j-th column of B. J

We now show a lower bound on the quantum (and thus also classical) communication
complexity of matrix multiplication over F2, which matches the upper bound of Theorem 8
up to polylogarithmic factors.

I Theorem 11. The quantum communication complexity of MMn,` is Ω(n
√
`).

Proof. Assume for convenience that
√
` is an integer (the general case is handled similarly).

Let x1, . . . , x
√
`, y1, . . . , y

√
` be 2

√
` vectors in Fn2 . Let x ∈ Fn

√
`

2 be the vector obtained by
concatenating x1, . . . , x

√
`, and y ∈ Fn

√
`

2 be the vector obtained by concatenating y1, . . . , y
√
`.

Construct the n × n matrix A by putting the vector xi as its i-th row, for each i ∈
{1, . . . ,

√
`}, and setting the next n−

√
` rows to zero (observe that

√
` ≤ n since ` ≤ n2).

Construct the n × n matrix B by putting the vector yj as its j-th column, for each j ∈
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{1, . . . ,
√
`}, and setting the next n−

√
` columns to zero. Observe that |AB| ≤ ` and the

parity of the diagonal entries of the matrix product AB is equal to
√⊕̀
i=1

xi · yi = x · y.

We thus obtain a reduction from computing the inner product of two vectors in Fn
√
`

2 to
solving MMn,`. Since the quantum communication complexity of the former problem is
Ω(n
√
`), as shown in [14], we obtain the same lower bound for MMn,`. J

5 Lower Bounds for Boolean Matrix Multiplication

An important open problem of this work is to prove a tight lower bound on the bounded
error quantum communication complexity of Boolean matrix multiplication, i.e., to show
that the upper bound of Theorem 7 is tight. Let us focus on the square case (i.e., m = n).
We are able to prove two lower bounds, each of which is tight for one extreme value of `:
` = O(1) or ` = Ω(n2), but neither is tight for the range ` ∈ (ω(1), o(n2)). We further show
that assuming a plausible OR-lemma, our upper bound is indeed tight, up to logarithmic
factors.

I Proposition 12. For all ` ∈ {1, . . . , n2}, Q(BMMn,n,`) = Ω(
√
n`). In particular, when

` = O(1), then Q(BMMn,n,`) = Ω(
√
n`3/4).

Proof. We can embed
√
` ≤ n instances {(a(i), b(i))}

√
`

i=1 of DISJn in an instance of BMMn,n,`

as follows. Let A have a(i) in the i-th row for i = 1, . . . ,
√
`, and all zeros elsewhere, and let

B have b(i) in the i-th column for i = 1, . . . ,
√
`, and zeros elsewhere. Then AB is 0 except

in the upper left
√
`×
√
` submatrix, so |AB| ≤ `, and (AB)[i, i] = DISJn(a(i), b(i)), so AB

encodes DISJ(
√
`)

n (a(1), . . . , a(
√
`), b(1), . . . , b(

√
`)). The result follows from the Ω(

√
`
√
n) lower

bound on Q(DISJ(
√
`)

n ) shown in [13]. J

I Proposition 13. For all ` ∈ {1, . . . , n2}, Q(BMMn,n,`) = Ω(`). In particular, when
` = Ω(n2), then Q(BMMn,n,`) = Ω(`3/4

√
n).

Proof. We can embed an instance (a, b) of the inner product function IP` in an instance
of BMMn,n,` as follows. Let B = I be the identity matrix, and let A contain the `-bit
string a in the first ` positions. Then Alice and Bob jointly compute AB = A, and Bob
can compute IP(a, b) and send the resulting bit to Alice. Since Q(IP`) = Ω(`), we have
Q(BMMn,n,`) = Ω(`). J

I Proposition 14. Suppose computing the entrywise-OR of k independent instances of
BMMn,n,n2 has bounded error quantum communication complexity Ω(

√
kQ(BMMn,n,n2)).

Then for any ` ∈ [n2], Q(BMMn,n,`) = Ω(`3/4
√
n).

Proof. Let (A1, B1), . . . , (Ak, Bk) be independent instances of BMM√`,√`,`, for k = n√
`
.

Define A and B as follows:

A =


A1 . . . Ak
0 . . . 0
...

. . .
...

0 . . . 0

 , B =

 B1 0 . . . 0
...

...
. . .

...
Bk 0 . . . 0

 .
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Then A ∗B has
∨k
i=1Ai ∗Bi in the top left corner, and zeros elsewhere. So |A ∗B| ≤ `, and

computing A ∗B costs at least
√
kQ(BMM√`,√`,`) ≥

√
n√
`
` = `3/4

√
n. J

The above proposition actually holds equally true for BMMm,n = BMMm,n,m2 , the
non-promise problem, and would imply Q(BMMm,n) = Ω(m3/2√n).
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