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Abstract
We present space-efficient algorithms for computing cut vertices in a given graph with n vertices
and m edges in linear time using O(n+ min{m,n log logn}) bits. With the same time and using
O(n + m) bits, we can compute the biconnected components of a graph. We use this result to
show an algorithm for the recognition of (maximal) outerplanar graphs in O(n log logn) time
using O(n) bits.
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1 Introduction

Nowadays the use of small mobile devices like tablets and smartphones is ubiquitous. Typically
they will not be equipped with large memory and common actions like storing (many) pictures
may even decrease the available memory significantly. This triggers the interest in data
structures and algorithms being space-efficient. (Time) Efficient algorithms are a classical
subject in computer science. The corresponding algorithms course is often based on the
textbook of Cormen et al. [8]. There is also a long tradition in the development of algorithms
that use as few bits as possible; famous results are the two results of Savitch [19] and
Reingold [18] on reachability in directed and undirected graphs, respectively. However, the
running times of their algorithms are far away from the fastest algorithms for that problem
and are therefore of small practical interest. Moreover, Edmonds et al. [10] have shown in
the so-called NNJAG model that only a slightly sublinear working-space bound is possible
for an algorithm that solves the reachability problem when required to run in polynomial
time. This motivates the recent interest in space-efficient algorithms, i.e., algorithms that
use as few working space as possible under the condition that their running time (almost)
matches the running time of the best algorithm(s) without any space restrictions.

A useful model of computation for the development of algorithms in that context is the
word RAM with a read-only input, a read-write working memory, and a write-only output.
As usual, we assume that for a given instances of size n, the word size is Ω(logn). One of
the first problems considered for space-efficient algorithms is sorting [16], which was finally
solved to optimality [5, 17]. Other researchers considered problems in geometry [1, 3, 4].
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Recent research started to focus on space-efficient graph algorithms [2, 11]. However, there
is still only a very short list of problems with space-efficient graph algorithms: depth-first
search, breadth-first search, (strongly) connected components, topological sorting, shortest
path.

We continue this work on space-efficient graph algorithms and consider the basic problems
to compute the cut vertices and to decompose a given undirected graph into its biconnected
components. Tarjan’s linear time algorithm [20] solving this problem has been implemented
in almost any usual programming language. However the algorithm requires Ω(n logn) bits
on n-vertex graphs. The idea of our algorithm is to classify the edges via a DFS as tree and
back edges and to mark those tree edges that build a cycle with a back edge. The marking
allows us subsequently to determine the cut vertices and the biconnected components. Given
a graph with n vertices and m edges, the whole algorithm runs in O(n + m) time using
O(n+ min{m,n log logn}) bits, which is O(n) in sparse graphs. Due to the lower bound of
Edmonds et al. [10], there is not much hope for an algorithm that uses o(n) bits.

Finally we study the recognition of outerplanar graphs, i.e., those graphs having a planar
embedding with all vertices on the outer face. The problem has been studied in various
settings and linear time algorithms have been given, e.g., by Mitchell [15] and Wiegers [21].
However, both algorithms modify the given graph by removing vertices of degree 2, which is
not possible in our model. An easy solution would be to copy the given graph in the working
memory, but this requires Ω(n logn) bits for a graph with n vertices. Another problem is
that if the neighbors of a removed vertex are not adjacent, then both algorithms above want
to add a new edge connecting the neighbors. Storing all these new edges also can require
Ω(n logn) bits. Our algorithm runs in time O(n log logn) and uses O(n) bits, and determines
if the input graph is outerplanar, as well as if it is maximal outerplanar. To obtain our
algorithm, we can not simply remove vertices of degree 2. With each removed vertex v we
have to remove the so-called chain of vertices of degree 2 that contains v and we have to
choose the chains carefully such that we have only very few new edges at a time in our graph.

2 Preliminary

For graph-theoretic notions not defined in the paper we refer to the monograph of Diestel [9].
For basic notions in construction and analysis of algorithms and a large collection of funda-
mental algorithms like, e.g., depth-first search (DFS) we refer to the textbook of Cormen et
al. [8]. To develop space-efficient algorithms, the details of the representation of an input
graph are more important than in the classic setting because it is rarely possible to modify
and store a given representation. We use the terminology of [11]. In particular, if we say that
a graph is represented via adjacency arrays, then we assume that, given a vertex u and an
index i, we can determine the ith edge {u, v} of u in constant time. Moreover, cross pointers
allow us to determine the index of {u, v} in the adjacency array of v in constant time. As
usual, we always assume that an n-vertex graph has vertices V = {1, . . . , n}.

Our algorithms make use of rank-select data structures. A rank-select data structure is
initialized on a bit sequence B = (b1, . . . , bn) and then supports the following two queries.
rankB(j) (j ∈ {0, . . . , n}): Return

∑j
i=1 bi

selectB(k) (k ∈ {1, . . . ,
∑n

i=1 bi}): Return the smallest j ∈ {1, . . . , n} with rankB(j) = k.
Rank-select data structures for bit sequences of length n that support rank and select queries
in constant time and occupy O(n) bits can be constructed in O(n) time [7].

Assume that d1, . . . , dn ∈ IN0 and that it is desired to allocate n bit strings A1, . . . , An

such that, for k = 1, . . . , n, Ak consists of dk bits and (the beginning of) Ak can be located
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in constant time. Take N =
∑n

j=1 dj . We say that A1, . . . , An are stored with static space
allocation if we allocate A1, . . . , An within an array of size N . In O(n + N) time, we can
compute the sums sk = k +

∑k−1
j=1 dj for k = 1, . . . , n and a rank-select data structure for

the bit vector B of size n+N whose ith bit, for i = 1, . . . , n+N , is 1 exactly if i = sk for
some k ∈ {1, . . . , n}. This allows us, given a k ∈ {1, . . . , n} to compute the number of bits
used by the arrays A1, . . . , Ak−1 and thus the location of Ak in constant time by evaluating
selectB(k) − k. One application of static space allocation—as already shown by [13]—is
to store data for each vertex v consisting of O(deg(v)) bits where deg(v) is the degree of
v. Given a vertex, we then can locate its data in constant time and the whole data can be
stored with O(n+m) bits.

To maintain subsets of vertices or of edge indices we use a data structure by Hagerup
and Kammer [12, Lemma 4.4] that is called a choice dictionary.

I Theorem 1. Let n ∈ IN . A choice dictionary is a data structure that maintains an
initially empty subset S of {1, . . . , n} under insertion, deletion, membership queries, and
an operation called choice that returns an arbitrary element of S. The data structure can be
initialized in O(1) time using O(n) bits of working space and supports each of its operations
in constant time. The choice dictionary can also be extended by an operation called iteration
that returns all elements in S in a time linear in |S|.

We also use a simplified version of the ragged dictionary that was introduced by of
Elmasry et al. [11, Lemma 2.1] and named in [12]. Missing proofs can be found in [14].

I Theorem 2. For every fixed n ∈ IN = {1, 2, . . .} as well as integers b = O(logn) and
κ = O(n/ logn), there is a dictionary that can store a subset A of {1, . . . , n} with |A| ≤ κ,
each a ∈ A with a string ha of satellite data of b bits, in O(n) bits such that the following
operations all run in O(log logn) time: ha can be inspected for each a ∈ A and elements with
their satellite data can be inserted in and deleted from A.

3 Cut Vertices

A cut vertex of a connected undirected graph G is a vertex v such that G− v is disconnected.
Furthermore a graph is biconnected if it is connected and does not have a cut vertex. We first
show how to compute cut vertices in O(n+m) time using O(n+m) bits on an undirected
graph G = (V,E) with n = |V | and m = |E|. Afterwards, we present a second algorithm
that has the same running time and uses O(n log logn) bits.

We start with the description of an algorithm, but for the time being, do not care on the
running time and the amount of working space. Using a single DFS we are able to classify
all edges as either tree edges or back edges. During the execution of a DFS we call a vertex
white if it has not been reached by the DFS, gray if the DFS has reached the vertex, but has
not yet retracted from it and black if the DFS has retracted from the vertex. W.l.o.g., we
assume that all our DFS runs are deterministic such that every DFS run explores the edges
of G in the same order. Let T denote the DFS tree of G, i.e., the subgraph of G consisting
only of tree edges, which we always assume to be rooted at the start vertex of the DFS. We
call a tree edge {u, v} of T with u being the parent of v full marked if there is a back edge
from a descendant of v to a strict ancestor of u, half marked if it is not full marked and there
exists a back edge from a descendant of v to u, and unmarked, otherwise. Then one can
easily prove the next lemma.
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I Lemma 3. Let T denote a DFS tree of a graph G with root r, then the following holds:
1. Every vertex u 6= r is a cut vertex of G exactly if at least one of the edges from u to one

of its children is either an unmarked edge or a half marked edge.
2. The vertex r is a cut vertex of G exactly if it has at least two children in T .

Since we want to use the lemma above, we have to mark the tree edges as full marked, half
marked or unmarked. Therefore, we run two DFS. In the first run, we classify all tree edges,
which we initially unmark. During the second, whenever we discover a back edge {w, u}
with w being a descendant of u, it becomes evident that both u and w belong to the same
biconnected component as do all vertices that are both, descendants of u and ancestors of w,
since they induce a cycle C. Let v be the ancestor of w that is child of u. We mark the
edge from u to v as half marked and all the other tree edges on C as full marked. If the
edge {u, v} has already been full marked in a previous step, this will not be overwritten.
Note that if {u, v} is half marked and u has a back edge to one of its ancestors such that the
edge connecting u to its parent p becomes full marked, v and p do not belong to the same
biconnected component, but u belongs to both, the biconnected component containing v and
the biconnected component containing p. The notion to distinguish between half marked
and full marked is to indicate this gap between biconnected components.

After the second DFS each cut vertex can be determined by the edge markings of the
tree edges connecting it to its children. For a space-efficient implementation, the first DFS
can be taken from [11]. The second one with making the markings is described in the next
sections and depends on the used working space.

3.1 Cut Vertices with O(n + m) bits
We use static space allocation to address O(deg(v)) bits for each vertex v of degree deg(v).
Within these bits, we store for every edge {u, v} adjacent to v if (1) it is a tree or back edge,
(2) u or v is closer to the root of the DFS tree, and (3) its markings in case it is a tree edge.
Additionally, using O(log deg(v)) bits, when a vertex v is encountered by the DFS for the
first time, we store the position of the tree edge {u, v} in the adjacency array of v, where u
denotes the parent of v in the DFS tree. This information can later be used, when the DFS
retreats from v, such that we can perform the DFS without explicitly having to store the
DFS stack. (This idea to obtain a DFS in O(n+m) time using O(n+m) bits was already
described by Hagerup et al. [13].) To bound the time of marking the tree edges during the
second DFS by O(n+m), we perform the following steps. Whenever we encounter a vertex u
for the first time during the second DFS via a tree edge, we scan its entire adjacency array
for back edges that lead to descendants w of u. For each such back edge {u,w}, we perform
the following substep. As long as there is a tree edge from w to its parent v 6= u that is
not full marked, we mark {v, w} as full marked and continue with v becoming the new w.
If we encounter an edge {v, w} that is already marked as full marked, we terminate the
substep without marking any more edges. If at some point the parent v of w becomes u, we
mark {v, w} as half marked if it has not been full marked, yet, and terminate the substep
thereafter.

It is easy to see that this procedure results in the correct markings for every edge. The
order in which back edges are worked on assures whenever a tree edge {v, w} is already full
marked so are all tree edges between v and the child of u. Because we store, for each vertex,
the position of the edge that connects it with its parent in T , the time of each substep is at
most the number of tree edges that are marked plus additional constant time. Since each
tree edge is marked at most twice, once as half marked and once as full marked, and the
number of back edges is at most m, altogether we use O(m) time.
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3.2 Cut Vertices with O(n log log n) bits
The key ideas to make the algorithm more space-efficient are to perform the classification of
edges as tree edges or back edges on the fly whenever an edge is explored by the DFS, to use
a second stack U , and to apply the stack restoration technique by Elmasry et al. [11] to both
stacks. We thus reconsider that paper. To obtain a DFS with a linear running time using
O(n log logn) bits, the stack is partitioned into O(logn) segments of Θ(n/ logn) entries, each
consisting basically of a vertex. During the DFS, only the O(1) latest segments are kept in
the working memory; the remaining are thrown away. Whenever a segment that was thrown
away is needed, a restoration recovers it in a time linear in the number of vertices of the
segment. To restore a segment in a time linear to its size, the vertices of the ith segment
have a hue (value) i. For a slight modification of that algorithm, one can easily see that it is
not important that the segments consist of Ω(n/ logn) vertices stored in the stack, as long as
their number is bounded by O(logn) and the vertices with the same hue form a connected
subsequence of the sequence of elements in the stack. Therefore, we build segments not based
on the entries of the stack; instead, we define the first Θ(n/ logn) vertices that are visited by
the DFS as the first segment, the next Θ(n/ logn) vertices as the next segment, etc. The hue
values are determined via an extra DFS at the beginning. They are stored in addition to the
colors white, gray and black that are used during a “standard” DFS. The space consumption
of the algorithm sums up to O(n) for the segments plus O(n log logn) bits for the hue.

A normal DFS stack S contains at any moment during the execution of a DFS the vertices
on the path within T from its root to the vertex that is currently explored, which are all
the vertices that are currently gray. The depth dpw of a vertex w is the number of edges
connecting the vertices on the path from w to the root r of T that consists solely of tree
edges. The second stack U contains those gray vertices u that have a gray child v such
that eu = {u, v} is not full marked. Hence, the vertices in U denote a subset of the vertices
in S. More exactly, each entry of U is a tuple of a vertex u and its depth within T . When v
is explored, v is pushed onto S and its parent u (together with its depth) is pushed onto U .
When the DFS retreats from v, it is popped from S and u is popped from U if it is still
present in U . A second way for u to be removed from U is when the edge eu becomes full
marked.

Let w denote the vertex at the top of S. Whenever the DFS tries to explore a vertex u
that is gray, then {w, u} is a back edge. Under the assumption that we know the depth of
every vertex, we can mark edges as follows: While there is a vertex u′ on the top of U whose
depth is higher than dpu, we full mark the edge eu′ = {u′, v′} that connects u′ with its gray
child v′ and pop u′ from U . This loop stops if either u becomes the vertex at the top of U or
a vertex with a lower depth than u becomes the top vertex of U . In the first case, we half
mark eu. In the second case, we do not mark the edge {u, v} that connects u with its gray
child v since u is not on U because the edge {u, v} must have been full marked during the
processing of a previous back edge.

We now discuss the computation of cut vertices. When retreating from a vertex v to its
parent u that is not the root of T , we check if {u, v} is half marked or unmarked. If that is
the case, we output u as a cut vertex. For the root vertex r, we maintain a counter that
indicates if at least two children of r have been explored during the DFS. If so, r is outputted.
Using a bit vector over the vertices, we can avoid outputting a cut vertex more than once.

For the implementation of the algorithm, the remaining problems are maintaining both
stacks S and U as well as determining the depth of u, whenever processing a back edge {w, u}
with u being the ancestor of w in the DFS tree T . For the first problem, we store for every
vertex its hue and use the stack restoration techniques introduced by Elmasry et al. [11], but
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use it with the modified size as described above. Restorations of segments in S and U are
performed independently of each other.

The second problem is more complicated and considered now. Let k be the hue of vertices
that we currently process, and let Z be the set consisting of every hue i 6= k that is present
in U . Our goal is to store the depth of all vertices in U with a hue in max(Z)∪{k} such that
it can be addressed by the vertex. The idea is to use one array A addressed with static space
allocation to store the depth for all vertices in U of one segment, i.e., one hue. This allows us
to build and destroy the arrays for each hue independently. However, the rank-select structure
used by the static space allocation is to slow in its construction since we want a running
time of O(n/ logn). Therefore, we define blocks where block i ∈ {0, . . . , dn/d(logn)/2ee − 1}
consist of the vertices 1 + id(logn)/2e, . . . , (i+ 1)d(logn)/2e—the last block may be smaller.
In an auxiliary array B addressed with static space allocation, for each non-empty block b,
we store a pointer to the first entry in A for a vertex in b. Within each block we use table
lookup to find the exact position in A where the depth of a vertex is stored. This allows
us to store the depth of the vertices in the upcoming segment in an array with static space
allocation. We also restore the depth of the vertices of a segment in U whenever we restore
it.

When processing a back edge {u,w} (w having a hue k) with u being the ancestor of w
and having a hue i there are two possibilities: If i ∈ max(Z) ∪ {k}, then the depth of U can
be determined in constant time. Otherwise, i < j = max(Z) and, we iteratively restore those
segments in {j − 1, j − 2, . . . , i} that have a vertex in U and process the vertices within these
segments that are present in U as described above until we finally restore the segment of
vertices with hue i together with their depth.

We summarize the space bound as follows. For every vertex we store in O(n) bits its
current color (white, gray, black), and if it yet has been outputted as a cut vertex. The
set Z can be easily maintained with O((logn)2) bits. Using O(n log logn) bits we can store
for every vertex its hue. We use additional O(n) bits to store a constant number of stack
segments of O(n/ logn) vertices each. Since the depths of those vertices are stored compactly
in arrays, each such array A together with its auxiliary array B can be implemented with
O(n) bits. Moreover, we use two bits for each vertex u on the stack to store if the edge
connecting u and its child on the stack, if any, has been half or fully marked. Thus, the
overall space bound is O(n log logn) bits.

We finally determine the time bounds. As analyzed in [11], the DFS including the stack
restorations of S, but without the extra computations for the back edges runs in O(n+m)
time as do the intermediate computations in total. Assume for the moment, that we do
not throw away and restore segments of U . Then, the total time to mark the tree edges
due to the back edges is O(n+m′) where m′ is the number of back edges since each tree
edge is marked at most twice using the stack U . The tests if a vertex is a cut vertex can
be performed in total time O(m). It remains to bound the time for the restorations of U .
Whenever we restore a segment of U , a hue value is removed from the set Z and never returns.
This means that we have only O(logn) restorations of a segment of U , which can be done in
total time O(n).

Combining the algorithms of Section 3.1 and this section, we obtain our first theorem.

I Theorem 4. There is an algorithm that, given an n-vertex m-edge graph G in an ad-
jacency array representation with cross pointers, runs in time O(n + m) and uses O(n +
min{m,n log logn}) bits of working space, and determines the cut vertices of G.
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3.3 Biconnected Components
We next show that we can compute the biconnected components of an undirected graph.
Recall that a graph is biconnected if it is connected and has no cut vertices. A biconnected
component of a graph G is a maximal biconnected induced subgraph of G. Whenever we say
in the following theorem and proof that we output an edge {x, y}, then we mean that we
output the index of the edge in the adjacency array of both x and y.

I Theorem 5. There is a data structure that, given an n-vertex m-edge graph G in an
adjacency array representation with cross pointers, runs O(n+m) initialization time and
uses O(n + m) bits of working space and that afterwards, given an edge e, computes the
vertices and/or the edges of the biconnected component B of G with B containing e in a time
that is linear in the number of vertices and edges that are output.

Proof. To initialize the data structure, first run our algorithm from Section 3.1 to compute
a DFS tree T with a root r, for each edge {u, v} the ancestor-descendant relationship in T
between u and v as well as the markings of the tree edges. Also store for each vertex v 6= r

the index of its edge connecting v to its parent. Then build a rank-select data structure for
each vertex v that allows us to iterate over the fully marked tree edges and the back edges to
ancestors of v in O(1) time per edge. It is easy to see that the initialization runs in O(n+m)
time and all information can be stored with O(n+m) bits using static-space allocation.

Afterwards, given an edge e = {u, v} with u being an ancestor of v, we can output the
biconnected component B containing e by running a DFS from v and traversing only tree
edges (to both directions, parent and children) such that we never explore new vertices from
a vertex that was reached by a half marked or unmarked edge and such that we never use a
half marked or unmarked edge moving from a parent to its child via such an edge. During
the DFS, we output all visited vertices as well as all traversed tree edges. Since a back edge
{x, y} with x ancestor of y always belongs to the same biconnected component as y, we
output {x, y} only if we visit y. In this case, we output the edge as an edge of y and, using
cross pointers, also of x. The algorithm can easily be modified such that it only outputs the
vertices/edges of the biconnected component. Using the rank-select data structures, this can
be done in the time stated in the lemma.

To see that each outputted B is indeed a biconnected component observe that B is
connected. Assume that B has a cut vertex v with a child u that cuts off the subtree Tu

with root u, and we want to output the component containing the edge connecting v and its
parent. In that case the edge {v, u} is half marked or not marked. Hence, such an edge is not
used to go from a parent to a child. On the other hand, if we want to output a component B
for which a vertex v is a cut vertex disconnecting B and r, then the edge connecting v with
the rest of B is half marked. Hence, we output v, but we do not visit other vertices. Finally,
B is maximal by construction since all tree edges that are in B are fully marked except for
the “highest” edge in T that is half marked; thus all vertices of B are found by the DFS. J

4 Outerplanar Graphs

Outerplanar graphs and maximal outerplanar graphs are well-studied subclasses of planar
graphs. For their structural properties we refer to the monograph of Brandstädt et al. [6].

Given a biconnected outerplanar graph G = (V,E), we call an edge that is incident to the
outer face an outer edge and an edge that is incident to two inner faces an inner edge. We
now describe a set of well-known properties for outerplanar graphs that help us to describe
and prove our algorithm of Section 4.1. Every maximal outerplanar graph with at least
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three vertices is biconnected and, for every biconnected outerplanar graph G, the set of outer
edges induce a unique Hamiltonian cycle that contains all vertices of G. Every biconnected
outerplanar graph G = (V,E) with V = {1, . . . , n} and |E| > n contains at least one inner
edge. Let the vertices of G be labeled according to their position on the Hamiltonian cycle
of G, by 1, . . . , n, and let {u, v} denote an inner edge that connects the vertices u and v.
W.l.o.g., let u < v. Then the graph G′ = G[{u, . . . , v}] is biconnected and outerplanar. Since
{u, v} is an inner edge, 1 < v − u < n− 1 holds and there are exactly v − u− 1 > 0 vertices
between u and v on the path part of the Hamiltonian cycle that belongs to G′. This path
together with the edge {v, u} forms the Hamiltonian cycle of G′.

Usually, one decomposes an outerplanar graph by repeatedly removing a vertex v of
degree 2. However, this needs to test if the neighbors of v are connected by an edge and, if
not, to add such an edge. Because the test is too time consuming and storing all such edges
needs too much space, we search instead for a closed or good chain defined next.

We define a chain in an outerplanar graph G as either a cycle that consists solely of
vertices of degree 2 or a path that contains at least three pairwise distinct vertices with the
property that its first and its last vertex have a degree larger than 2 while the rest must
have degree 2. We denote the first and the last vertex of a chain as its endpoints unless the
chain C is a cycle, in which case the endpoints can be chosen arbitrarily as long as they are
adjacent to each other. Furthermore, we call a cycle a loop if it contains one vertex of degree
larger than 2 and all other vertices have a degree 2. A chain is called a good chain if one
of its endpoints has a degree of at most 4. Let us call a face F induced by a chain C if the
endpoints u and v of C are adjacent to each other and C together with the edge {u, v} is the
boundary of F . We denote a chain C that induces a face F as a closed chain. For simplicity,
we sometimes consider a chain also as a set of edges.

I Lemma 6. Let G = ({1, . . . , n}, E) denote a biconnected outerplanar graph with n ≥ 4
vertices. Then G contains a good closed chain C.

The next two lemmas are used to show the correctness of our algorithm.

I Lemma 7. Let G = (V,E) be a biconnected outerplanar graph, then the following properties
hold:
(i) For every chain C in G with endpoints v1 and v2, the graph G′ := G[(E \C)∪{{v1, v2}}]

induced by the edge set (E \ C) ∪ {{v1, v2}} is biconnected and outerplanar.
(ii) For all v1, v2 ∈ V , there are at most two internal vertex-disjoint paths with at least two

edges each.

Proof. To prove the first part note that G′ is a minor of G. Thus, G′ is outerplanar. For all
vertices u1, u2 of G′, there are two internal vertex-disjoint paths in G. Since C is a chain,
it can only be a complete part of such a path and therefore replaced by the edge {v1, v2}.
It follows there are two internal vertex-disjoint paths between u1 and u2 in G′ and G′ is
biconnected. We prove the second part by contradiction. Assume that Prop. ii does not hold.
Then K2,3 is a minor of G. This is a contradiction to G being outerplanar. J

I Lemma 8. Let G = (V,E) be a graph for which the following properties hold.
(1) There is a chain C in G with endpoints v1 and v2 such that the graph G′ := G[(E \C)∪
{{v1, v2}}] is biconnected and outerplanar.

(2) There are at most two internal vertex-disjoint paths with at least 2 edges each in G that
connect v1 and v2.

Then G is biconnected and outerplanar.
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Proof. The existence of a chain follows from Lemma 6. G′ is biconnected outerplanar because
of Prop. 1. Because of Prop. 2 there is at most one internal vertex-disjoint path connecting v1
and v2 in G[E \ C]. Hence, the edge {v1, v2} is part of the outer face of G′. It follows that
we can embed C in the outer face of an embedding of G′ to yield an outerplanar embedding
of G. Because {v1, v2} is part of the outer face of G′, it is part of the Hamiltonian cycle
of G′. We can extend the Hamiltonian cycle of G′ by replacing {v1, v2} with C to get a
Hamiltonian cycle of G. Thus G is biconnected. J

4.1 Our Algorithm on Biconnected Outerplanar Graphs
For the time being, we assume that the given graph is biconnected. Our algorithm works
in two phases and can be sketched as follows. Before our actual algorithm starts we test
whether m ≤ 2n − 3. If not, the graph is not outerplanar and we terminate immediately.
Otherwise we start our algorithm that modifies the input graph into a smaller outerplanar
graph as described in Lemma 8 Prop. 1 while checking Prop. 2 of Lemma 8. Lemma 7
guarantees that it does not matter which chain we take, the modification is always possible
and that the check never fails unless G is not biconnected outerplanar. A main obstacle is to
handle the edges replacing the chains that we call subsequently artificial edges.

To check Prop. 2 of Lemma 8, we keep in both phases counters Pe for every (original or
artificial) edge e to count the number of internal vertex-disjoint paths with at least 2 edges
that connect the endpoints of e. Whenever we remove a chain with both endpoints in e, we
increment Pe. If Pe at any time exceeds 2, the graph can not be outerplanar by Lemma 7 (ii).
We check this after every incrementation of an counter Pe and terminate eventually.

We start to sketch the two phases of our algorithm. The details of the phases are given
subsequently. Let G = (V,E) denote the input graph, which is located in read-only input
space, and G′ denote the subgraph of G that we are currently considering in our algorithm.
Initially, G′ := G. Thereafter, within our algorithm the edges of chains are either removed
from G′ if they induce a face or replaced by artificial edges that connect the endpoints of the
chain directly. Consequently, G′ is always a minor of G.

The purpose of the first phase is to limit the number of artificial edges that are required
for the second phase to O(n/ logn). The first phase consists of Θ(log logn) rounds, in each
of which we iterate over all chains, but only remove the closed ones.

In the second phase, we repeatedly take a vertex of degree 2 and determine its chain.
Depending on the kind of the chain, we proceed: Good closed chains are removed from G′.
The edges of chains that turn out to be good, but not closed are replaced by an artificial edge
connecting its endpoints. The counter of vertex-disjoint paths with the same endpoints {u, v}
for a newly created artificial edge {u, v} is initialized with 1 to account for the chain that
has been replaced by {u, v}. When processing a chain C that turns out to be not good, we
implement a shortcut that is a pair of pointers, each one addressed by the vertex of degree 2
in C that is next to a endpoint of C and pointing to the vertex of degree 2 in C that is
adjacent to the other endpoint. This way, when the degree of either one of the endpoints is
lowered to 2 by the removal of adjacent chains and thus C becomes connected with an other
chain, C does not have to be traversed again to check if the new chain is good.

If the input graph is outerplanar, the algorithm terminates either in Phase 1 or in Phase 2
as soon as the last good chain, which is a cycle, is processed and a single edge that is the edge
between its endpoints remains. Otherwise, if the input graph is not outerplanar, at some
moment one of the checks fails and the algorithm stops and answers that the input is not
biconnected outerplanar. Possible conditions for a failed check are if no good chain remains
and the graph has at least vertices, if the counter that counts the internal vertex-disjoint

MFCS 2016



56:10 Space-Efficient Biconnected Components and Recognition of Outerplanar Graphs

paths with at least 2 edges between the endpoints of an edge exceeds 2 for some edge, if some
loop is detected, or if a vertex turns out to be incident to at least three vertices of degree 2.

To lower the time that is required to iterate through the adjacency array of a vertex v, we
initialize, for each vertex v ∈ V with degree degG(v) in G, a choice dictionary with universe
{1, . . . , degG(v)} that represents the edges that are adjacent to v and still present within the
current subgraph. The choice dictionary contains i with i ∈ {1, . . . , degG(v)} exactly if the
ith entry of the adjacency array of v represents an edge of the input graph G that is still
present in the current graph G′. Thus, future iterations through the adjacency array of v
can be performed within a time that is linear in the number of edges that are incident on v
in G′. Hence, the time to determine the adjacency of two endpoints v and w of a chain is
bound by O(min{degG′(v), degG′(w)}).

Phase 1: At the beginning of each round we unmark all vertices and insert all vertices of
degree 2 of the current graph G′ into a choice dictionary D.

For a more detailed description we subdivide the Θ(log logn) rounds into stages. As long
as there is a vertex u in D, we extract it from D and start a new stage. Let C denote the
chain that u belongs to. A stage works as follows. If C contains a vertex that is marked as
tried or C is not closed, the stage stops. Otherwise, we increment the counter Pe for every
edge e on C as well as for the edge connecting its endpoints and remove the vertices and
edges of C from the graph. If the current chain C is not the first chain processed in the
current stage so far, we mark every vertex of degree 2 that has been processed within the
current stage and still remains in the graph as tried. If one or both of the endpoints of C
thereby become a vertex of degree 2, the procedure is repeated immediately for the new
chain C ′ that incorporates both endpoints of C. The stage ends if no new chain is found. At
the end of the stage we remove the vertices of degree 2 that have been processed within the
current stage from D. A round ends if D is empty.

Phase 2: We start to initialize a choice dictionary D consisting of one vertex of degree 2
for each good closed chain. (During Phase 2, vertices of other chains may be added into D.)
Take q as the initial number of vertices in D. As we prove in Corollary 11, the number of
chains that induce a face is at most O(n/ logn) after Phase 1 unless G is not outerplanar.
If G′ contains more such chains, we can terminate immediately. Otherwise, we can store a
constant number of artificial edges and shortcuts for each such chain. Whenever we process
a vertex u from D, we determine the chain C that u is part of, the endpoints v and w of C,
and then distinguish three cases.

If C is good and closed, we increment the counter Pe for every edge e that is part of C
and for the edge that connects its endpoints. Finally, we remove the edges of C from G′.
If C is good and not closed, we insert an artificial edge ea that connects the endpoints
of C, increment the counter Pe for every edge e in C by 1 and remove all the edges and
inner vertices of C from G′. Finally, the counter Pea

of ea is initialized with 1.
Otherwise, C is not good. We remove all vertices of C from D and insert a shortcut
between the vertices of degree 2 in C that are adjacent to the endpoints of C. If there are
old shortcuts connecting other inner vertices of C, they become obsolete and are removed.

Whenever the degree of v or w decreases, we perform the following subroutine. If degG′(v) ∈
{3, 4}, we insert all vertices u of degree 2 that are adjacent to v into D. Note that u and
w are neighbors of v on the unique Hamiltonian Cycle of G′. Thus, if G is biconnected
outerplanar, there is at most one such vertex u. If degG′(v) = 2, we insert v into D. We
proceed with w analogously. We so guarantee that each good closed chain of G′ has a vertex
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in D. As shown by Lemma 12, if the number of artificial edges and shortcuts that are
simultaneously in use exceeds 2q, G is not outerplanar and we stop.

Since the removal of chains is performed in accordance with Lemma 7 and Lemma 8, to
show the correctness of the algorithm, it remains to verify that the checks on the counters Pe

are correct and sufficient.

I Lemma 9. The counter Pe counts for any edge e = {v1, v2} that belongs at some moment
during our algorithm to the current graph G′ the number of internal vertex-disjoint paths
with at least 2 edges between v1 and v2 that have been removed from G so far.

By our counters Pe for all original and artificial edges, we count the number of internal
vertex-disjoint paths between vertices that have been endpoints of a removed chain. Thus, our
tests are sufficient by Lemma 8. By Lemma 7 (ii) the counting of the internal vertex-disjoint
paths between the endpoints of other edges and terminating if one of these counters exceeds 2
is correct.

4.2 Space-Efficient Implementation and Space Bounds
Before any allocation of space is performed the first check of the algorithm is to verify that
the number m of edges within the input graph G is at most 2n − 3, where n denotes the
number of vertices in G. From now on, we assume that m = O(n). During Phase 1 we use a
bit vector of n bits that allows us to mark vertices as tried.

The current graph G′ is represented as follows. We use a choice dictionary of O(n) bits,
where i is in the set represented by the choice dictionary exactly if the vertex i is still part
of G′. In addition, for each vertex v of initial degree degG(v), we store Θ(degG(v)) bits.
Within this space we use a choice dictionary Cv with universe {1, . . . , degG(v)} as already
described above and a counter that maintains the current degree of v in G′. It follows that,
ignoring artificial edges and shortcuts, a representation of the current graph G′ with one
choice dictionary for each vertex fits in O(n) bits of working space.

We next want to bound the number of artificial edges and shortcuts. We start to bound
the number of chains that induce a face after Phase 1. For this purpose, let us define the
dual tree TG of a biconnected and outerplanar graph G as the dual graph of G minus the
vertex that represents the outer face of G. Since G is biconnected and outerplanar, TG is a
tree. The leaves of TG correspond to those faces of G that are induced by chains. Thus, the
removal of a closed chain C that induces a face F in G′, which results in the merging of F
with the outer face, corresponds to the removal of the leaf F in TG′ .

I Lemma 10. If the input graph G with n vertices is biconnected outerplanar, then the
number of chains that induce a face in the current graph G′ after the tth round of Phase 1 is
at most n/2t.

Proof. It is easy to see that the initial number of chains that induce a face before the first
round is at most n. Recall that, in each stage of Phase 1, we consider a vertex u of degree 2
and test whether it is part of a closed chain C within our current graph G′. If so, we remove
the chain C from G′ and thereafter continue recursively on one endpoint v of C if the removal
of C results in v becoming a vertex of degree 2. Let us analyze the modifications of the
algorithm in the dual tree. Whenever we remove a chain, this means that we remove a leaf
and then recursively try if its parent thereby has become a leaf and can be removed as well
until a node of degree at least 2 is encountered.

Vertices of a chain C that is incident to a face F are marked as tried if F could not be
merged with the outer face after a face that was incident to F has been successfully merged
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with the outer face by the removal of the chain that induced it. The removal of F fails only
if F is not induced by C and there remain at least two faces in TG′ that are incident on F .
We conclude that F had degree at least 3 at the beginning of the current round. Since in
every round leaves are removed until a node is encountered that had at the beginning of the
round a degree of at least 3, the number of leaves is at least halved in every round. J

I Corollary 11. If the input graph G with n vertices is biconnected outerplanar, the number
of closed chains after Phase 1 in the current graph G′ is O(n/ logn).

We next bound the number of artificial edges and shortcuts.

I Lemma 12. The initial number q of chains at the beginning of Round 2 that have vertices
in D only doubles during Phase 2, and the number of artificial edges and shortcuts that are
simultaneously in use by the algorithm is 2q = O(n/ logn).

Proof. By the corollary above, q = O(n/ logn) at the beginning of Phase 2. One may
consider these chains cutting the Hamilton cycle of G′ into q parts. Since we add new vertices
into D at the end of Phase 2 only if we were in Case 1 before, a new chain C ′ is always
neighbored to an old chain C, which is then deleted from G′ before a vertex of C ′ is added
into D. Roughly speaking, the chains at the beginning of Phase 2 are fires that can spread
to new chains on the left and on the right along the Hamilton cycle, but the fire can never
return and ends immediately at the moment when a new chain starts to burn. It is easy to
see that at most 2q chains are on fire. If we define that a chain that is processed with Case 2
or 3 is still on fire, then we have to store artificial edges or shortcuts only for chains that are
on fire, and thus, their number is bounded by 2q = O(n/ logn). J

We can use a bit vector of O(n) bits to store for every vertex v the information whether
an artificial edge or shortcut exists at v or not. As a consequence of the last lemma, we can
store all artificial edges as well as all shortcuts in a ragged dictionary and the total space
bound of the algorithm is O(n) bits.

I Lemma 13. There is an algorithm that, given an n-vertex biconnected graph G in an
adjacency array representation with cross pointers, runs in O(n log logn) time and uses O(n)
bits of working space, and determines whether G is biconnected outerplanar.

4.3 Algorithm for General Outerplanar Graphs
We next sketch the generalization of our recognition algorithm of biconnected outerplanar
graphs to general outerplanar graphs. Since a graph is outerplanar exactly if all of its
biconnected components are outerplanar, we can iterate over the biconnected components
of a given graph G using our framework of Section 3.3—to avoid using Ω(m) time or bits
if a non-outerplanar, dense graph is given, one should initially check that m ≤ 2n− 3. For
each biconnected component, we first stream all its vertices and build an initially empty
choice dictionary Cv with degG(v) keys for each such vertex v, then stream the edges of the
biconnected component and fill in the indices of each edge in the choice dictionaries of its
endpoints. In addition, we compute and store for each vertex of the biconnected component
its degree.

Recall that our subgraph G′ is represented by a choice dictionary that contains those
vertices of G that are still part of G′ and a choice dictionary Cv for every vertex v such
that i ∈ {1, . . . , degG(v)} is present in Cv exactly if the ith entry of the adjacency array
of v contains an edge that is still present G′. We initialize these choice dictionaries with the
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values that are streamed from the algorithm that determines biconnected components to
initialize a representation of a biconnected subgraph. The time to test if the subgraph is
biconnected outerplanar is bound by the number of vertices and edges of the subgraph alone.

Finally note that a check if a outerplanar graph G = (V,E) is maximal outerplanar can
be easily performed by checking if 2|V | − 3 = |E|.

I Theorem 14. There is an algorithm that, given an n-vertex graph G in an adjacency array
representation with cross pointers, runs in time O(n log logn) and uses O(n) bits of working
space, and determines if G is (maximal) outerplanar.
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