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Abstract
We study the exact learnability of real valued graph parameters f which are known to be repres-
entable as partition functions which count the number of weighted homomorphisms into a graph
H with vertex weights α and edge weights β. M. Freedman, L. Lovász and A. Schrijver have given
a characterization of these graph parameters in terms of the k-connection matrices C(f, k) of f .
Our model of learnability is based on D. Angluin’s model of exact learning using membership
and equivalence queries. Given such a graph parameter f , the learner can ask for the values of f
for graphs of their choice, and they can formulate hypotheses in terms of the connection matrices
C(f, k) of f . The teacher can accept the hypothesis as correct, or provide a counterexample
consisting of a graph. Our main result shows that in this scenario, a very large class of partition
functions, the rigid partition functions, can be learned in time polynomial in the size of H and
the size of the largest counterexample in the Blum-Shub-Smale model of computation over the
reals with unit cost.
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1 Introduction

A graph parameter f : G → R is a function from all finite graphs G into a ring or field R,
which is invariant under graph isomorphisms.

In this paper we initiate the study of exact learnability of graph parameters with values
in R, which is assumed to be either Z,Q or R. As this question seems new, we focus here
on the special case of graph parameters given as partition functions, [10, 14]. We adapt
the model of exact learning introduced by D. Angluin [1]. Our research extends the work
of [3, 11], where exact learnability of languages (set of words or labeled trees) recognizable
by multiplicity automata (aka weighted automata) was studied, to graph parameters with
values in R.
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1.1 Exact learning

In each step, the learner may make membership queries value(x) in which they ask for the
value of the target f on specific input x. This is the analogue of the membership queries
used in the original model of exact learning, [2]. The learner may also propose a hypothesis
h by sending an equivalent(h) query to the teacher. If the hypothesis is correct, the
teacher returns “YES” and if it is incorrect, the teacher returns a counterexample. A class of
functions is exactly learnable if there is a learner that for each target function f , outputs a
hypothesis h such that f(x) = h(x) for all x and does so in time polynomial in the size of a
shortest representation of f and the size of a largest counterexample returned by the teacher.

1.2 Formulating a hypothesis

To make sense one has to specify the formalism (language) L in which a hypothesis has to
be formulated. It will be obvious in the sequel, that the restriction imposed by the choice of
L will determine whether f is learnable or not.

Let us look at the seemingly simpler case of learning integer functions f : Z → Z or
integer valued functions of words w ∈ Σ? over an alphabet in Σ.
(i) If f can be any function f : Z → Z or f : Σ? → Z, there are uncountably many

candidate functions as hypotheses, and no finitary formalism L is suitable to formulate
a hypothesis.

(ii) If f is known to be a polynomial p(X) =
∑

i aiX
i ∈ Z[X], we can formulate the

hypothesis as a vector a = (a1, . . . , am) in Zm. Learning is successful if the learner finds
the hypothesis h = a in the required time. Here Lagrange interpolation will be used to
formulate the hypotheses.

(iii) If f is known to satisfy some recurrence relation, the hypothesis will consist of the
coefficients and the length of the recurrence relation, and exact learnability will depend
on the class of recurrence relations one has in mind.

(iv) If f : Σ? → Z is a word function recognizable by a multiplicity automaton MA, the
hypotheses are given by the weighted transition tables of MA, cf. [3].
Looking now at a graph parameter f : G → R what can we expect? Again we have to

restrict our treatment to a class of parameters where each member can be described by a
finite string in a formalism L.

We illustrate the varying difficulty of the learning problem with the example of the
chromatic polynomial χ(G;X ∈ N[X]) for a graph G. For X = k, the evaluation of χ(G; k)
counts the number of proper colorings of G with at most k colors. It is well known that for
fixed G, χ(G; k) is indeed a polynomial in k, [4, 7]. A graph parameter f is a chromatic
invariant over R if
(i) it is multiplicative, i.e., for the disjoint union G1 t G2 of G1 and G2, it holds that

f(G1 tG2) = f(G1) · f(G2), and
(ii) there are α, β, γ ∈ R such that f(G) = α · f(G−e) + β · f(G/e) and f(K1) = γ.
Kn denotes the complete graph on n vertices, and G−e and G/e are, respectively, the graphs
obtained from deleting the edge e from G and contracting e in G.

The parameter χ(G; k) is a chromatic invariant with α = 1, β = −1 and γ = k. Finally,
χ(G; k) has an interpretation by counting homomorphisms:

χ(G;m) =
∑

t:G→Km

1,
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Figure 1 The weighted graph Hindep.

This is a special case of the homomorphism counting function for a fixed graph H:

hom(G,H) =
∑

t:G→H

1,

where t is a homomorphism t : G→ H.
Now, let a graph parameter f : G → R be the target of a learning algorithm.

(i) If f is known to be an instance of χ(G;X), a hypothesis consists of a value X = a. But
in this case we know that χ(K1;X) = X, so it suffices to ask for f(K1) = a.

(ii) If f is known to be a chromatic invariant, the hypothesis consists of the triple (α, β, γ).
In this case a hypothesis can be computed from the values of f(Pm) for undirected paths
Pm for sufficiently many values of m.

(iii) If f is known to be an instance of hom(−, H), a hypothesis would consist of a target
graph H.

1.3 Counting weighted homomorphisms aka partition functions
A weighted graph H(α, β) is a graph H = (V (H), E(H)) on n = |V (H)| vertices together
with a vertex weight function α : V (H)→ R, viewed as a vector of length n, and an edge
weights function β : V (H)2 → R viewed as an n×n matrix, with β(u, v) = 0 if (u, v) 6∈ E(H).

A partition function1 hom(−, H(α, β)) is the generalization of hom(−, H) to weighted
graphs, whose value on a graph G is defined as follows:

hom(G,H(α, β)) =
∑

t:G→H

∏
v∈V (G)

α(t(v))
∏

(u,v)∈V (G)2

β(t(u), t(v))

To illustrate the notion of a partition function, let Hindep be the graph with two vertices
{u, v} and the edges {(u, v), (u, u)}, shown in Figure 1. Let α(u) = 1, α(v) = X and
β(u, v) = 1, β(u, u) = 1. Then hom(−, Hindep(α, β)) is the independence polynomial,

hom(G,Hindep(α, β)) = I(G;X) =
∑

j

indj(G)Xj

where indj(G) is the number of independent sets of size j in the graph G.
We say a partition function hom(−, H(α, β)) is rigid aka asymmetric 2, if H has no

proper automorphisms. Note that automorphisms in a weighted graph also respect vertex
and edge weights. In our examples above, the evaluations of the independence polynomial
are rigid partition functions, whereas the evaluations of the chromatic polynomial are not. It
is known that almost all graphs are rigid:

1 In the literature hom(−, H(α, β)) is also denoted by ZH(α,β)(G), e.g., in [19]. We follow the notation
of [14].

2 Some authors say G is asymmetric if G has no proper automorphisms, and G is rigid if G has no proper
endomorphisms, [12]. Wikipedia uses rigid as we use it here.
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Algorithm 1 Learning algorithm for rigid partition functions
1: n = 1
2: while True do
3: augment M with(Bn)
4: P = find basis(M)
5: h = generate hypothesis(P )
6: if equivalent(h) = YES then
7: return h

8: else
9: n = n+ 1

10: Bn = equivalent(h) . Bn receives a counterexample
11: end if
12: end while

I Theorem 1 ([9, 12]). Let G be a uniformly selected graph on n vertices. The probability
that G is rigid tends to 1 as n→∞.

If the target f is known to be a (rigid) partition function hom(−, H(α, β)) then the
hypothesis consists of a (rigid) weighted graph H(α, β).

In Section 2 we give the characterization of rigid and non-rigid partition functions from
[10, 15, 14] in terms of connection matrices.

For technical reasons discussed in Section 5, in this paper we deal only with the learnability
of rigid partition functions, and leave the general case to future work.

1.4 Main result
Our main result can now be stated:

I Theorem 2. Let f be a graph parameter which is known to be a rigid partition function
f(G) = hom(G,H(α, β)). Then f can be learned in time polynomial in the size of H and the
size of the largest counterexample in the Blum-Shub-Smale model of computation over the
reals with unit cost.

I Remark 3. If f takes values in Q rather than in R we can also work in the Turing model
of computation with logarithmic cost for the elements in Q.

To prove Theorem 2 we will use the characterization of rigid partition functions in terms
of connection matrices, [14, Theorem 5.54], stated as Theorem 4 and Corollary 6 in Section 2.
The difficulty of our result lies not in finding a learning algorithm by carefully manipulating
the counterexamples to meet the complexity constraints, but in proving the algorithm correct.
In order to do this we had to identify and extract the suitable algebraic properties underlying
the proof of Theorem 4 and Corollary 6.

The learning algorithm is given in pseudo-code as Algorithm 1. It maintains a matrix
M used in the generation of the hypothesis h from value and equivalent query results.
After an initial setup of M , in each iteration the algorithm generates a hypothesis h, queries
the teacher for equivalence between h and the target and either terminates, or updates M
accordingly and moves on to the next iteration.

It uses three black-boxes; find basis which uses M to find a certain basis P of a graph
algebra associated with the target function (see Section 2), generate hypothesis which uses
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this basis and value queries to construct a hypothesis h, and augment M which augments
the matrix M after a counterexample is received, using value queries.

We briefly overview the complexity of the algorithm to illustrate that rigid partition
functions are indeed exactly learnable. Proofs of validity and detailed analysis of the
complexity are given in later sections. For a target H(α, β) on q vertices, the procedure
find basis solves O(q) systems of linear equations, and systems of linear matrix equations, all
of dimension O(poly(q)). The procedure generate hypothesis performs O(q) graph operations
of polynomial time complexity on graphs of size O(poly(q, |x|)), where |x| is the size of the
largest counterexample, and O(q2) value queries. The procedure augment M performs O(q)
value queries. Thus, each iteration takes time O(poly(q, |x|)). Lemma 18 will show that
there are O(q) iterations, so the total run time of the algorithm is polynomial in the size q of
H(α, β) and the size |x| of the largest counterexample.

Organization

In Section 2 we give the necessary background on partition functions and the graph algebras
induced by them. Section 3 presents the algorithm in detail and in Section 4 we prove its
validity and analyze its time complexity. We discuss the results and future work in Section 5.
Due to space limitations, the appendix is included in the arXiv version, [13].

2 Preliminaries

Let k ∈ N. A k-labeled graph G is a finite graph in which k vertices, or less, are labeled with
labels from [k] = {1, . . . , k}. We denote the class of k-labeled graphs by Gk. The k-connection
of two k-labeled graphs G1, G2 ∈ Gk is given by taking the disjoint union of G1 and G2 and
identifying vertices with the same label. This produces a k-labeled graph G = G1G2. Note
that k-connections are commutative.

2.1 Quantum graphs
A formal linear combination of a finite number of k-labeled graphs Fi ∈ Gk with coefficients
from R is called a k-labeled quantum graph. Qk denotes the set of k-labeled quantum graphs.

Let x, y be k-labeled quantum graphs: x =
∑n

i=1 aiFi, and y =
∑n

i=1 biFi. Note that
some of the coefficients may be zero. Qk is an infinite dimensional vector space, with the
operations: x+y = (

∑n
i=1 aiFi) + (

∑n
i=1 biFi) =

∑n
i=1 (ai + bi)Fi, and α ·x =

∑n
i=1 (αai)Fi.

k-connections extend to k-labeled quantum graphs by xy =
∑n

i,j=1(aibj)(FiFj). Any
graph parameter f extends to k-labeled quantum graphs linearly: f(x) =

∑n
i=1 aif(Fi).

2.2 Equivalence relations for quantum graphs
The k-connection matrix C(f, k) of a graph parameter f : G → R is a bi-infinite matrix
over R whose rows and columns are labeled with k-labeled graphs, and its entry at the row
labeled with G1 and the column labeled with G2 contains the value of f on G1G2:

C(f, k)G1,G2 = f(G1G2).

Given a connection matrix C(f, k), we associate with a k-labeled graph G ∈ Gk the (infinite)
row vector Rk

G appearing in the row labeled by G in C(f, k). If k is clear from context we
write RG. Similarly, we associate an infinite row vector Rx with k-labeled quantum graphs

MFCS 2016
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x =
∑n

i=1 aiFi, defined as Rx =
∑n

i=1 aiRFi where RFi is the row in C(f, k) labeled by the
k-labeled graph Fi.

We say C(f, k) has finite rank if there are finitely many k-labeled graphs BC(f,k) =
{B1, . . . , Bn} whose rows RC(f,k) = {RB1 , . . . , RBn} linearly span C(f, k). Meaning, for any
k-labeled graph G, there exists a linear combination of the rows in RC(f,k) which equals the
row vector RG. We say that C(f, k) has rank n and denote r(f, k) = n if any set of less than
n graphs does not linearly span C(f, k).

The main result we use is the characterization of partition functions in terms of connection
matrices. We do not need its complete power, so we state the relevant part:

I Theorem 4 (Freedman, Lovász, Schrijver, [10]). Let f be a graph parameter that is equal to
hom(−, H(α, β)) for some H(α, β) on q vertices. Then r(f, k) ≤ qk for all k ≥ 0.

The exact rank r(f, k) was characterized in [15], but first we need some definitions. A
weighted graph H(α, β) is said to be twin-free if β does not contain two separate rows
that are identical to each other 3. Let H(α, β) be a weighted graph on q vertices, and let
Aut(H(α, β)) be the automorphism group of H(α, β). Aut(H(α, β)) acts on ordered k-tuples
of vertices [q]k = {φ : [k] → [q]} by (σ ◦ φ)(i) = σ(φ(i)) for σ ∈ Aut(H(α, β)). The orbit
of φ is the set of ordered k-tuples ψ of vertices such that σ ◦ φ = ψ for an automorphism
σ ∈ Aut(H(α, β)). The number of orbits of Aut(H(α, β)) on [q]k is the number of different
orbits for elements φ ∈ [q]k.

I Theorem 5 (Lovász, [15]). Let f = hom(−, H(α, β)) for a twin-free weighted graph H(α, β)
on q vertices. Then r(f, k) is equal to the number of orbits of Aut(H(α, β)) on [q]k for all
k ≥ 0.

We use the special case:

I Corollary 6. Let f = hom(−, H(α, β)) for a rigid twin-free weighted graph H(α, β) on q
vertices. Then r(f, k) = qk for all k ≥ 0.

We define an equivalence relation ≡f,k over Qk where two k-labeled quantum graphs x
and y are in the same equivalence class if and only if the infinite vectors Rx and Ry are
identical: x ≡f,k y ⇐⇒ Rk

x = Rk
y . Note that the set Qk/f of equivalence classes of ≡f,k is

exactly the vector space span(C(f, k)) generated by linear combinations of rows in C(f, k).
k-connections extend to these vectors by: RxRy = Rxy.

Thus, if r(f, k) = n with spanning rows RC(f,k) = {RB1 , . . . , RBn}, they form a basis of
Qk/f = span(C(f, k)). For brevity, we occasionally also refer to BC(f,k) as a basis.

Let x be a k-labeled quantum graph whose equivalence class Rx is given as the linear
combination Rx =

∑n
i=1 γiRBi

. We call the column vector c̄x = (γ1, . . . , γn)T the coefficients
vector of x, or representation of x using BC(f,k).

3 The learning algorithm in detail

In this section we present the learning algorithm in full detail. The commentary in this
exposition foreshadows the arguments in Section 4, but otherwise validity is not considered
here. We do not address complexity concerns in this section either, however, we reiterate

3 If H(α, β) has twin vertices, they can be merged into one vertex by adding their vertex weights without
changing the partition function. As the size of the target representation is the smallest possible, we
assume all targets are twin-free.
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for the sake of clarity that the algorithm runs on a Blum-Shub-Smale machine, [6, 5], over
the reals. In such a machine, real numbers are treated as atomic objects; they are stored in
single cells, and arithmetic operations are performed on them in a single step.

The objects the algorithm primarily works with are real matrices. In a context containing
a basis BC(f,k), we associate a real matrix Ax with each quantum graph x such that the
following holds.

The coefficients vector c̄xy of xy using BC(f,k) is given by Axc̄y . (*)

This device, as we will see in Section 4, will allow the algorithm to search for, and find,
special quantum graphs that provide a translation of the answers of value and equivalent
queries into a hypothesis.

As mentioned earlier, Algorithm 1 maintains a matrix M which is a submatrix of C(f, 1).
In each iteration the algorithm generates a hypothesis h = (α(h), β(h)) using M , and queries
the teacher for equivalence between h and the target f . If the hypothesis is correct, the
algorithm returns h, otherwise it augments M with a 1-labeled version of the counterexample,
and moves on to the next iteration.

I Remark 7. Strictly speaking, the teacher may be asked value queries on (unlabeled) graphs,
however, we freely write value(G) for k-labeled graphs G ∈ Gk. Additionally, the algorithm
will need to know the value of the target on some quantum graphs. Since any graph parameter
extend to quantum graphs linearly, for a quantum graph x =

∑n
i=1 aiFi we write value(x)

as shorthand for
∑n

i=1 ai · value(Fi) throughout the presentation.

Incorporating counterexamples

The objective is to keep a non-singular submatrix M of C(f, 1). The first 1-labeled graph B1
with which M is augmented is some arbitrarily chosen 1-labeled graph.

Upon receiving a Bn graph as counterexample, the 1-label is arbitrarily assigned to one
of its vertices, making it a 1-labeled graph. Then augment M with(Bn) adds a row and a
column to M labeled with the (now) 1-labeled graph Bn, and fills their entries with the
values f(BnBi) = f(BiBn), for i ∈ [n], using value queries.

The other functions are slightly more complex.

Finding an idempotent basis

The function find basis, given in pseudo-code as Algorithm 2, receives as input the matrix
M . For reasons which will become apparent later, we are interested in finding a certain
(idempotent) basis of the linear space generated by the rows of C(f, 1). For this purpose,
in its first part find basis iteratively, over k = 1, . . . , n, computes the entries of matrices Ax

as in (*), where x are Bi, i ∈ [n], by solving multiple systems Mx = b of linear equations,
and using the solutions Γ of those systems to fill the entries of the matrices ABi

, where the
(k, j) entry of ABi is γij(k). Let pi, i ∈ [n] be those quantum graphs for which Api is the
n× n matrix with the value 1 in the entry (i, i) and zero in all other entries. Note that the
matrices Api , i ∈ [n] are linearly independent. We will see that pi, i ∈ [n] are the idempotent
basis, now we wish to find their representation using Bi, i ∈ [n].

For i ∈ [n], the representation c̄pi
of the basic idempotent pi using the basis elements

Bi, i ∈ [n] is found by solving a system AX = Api
of linear matrix equations, where A is a

block matrix whose blocks are the matrices ABi
, i ∈ [n]. Each solution is added to ∆.

Finally, find basis outputs the set ∆ of these representations c̄pi , i ∈ [n]. Then we have
that Rpi

=
∑n

k=1 c̄pi
(k)RBk

where c̄pi
is the coefficients vector of pi using Bi, i ∈ [n]. The

MFCS 2016
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Algorithm 2 find basis function
1: Γ = ∅
2: for each i, j ∈ [n] do
3: for k = 1, . . . , n do
4: b(k) = value(BiBjBk)
5: end for
6: γij = solve linear system(Mx = b)
7: Γ = Γ ∪ {γij}
8: end for
9: for i ∈ [n] do

10: ABi
= fill matrix(i,Γ)

11: A = add block(A, i, ABi
) . A is a block matrix with ABi

on its ith block
12: end for
13: ∆ = ∅
14: for i ∈ [n] do
15: c̄pi

= solve linear matrix system(AX = Api
)

16: ∆ = ∆ ∪ {c̄pi
}

17: end for
18: return ∆

representations c̄pi
∈ ∆ of the elements pi, i ∈ [n], are what will provide a translation from

results of value queries to weights.

Generating a hypothesis

The function generate hypothesis, given in pseudo-code as Algorithm 3, receives as input the
representations c̄pi

of the 1-labeled quantum graphs pi, i ∈ [n], which it uses to find the
entries of the vertex weights vector α(h) directly through value queries.

Then generate hypothesis finds the 2-labeled analogues of these 1-labeled quantum graphs.
Those 2-labeled analogues form a basis of of Q2/f .

Denote by K2 the 2-labeled graph composed of a single edge with both vertices labeled.
Next, generate hypothesis finds the representation of R2

K2
, that is the row labeled with K2 in

C(f, 2), using the basis RC(f,2). We find the representation of this specific graph K2 as the
coefficients in c̄K2 constitute the entries of the edge weights matrix β(h) (see Section 4).

This representation is found by solving a linear system of equations, similarly to how
find basis uses solve linear system, but here we use the diagonal matrix N whose entries
correspond to the elements of BC(f,2).

The solution of said system, i.e., the coefficients vector c̄K2 of K2, is used to fill the edge
weights matrix β(h). If needed, β(h) is made twin-free by contracting the twin vertices into
one and summing their weights in α(h).

Finally, generate hypothesis returns the hypothesis h = (α(h), β(h)) as output.

I Remark 8 (Algorithm 3). Let qi be the 1-labeled quantum graph pi interpreted as a 2-labeled
quantum graph, and let qj be pj with the labels of its components renamed to 2, and also
interpreted as a 2-labeled quantum graph. The result of pi⊗ pj is the 2-labeled quantum graph
qi t2 qj.
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Algorithm 3 generate hypothesis function
1: for each i ∈ [n] do
2: α(h)(i) = value(pi)
3: end for
4: N = 0n2×n2

. N is a zero matrix of dimensions n2 × n2.
5: for i = 1, . . . , n do
6: for j = 1, . . . , n do
7: pij = pi ⊗ pj . See Remark 8.
8: Npij ,pij

= value(pijpij)
9: b(ij) = value(K2 pij)

10: end for
11: end for
12: β(h) = solve linear system(Nx = b)
13: make twin-free(α(h), β(h))
14: h = (α(h), β(h))
15: return h

4 Validity and complexity

As stated earlier, a class of functions is exactly learnable if there is a learner that for each
target function f , outputs a hypothesis h such that f and h identify on all inputs, and does
so in time polynomial in the size of a shortest representation of f and the size of a largest
counterexample returned by the teacher. The proof of Theorem 2 argues that Algorithm 1 is
such a learner for the class of rigid partition functions, through Theorem 9, which proves
validity, and Theorem 22, which proves the complexity constraints are met.

To prove validity, we first state existing results on properties of graph algebras induced
by partition functions, then show, through somewhat technical algebraic manipulations, how
our algorithm successfully exploits these properties to generate hypotheses. We then show
our algorithm eventually terminates with a correct hypothesis.

For the rest of the section, let H(α, β) be a rigid twin-free weighted graph on q vertices,
and denote f = hom(−, H(α, β)).

I Theorem 9. Given access to a teacher for f , Algorithm 1 outputs a hypothesis h such that
f(G) = h(G) for all graphs G ∈ G.

The proof of the theorem follows from arguing that:

I Theorem 10. If M is of rank q, then generate hypothesis outputs a correct hypothesis.

and that the rank of M is incremented with every counterexample:

I Theorem 11. In the nth iteration of Algorithm 1 on f , M has rank n.

First we confirm the hypotheses Algorithm 1 generates are indeed in the class of graph
parameters we are trying to learn, namely, rigid partition functions hom(−, H(α, β)) for
twin-free weighted graphs H(α, β).

Given Theorem 11, for the hypothesis h returned in the nth iteration, the rank of C(h, 1)
is at least n, since M is a submatrix of C(h, 1). Thus, from Theorem 5, h cannot have proper
automorphisms, as it would imply that the rank of C(h, 1) < n. The fact that h is twin-free
is immediate from the construction in generate hypothesis.

MFCS 2016
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4.1 From the idempotent bases to the weights – proof of Theorem 10
Let Qk/f be of finite dimension n. The idempotent basis p1, . . . , pn of Qk/f consists of those
k-labeled quantum graphs pi for which pipi ≡f,k pi and pipj ≡f,k 0 for i, j ∈ [n], i 6= j.
Recall how find basis found those 1-labeled quantum graphs pi, i ∈ [n] whose matrices Api

behaved in this way.
In our setting of rigid twin-free weighted graphs, by [14, Chapter 6], we have that if

p1, . . . , pq are the idempotent basis of Q1/f , then the idempotent basis of Q2/f is given
by pi ⊗ pj , i, j ∈ [q]. These are the 2-labeled analogues mentioned in the description of
generate hypothesis.

Furthermore by [14, Chapter 6], the vertex weights α of H are given by α(i) = f(pi),
i ∈ [q], and if the representation of K2 using pi ⊗ pj , i, j ∈ [q] is

∑
i,j∈[q] βij(pi ⊗ pj), then

the edge weights matrix β is given by βi,j = βij .
Equipped with these useful facts, we show that:

I Lemma 12. If M is of rank q, then find basis outputs the idempotent basis of Q1/f .

Then obtain Theorem 10 by showing how, if generate hypothesis receives the idempotent
basis of Q1/f as input, it outputs a correct hypothesis.

Finding the idempotent basis – proof of Lemma 12

Recall that in the presence of a basis BC(f,k) we associate a real matrix Ax with each quantum
graph x such that the following holds.

The coefficients vector c̄xy of xy using BC(f,k) is given by Axc̄y.

For reasons we cannot list here, Ax will be diagonal. Let Bi, Bj ∈ BC(f,1), and denote
by

∑n
k=1 γ

i,j
k RBk

the representation of the row RBiBj
using RC(f,1), i.e., the row in C(f, 1)

labeled with the graph resulting from the product BiBj .

I Claim 13. Let x be some 1-labeled quantum graph such that Rx =
∑n

i=1 aiRBi
. The matrix

Ax is given by (Ax)`,m =
∑n

i=1 aiγ
im
` .

Note that for a basis graph Bk ∈ BC(f,1), we have that (ABk
)i,j = γk,j

i . The proof of this
claim appears in the appendix of [13].

I Proposition 14. The matrices AB1 , . . . , ABn
of the graphs in BC(f,1) are linearly inde-

pendent and span all matrices of the form Ax for a quantum graph x.

If we know what are the matrices Ap1 , . . . , Apn of the idempotent basis p1, . . . , pn, we can
find their representation using AB1 , . . . , ABn

by solving systems of linear matrix equations.
Then, given a representation Api =

∑n
k=1 δ

(i)
k ABk

, we will have the representation of the
basic idempotents using BC(f,1) as pi =

∑n
k=1 δ

(i)
k Bk.

The definitions of Ax and idempotence lead to the observation that for idempotent basics
pi, pj , it holds that Api

Api
= Api

and Api
Apj

= 0. From Corollary 6 we know the dimension
of Q1/f is q, so we conclude:

I Proposition 15. The idempotent basis for Q1/f consists of the quantum graphs pi, i ∈ [q]
for which Api

is the q × q matrix with the value 1 in the entry (i, i) and zero in all other
entries. That is,

Api(k, j) =
{

1, if (k, j) = (i, i)
0, otherwise
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As find basis solves the systems of linear matrix equations for these matrices, it remains
to show that find basis correctly computes the matrices ABi

, i ∈ [q].
Since M is of full rank, the representations

∑n
k=1 γ

i,j
k RBk

of graphs BiBj , i, j ∈ [q] using
BC(f,1) are correctly computed by the solve linear system calls. And as noted before, the
coefficients γi,j

k are the entries of the matrices ABi
, i ∈ [q]. Thus they indeed are correctly

computed, and we have Lemma 12.
Since generate hypothesis directly queries the teacher for the values of α(h), we have:

I Corollary 16. If M is of rank q, then generate hypothesis outputs a correct vertex weights
vector α(h).

It remains to show this is true also for the edge weights:

I Proposition 17. If M is of rank q, then generate hypothesis outputs a correct edge weights
matrix β(h).

Proof. As pij = pi⊗pj , i, j ∈ [q] are the idempotent basis for Q2/f we have that pijpij 6≡f,2 0,
so the matrix N is a diagonal matrix of full rank, and solve linear system indeed finds the
representation of K2 using pij , i, j ∈ [q]. J

From Corollary 16 and Proposition 17 we have Theorem 10.
Now we show that Algorithm 1 reaches that point in the first place.

4.2 Augmentation results in larger rank – proof of Theorem 11
Theorem 11 is proved using the fact that Ax are linearly independent for k-labeled quantum
graphs which are not equivalent in ≡f,k.

I Lemma 18. In the nth iteration of Algorithm 1, if the teacher returns a counterexample x,
then Rx is not spanned by RB1 , . . . , RBn

where B1, . . . , Bn are the graphs associated with the
rows and columns of M .

Proof. If n = 1, M has rank n. Now let M have rank n.
For contradiction, assume that Rx =

∑n
i=1 aiRBi

. Then x ≡f,1
∑n

i=1 aiBi and we have
that hom(x,H) =

∑n
i=1 aihom(Bi, H) for the target graph H. Denote by h(n) the hypothesis

generated in this iteration. If x is a counterexample, it must hold that

hom(x, h(n)) 6= hom(x,H) =
n∑

i=1
aihom(Bi, H)

The solution of the system of equations for bx would give

hom(x, h(n)) =
n∑

i=1
aihom(Bi, h

(n)) =
n∑

i=1
aihom(Bi, H)

So we conclude that
∑n

i=1 aihom(Bi, h
(n)) 6=

∑n
i=1 aihom(Bi, H).

Since M is of full rank, one can solve a system of linear equations using M for bx defined
as bx(k) = value(xBk), k ∈ [n]. Now recall that the matrix M contains correct values
hom(BiBj , H(α, β)), as it was augmented using value queries, therefore M is a submatrix
of C(f, 1). Thus the coefficients of the solution a of Ma = bx equal ai, i ∈ [k], and we
reach a contradiction. Therefore we conclude x 6≡f,1

∑n
i=1 aiBi and its row Rx is linearly

independent from RB1 , . . . , RBn
. J
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This also implies that the matrix Ax associated with x is not spanned by AB1 , . . . , ABn .
Therefore the submatrix of C(f, 1) composed of the entries of the rows and columns of
B1, . . . , Bn, x is of full rank n+ 1. This is exactly the matrix M augmented with x, and we
have Theorem 11. Combining this with Corollary 6, we have:

I Corollary 19. Let f be a rigid partition function of a twin-free weighted graph on q vertices.
Then Algorithm 1 terminates in q iterations.

4.3 Complexity analysis
As the algorithm runs on a Blum-Shub-Smale machine for the reals and mostly solves systems
of linear equations, it is not difficult to show that it runs in time polynomial in the size of
target and the largest counterexample. First we observe:

I Proposition 20. Let G1, G2 ∈ G1. Then G1G2 can be computed in time O(poly(|G1|, |G2|)).

I Remark 21. B1 is of fixed size, and all other Bi, i = 2, . . . , n, used in Algorithm 1 are
counterexamples provided by the teacher, therefore they are all of size polynomial in the size
|x| of the graph x.

I Theorem 22. Let H(α, β) be a rigid twin-free weighted graph on q vertices and denote
f = hom(−, H(α, β)). Given access to a teacher for f , Algorithm 1 terminates in time
O(poly(q, |x|)), where |x| is the size of the largest counterexample provided by the teacher.

Proof. From Corollary 19 it is enough to show that each iteration of Algorithm 1 does not
take too long (Lemma 23). J

I Lemma 23 ([13]). In the nth iteration of Algorithm 1, augment M , find basis, and
generate hypothesis all run in time O(poly(n, |x|)).

I Remark. We note that, from [14, Theorem 6.45], the counterexamples provided by the
teacher may be chosen to be of size at most 2(1 + q2)q6 where q is the size of the target
weighted graph.

5 Conclusion and future work

This paper presented an adaptation of the exact model of learning of Angluin, [1], to the
context of graph parameters f representable as partition functions of weighted graphs H(α, β).
We presented an exact learning algorithm for the class of rigid partition functions defined by
twin-free H(α, β).

If a weighted graph has proper automorphisms, its connection matrices C(f, k) may have
rank smaller than qk. In this case, the translation from query results to a weighted graph
would involve the construction of a submatrix of C(f, k) for a sufficiently large k, and then
find an idempotent basis for Qk+1/f . We will study the learnability of non-rigid partition
functions in a sequel to this paper.

Theorems similar to Theorem 4 have been proved for variants of partition functions and
connection matrices, [16, 8, 17, 18]. It seems reasonable to us that similar exact learning
algorithms exist for these settings, but it is unclear how to modify our proofs here for this
purpose.
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