
Symbolic Lookaheads for Bottom-Up Parsing
Paola Quaglia

University of Trento, Italy
paola.quaglia@unitn.it

Abstract
We present algorithms for the construction of LALR(1) parsing tables, and of LR(1) parsing tables
of reduced size. We first define specialized characteristic automata whose states are parametric
w.r.t. variables symbolically representing lookahead-sets. The propagation flow of lookaheads
is kept in the form of a system of recursive equations, which is resolved to obtain the concrete
LALR(1) table. By inspection of the LALR(1) automaton and of its lookahead propagation flow,
we decide whether the grammar is LR(1) or not. In the positive case, an LR(1) parsing table of
reduced size is computed by refinement of the LALR(1) table.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems, F.4.3 Formal
Languages

Keywords and phrases LALR(1) grammars, LR(1) grammars, Bottom-up parsing

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.79

1 Introduction

Various classes of grammars can be parsed bottom-up by applying the same shift/reduce
algorithm driven by different parsing tables (e.g., SLR(1) [4], LALR(1) [3], LR(1) [2]). Parsing
tables are defined on top of deterministic finite state characteristic automata whose size is
crucial to the applied parsing technique: the finer the information encoded by automata, the
larger the class of parsed grammars, and the bigger the size of parsing tables.

LR(1)-automata are the richer structures in LR(1) parsing. The number of states of
these automata has the striking upper bound O(2n(t+1)) in the size of the grammar and
in the number of terminal symbols (n and t, resp.) [12]. LALR(1) grammars have been
defined as a technical compromise between the abundance of syntactic constructs of the
generated languages and the size of the associated parsing tables. All the states of the
LR(1)-automaton sharing the same LR(0) projection are collapsed into a single state of the
LALR(1)-automaton. So, the size of LALR(1) parsing tables is much smaller than that of
the corresponding LR(1) tables, and definitely tractable, as widespread parser generators
clearly show [9, 2, 6]. At the same time, though, either debugging an LALR(1) grammar or
choosing the appropriate directives for resolving conflicts is made harder by the fact that
the user is compelled to reason about the propagation of LR(1) lookaheads modulo the –
technical, and not necessarily intuitive - merging of LR(1)-states.

In this setting, and especially for large automata, it can be beneficial having some
sort of explicit representation of the lookahead propagation flow among the states of the
underlying automaton. We work towards this direction and propose a technique for the
construction of LALR(1)-automata which provides a compact encoding of the propagation of
lookaheads from one state to the other. The approach is based on the definition of symbolic
characteristic automata that use items with two components: an LR(0)-item, and a symbolic
lookahead-set. When a new state P is added to the automaton, each kernel LR(0)-item is
associated with a variable that is propagated to the closure items of P . All the contributions

© Paola Quaglia;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 79; pp. 79:1–79:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.79
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

79:2 Symbolic Lookaheads for Bottom-Up Parsing

to the lookahead-sets of the items in P are recorded by equations over the variables owned
by the kernel items of the state. The propagation flow of lookaheads is embedded by defining
equations for variables. For instance, a plausible equation for the variable x can look like
x

.= {b, x′}, meaning that x can take the value b and all the values that x′ can take. To
disclose the actual values of lookahead-sets, we resolve the system of equations. We reduce
this problem to a reachability problem on the dependency graph of a propagation relation
over equivalence classes of variables.

Once symbolic lookahead-sets are instantiated to ground elements, we construct the
LALR(1) parsing table for the given grammar. We prove that the algorithm for the LALR(1)
construction is correct. The proof of the assertion is based on two auxiliary results. One
of them is the symbolic correspondence between the proposed automata and the merged
LR(1)-automata used in the simplest algorithm for the construction of LALR(1) parsing
tables. The other intermediate result is the correctness of the actualization of lookahead-sets.

Further, we describe an algorithm for the construction of LR(1) parsing tables. Such
an algorithm is itself an example of use of the explicit representation of the lookahead
propagation in LALR(1)-automata. The table for the larger class is obtained by refining
the LALR(1) table. We look after reduce/reduce conflicts of the LALR(1) table and check
whether they can be eliminated by unrolling the relevant LALR(1) mergings of states. This
by-need strategy has the further benefit of providing opportunities for the early detection
that the grammar at hand is not LR(1).

The rest of the paper is organized as follows. Basic definitions and conventions are intro-
duced in Sec. 2. Sec. 3 presents symbolic automata, and their properties. The construction
of LALR(1) parsing tables is the subject of Sec. 4, and the algorithm for the construction of
LR(1) parsing tables is sketched in Sec. 5. Sec. 6 concludes this extended abstract.

2 Preliminaries

In this section we will introduce the basic definitions and the conventions which will be used
in this manuscript. Some familiarity with the theory of LR(1)-parsing is assumed.

A context-free grammar is a tuple G = (V, T, S,P) whose elements represent, respectively,
the vocabulary, the set of terminal symbols in the vocabulary, the start symbol, and the set
of productions. Productions are written A→ β where A ∈ V \ T , and β ∈ V ∗. The reflexive
and transitive closure of the one-step rightmost derivation relation is denoted by ‘⇒∗’.

We assume that grammars are reduced, and the following notational conventions are
adopted. Members of V are denoted by Y, Y0, . . .; members of V ∗ by α, β, . . .; members of
(V \ T) by A,B, . . .; members of T by a, b, . . .; and members of T ∗ by w,w0, The empty
string is denoted by ε. For every α ∈ V ∗, first(α) denotes the set of terminals that begin
strings w such that α⇒∗ w. Moreover, if α⇒∗ ε then ε ∈ first(α).

Given any context-free grammar G, parsing is applied to strings followed by the endmarker
symbol $ /∈ V . Also, the parsing table refers to an augmented version of G, denoted by
G′ = (V ′, T, S′,P ′) where, for a fresh symbol S′, V ′ = V ∪ {S′}, and P ′ = P ∪ {S′ → S}.
An LR(0)-item of G′ is a production of G′ with the marker “·” at some position of its body.
An LR(1)-item of G′ is a pair consisting of an LR(0)-item of G′ and of a symbol in the set
T ∪ {$}. The LR(0)-item A→ α · β is called kernel item if either α 6= ε or A = S′, closure
item if it is not kernel, reducing item if β = ε, and bypassing item if it is not reducing. The
same terminology is naturally extended to the LR(1)-items with first projection A→ α · β.
For a set L of LR(1)-items, prj(L) is the set of LR(0)-items occurring as first components of
the elements of L, and kernel(L) is the set of the kernel items of L.

P. Quaglia 79:3

We will call LR(0)-automata, and LR(1)-automata respectively, the characteristic auto-
mata constructed by collecting sets of LR(0)-items, and sets of LR(1)-items respectively.
Also, we will call LRm(1)-automata the characteristic “merged” LR(1)-automata which are
at the basis of the simplest, although inefficient, algorithm for the construction of LALR(1)
parsing tables. We assume that LR(1)-automata and LRm(1)-automata are constructed
after the methodology fully detailed in [1] and in its previous editions.

Below, we will denote the above mentioned characteristic automata by tuples of the form
(Q, V, τ,Q0,F) where Q is the set of states, V the vocabulary, τ : (Q×V)→ Q the transition
function, Q0 ∈ Q the initial state, and F ⊆ Q the set of final states, i.e. of the states
containing at least one reducing item. In particular, we will use the tuple (Stl, V, τl, L0, Fl),
called Al for short, to stand for the LR(1)-automaton for G. The tuple (Stm, V, τm,M0, Fm),
named Am, will denote the LRm(1)-automaton for G.

Bottom-up parsing tables are filled in after an algorithm which is shared by various
techniques (SLR(k), LALR(k), etc.). Shift and goto moves are determined after the transition
function of the appropriate characteristic automaton. Further, the reducing items in the
final states of the automaton, and the lookahead-sets associated with them, are used to set
up reduce moves. By that, we will call parsing table the pair consisting of a characteristic
automaton and of the collection of lookahead-sets for the reducing items of its final states.

3 Symbolic characteristic automata

In this section we will present the construction of the symbolic characteristic automaton that
is central to further developments. In what follows, the prototypical LALR(1) grammar G1
with start symbol S1 and production set P1 = {S1 → L = R | R, L→ ∗R | id, R→ L} [2]
will be used as running example.

We let V be a set of symbols disjoint from V ′ ∪ {$}. Elements of V stand for variables
and are ranged over by x, x′, We use ∆,∆′, . . . ,Γ,Γ′, . . . to denote subsets of V∪T ∪{$}.
Also, we let ground(∆) = ∆∩ (T ∪{$}), and var(∆) = ∆∩ V. A symbolic item of G′ is a pair
of the shape [A→ α · β,∆], whose second component is called lookahed-set. Below, symbolic
items will be shortly called items when no confusion may arise. We assume the existence of a
function newVar() which returns a fresh symbol of V at any invocation. This assumption on
newVar() induces a strict total order over the generated variables, and we write x ≺ x′ if the
call to newVar() which returns x precedes the invocation of newVar() whose response is x′.

The definitions of kernel, closure, reducing, and bypassing items are extended to symbolic
items in the natural way. Also, functions prj(_) and kernel(_) are overloaded to be applied
to sets of symbolic items. Function first(_) is extended to arguments of the form β∆ as
follows:

first(β∆) =
{

first(β) if ε /∈ first(β)
(first(β) \ {ε}) ∪∆ otherwise.

The closure of a set of symbolic items P , written closure(P), is defined as the smallest set of
items, with smallest lookahead-sets, that satisfies the following equation:

closure(P) = P ∪ {[B → ·γ,Γ] such that
[A→ α ·Bβ,∆] ∈ closure(P) and B → γ ∈ P and first(β∆) ⊆ Γ}.

The symbolic characteristic automaton for G is a tuple (Sts, V, τs, P0, Fs, Vars, Eqs), that
we will shortly denote by As. The first five elements of the tuple represent the set of states,
the vocabulary, the transition function, the initial state, and the set of final states. Vars is a

MFCS 2016

79:4 Symbolic Lookaheads for Bottom-Up Parsing

set of variables, and Eqs is a queue of defining equations of the form x
.= ∆ for the variables

in Vars. When the actual ordering of the enqueued equations is irrelevant, we will interpret
Eqs just as a set.

x0 ←− newVar(); Vars←− {x0}; P0 ←− closure({[S′ → ·S, {x0}]});
initialize Eqs to contain the equation x0

.= {$}; initialize Sts to contain P0;
set P0 unmarked;
while there is some unmarked state in Sts do

foreach unmarked state P in Sts do
foreach grammar symbol Y do

tmp←− ∅;
foreach [A→ α · Y β,∆] in P do

add [A→ αY · β,∆] to tmp;
if tmp 6= ∅ then

if prj(tmp) = prj(kernel(Q)) for some Q in Sts then /* Refine */

foreach pair
([A→ αY · β,Γ] ∈ kernel(Q) , [A→ αY · β,∆] ∈ tmp) do

if β = ε then
update [A→ αY ·,Γ] to [A→ αY ·,Γ ∪∆] in kernel(Q);

else if Γ = {x} and (x .= ∆1) ∈ Eqs then
update (x .= ∆1) to (x .= ∆1 ∪∆) in Eqs;

τs(P, Y)←− Q;

else /* Generate */

foreach [A→ αY · β,∆] ∈ tmp such that β 6= ε do
x←− newVar();
Vars←− Vars ∪ {x};
enqueue (x .= ∆) into Eqs;
change [A→ αY · β,∆] into [A→ αY · β, {x}] in tmp;

τs(P, Y)←− closure(tmp);
add τs(P , Y) to Sts as an unmarked state;

mark state P ;

Algorithm 1: Construction of As for G = (V, T, S,P)

The algorithm for the construction of the symbolic characteristic automaton for G is
reported as Alg. 1. The collection of states is initialized to contain the initial state P0, which
is defined as the closure of {[S′ → ·S, {x0}]} where x0 is a fresh variable. Correspondingly,
Eqs is let to contain the equation x0

.= {$}. The generation of further states goes together
with the incremental definition of the transition function. For every state P already found,
and for all the grammar symbols Y such that some bypassing item [A→ α · Y β,∆] is in P ,
a temporary set tmp is computed. Such a set represents, in the LR(0) sense, the kernel of
τs(P, Y), and is used to check – irrespectively of lookahead-sets – whether the target state
for the Y -transition from P has already been collected or not.

If the wanted target τs(P, Y) has not been collected yet, then a new state, say P ′,
is created by closing up a set which is derived from tmp as follows. Reducing items of

P. Quaglia 79:5

tmp are left untouched. On the other hand, each bypassing item is given a lookahead-
set containing a fresh variable. Also, an equation for each such variable is installed in
Eqs to record the lookahead-set carried by tmp from the corresponding item of P . The
closure procedure is then applied to the modified instance of the kernel set tmp. This
ensures the possible propagation of variables, and hence of symbolic lookaheads, to the
closure items of P ′. As an example, when we start running the algorithm for G1, we get
[S1 → ·L = R, {x0}], [L→ · ∗R, {=, x0}] ∈ P0. By that, [S1 → L· = R, {x1}] ∈ τs(P0, L),
and [L→ ∗ ·R, {x2}] ∈ τs(P0, ∗), with Eqs provisionally containing the equations x0

.= {$},
x1

.= {x0}, and x2
.= {=, x0}.

Either the states already generated or the equations which have been installed for them can
still undergo refinements. This happens when the collected state P ′ is recognized, again in the
LR(0) sense, as the target of the Y -transition from yet another state, say P ′′. If this is the case,
then both the reducing kernel items of P ′ and the right-hand sides of the equations installed
for the kernel bypassing items of P ′ are treated as accumulators, to record the contributions
coming from the items in P ′′. No further modification is applied to P ′, nor a closure procedure
invoked. Essentially, multiple incoming edges to the same state bring in multiple contributions,
and all of them are encoded either by equations over variables or in the lookahead-sets of
reducing kernel items. For instance, upon termination of the construction of the automaton
for G1, Eqs is given by E1 = 〈x0

.= {$}, x1
.= {x0}, x2

.= {=, x0, x2, x3}, x3
.= {x1}〉, where

x3 is the variable installed for the kernel item [S → L = ·R, {x3}] of the state generated as
τs(τs(P0, L),=).

A few basic properties of symbolic characteristic automata follow. An easy consequence
of the technique used for the construction of symbolic automata is that, seen as graphs, As

and the LR(0)-automaton for G are isomorphic. Moreover, the items contained in each state
of the LR(0)-automaton are just the projections of the symbolic items in the corresponding
state of As. Lemma 1 below characterizes the rôle of variables in the symbolic construction.
The lookahead-set of every bypassing kernel item of every state is a singleton set consisting of
a distinct variable. Hence, each variable implicitly identifies a pair consisting of a bypassing
kernel item and of the state the item belongs to.

I Lemma 1. Let As be the symbolic characteristic automaton for G, and let P, P ′ ∈ Sts. Also,
assume that [A→ α · Y β,∆] ∈ P and [A′ → α′ · Y ′β′,∆′] ∈ P ′ are such that A→ α · Y β =
A′ → α′ · Y ′β′ implies P 6= P ′. Then, for some x, x′ with x 6= x′, ∆ = {x} and ∆′ = {x′}.

We observe that, by Lemma 1 and by definition of closure, if the lookahead-sets of the
items not in the kernel contain any variable, then such a variable must be one of those
installed for the bypassing items in the kernel of the same state.

The next lemma accounts for the properties of the equations for the variables identifying
bypassing kernel items. The single equation installed for the initial state P0 remains unchanged
throughout the computation of the whole automaton. Hence, there is at least one equation
with a ground right-hand side in Eqs. Moreover, every equation x

.= ∆ installed for the
bypassing kernel item of a state P 6= P0 is such that ∆ collects contributions from all the
predecessors of P . The set ∆ can contain x itself, due, e.g., to a self-loop on P in the graph.
By construction, however, the first provisional versions of every state P and of the relative
equations are generated when processing the possible transitions of a state collected before
P . So, even if ∆ can contain x, it can never contain x alone.

I Lemma 2. Let As be the symbolic characteristic automaton for G.
1. If [S′ → ·S, {x}] ∈ P0 then the equation for x in Eqs is x .= {$}.

MFCS 2016

79:6 Symbolic Lookaheads for Bottom-Up Parsing

2. Assume that P ∈ Sts \ {P0}, and that [A→ αY · β, {x}] ∈ kernel(P) is a bypassing item.
Also, let x .= ∆ be the equation for x in Eqs. Then the following holds.

Let D = {∆i | [A→ α · Y β,∆i] ∈ Qi for Qi ∈ Sts such that τs(Qi, Y) = P}. Then
∆ =

⋃
∆i∈D ∆i.

∆ \ {x} 6= ∅. Also, if ∆ \ {x} = {x′} then x′ ≺ x.

The following lemma, dual to Lemma 2, states the main properties of the lookahead-sets
of kernel reducing items.

I Lemma 3. Let As be the symbolic characteristic automaton for G. Assume that P ∈ Sts,
and that [A→ αY ·,∆] ∈ kernel(P). Also, let D = {∆i | [A→ α · Y,∆i] ∈ Qi for Qi ∈
Sts such that τs(Qi, Y) = P}. Then P 6= P0, ∆ 6= ∅, and ∆ =

⋃
∆i∈D ∆i.

4 LALR(1) tables

In this section we will first focus on the symbolic correspondence existing between As and the
LRm(1)-automaton for the given grammar G. Then, to make this correspondence concrete,
we will show how Eqs can be resolved.

A key point for the proof of the symbolic correspondence between As and Am is the
relation between the states of the symbolic automaton and those of the LR(1)-automaton
for G. In order to capture such a relation, an appropriate handle on the propagation flow
of ground lookaheads through the defining equations in Eqs is needed. To this end, we
introduce a notion of reachability which relates ground lookaheads to lookahead-sets via
equations. Intuitively, we say that the lookahead l reaches ∆ if either l ∈ ∆ or if l is in
the right-hand side of the equation for some x, and x propagates, through a chain of uses
and definitions, to a variable belonging to ∆. Consider for instance the system of equations
E1 = 〈x0

.= {$}, x1
.= {x0}, x2

.= {=, x0, x2, x3}, x3
.= {x1}〉 mentioned in Sec. 3. In E1 the

ground lookahead $ reaches {$} simply because it is contained in the set. Moreover, there is
a sequence of hops from right-hand sides to left-hand sides of equations which takes, e.g., $
to x3. In fact, $ is used in the definition of x0, which is used in the definition of x1, which
is used in the definition of x3. By that, we conclude that $ reaches, among the rest, every
lookahead-set ∆ containing x3. Def. 4 below captures this intuition.

I Definition 4. Let E = {xi
.= ∆i}i be a set of defining equations for the variables in the

finite subset {xi}i of V. Also, let l ∈ T ∪ {$}. Then:
xj gets xk in E, written xj getsE xk, iff xj , xk ∈ {xi}i and xk ∈ ∆j ;
∆ takes l in E, written ∆ takesE l, iff l ∈ ∆ or xj , xk ∈ {xi}i exist such that xj ∈ ∆ and
xj gets∗E xk and l ∈ ∆k.

Next, we show in what respect the membership of the LR(1)-item [A→ α · β, l] in a state
of Al is related to the membership of [A→ α · β,∆], with l taken to ∆ in Eqs, in a state
of As. The asymmetry of the statements of Lemma 5 and Lemma 6 below is due to the
existence of a one-to-many correspondence between the states of As and those of Al. In fact,
each state of Al is simulated by an appropriate cut of Eqs and of the lookahead-sets of the
reducing items of a state of As. On the other hand, however, each state P ∈ As, together
with Eqs, stands for all the states of Al whose projection is the same as the projection of P .
So, if [A→ α · β,∆] ∈ P , then not all the states of the LR(1)-automaton with projection
prj(P) necessarily contain the pairing of A→ α · β with each of the lookahead l that are
taken to ∆.

P. Quaglia 79:7

The proofs of the lemmata below crucially rely upon the following key issue. Both in Al

and in As, the lookahead $ is generated by the single kernel item of their initial state. All
the other lookaheads show up by the application of the closure procedure, and this depends,
in either automata and in corresponding ways, on the projection of the item undergoing
closure. Once a lookahead has been generated, it propagates along the paths of the two
automata in lock-step fashion.

I Lemma 5. Let Al and As be the LR(1)-automaton and the symbolic automaton for G,
respectively. Then for every L ∈ Stl there exists P ∈ Sts such that prj(P) = prj(L), and, for
every [A→ α · β, l] ∈ L, if [A→ α · β,∆] ∈ P then ∆ takesEqs l.

Proof sketch. By construction of As and of Al, if we walk on both automata a path starting
from the initial state and labelled by some γ, we reach states with equal projections. Also,
given any L ∈ Stl, there is a unique state P ∈ Sts such that prj(P) = prj(L). Hence, all the
lookaheads carried to the items of L are also carried, through the corresponding paths, to
the relevant items of that state P . J

I Lemma 6. Let As and Al be the symbolic automaton and the LR(1)-automaton for G,
respectively. Also, let [A→ α · β,∆] ∈ P ∈ Sts, and let l be such that ∆ takesEqs l. Then
there exists L ∈ Stl such that prj(L) = prj(P) and [A→ α · β, l] ∈ L.

Proof sketch. By the assumption that ∆ takesEqs l, there is at least one state Pg ∈ Sts
which contains an item, precisely related to [A→ α · β,∆], that generates l. If l = $, then
Pg = P0 and the generating item is the kernel item of P0. Otherwise, the generating item has
the form [B → ·δ,Γ] and l ∈ Γ. In either case, for some γ1, there is a γ1-path from Pg to P .
The string γ1 can be traced backwards from P to Pg, and depends both on the chain of hops
among variables which takes l to ∆, and on the structure of the items found along the way.
Now, let γ be a path from P0 to Pg. By construction of Al, the state L reached from L0 by
the path γγ1 has the same projection as that of P , and contains the item [A→ α · β, l]. J

The relation between the states of As and of Al is at the basis of the symbolic corres-
pondence between As and Am which is stated by the following theorem.

I Theorem 7. Let As and Am be the symbolic automaton and the LRm(1)-automaton for
G, respectively. Then the following holds.

For every P ∈ Sts there exists M ∈ Stm such that prj(M) = prj(P), and, for every Y , if
τs(P, Y) = P ′ then τm(M,Y) = M ′ with M ′ such that prj(M ′) = prj(P ′).
For every M ∈ Stm there exists P ∈ Sts such that prj(P) = prj(M), and, for every Y , if
τm(M,Y) = M ′ then τs(P, Y) = P ′ with P ′ such that prj(P ′) = prj(M ′).
If P ∈ Sts and M ∈ Stm are such that prj(P) = prj(M), then [A→ α · β, l] ∈ M iff
[A→ α · β,∆] ∈ P and ∆ takesE l.

Proof. The first two assertions are consequences of the construction procedures used to
obtain As and Am, which can both be projected into the LR(0)-automaton for G. The third
assertion comes from Lemma 5 and Lemma 6, by construction of Am from Al. J

To set up the the LALR(1) parsing table that we want to construct, we still need to
compute the actual lookahead-set of reducing items. Suppose that Vars = {x0, . . . , xn} and
Eqs = {xi

.= ∆i}i=0,...,n. Our goal is to compute the set of actual instantiations of x0, . . . , xn,
hereby called val(x0), . . . , val(xn). By definition of takesEqs, val(xi) is given by the union of

MFCS 2016

79:8 Symbolic Lookaheads for Bottom-Up Parsing

ground(∆i) with val(xk), for all the variables xk such that xi getsEqs xk. Hence, we actually
look for the solution of a system of recursive equations of the form

val(xi) = ground(∆i) ∪
⋃

xk : xigetsEqsxk

val(xk) .

We observe that D = (2T∪{$})n+1 is a cpo with least element, and that val : D → D is a
monotone function. Relying on standard approximation techniques, we can prove that the
least solution of the system of recursive equations for val(xi) is given by

val(xi) =
⋃

xk : xigets∗
Eqs

xk

ground(∆k) .

To gain in efficiency, instead of computing the above solution for all the variables in
Vars, we first partition variables into equivalence classes. This allows us to define a reduced
system of equations REqs which induces a reachability relation of smaller size over a relevant
subset RVars of Vars. The intuition behind this reduction is that characteristic automata
are typically quite sparse, and lookahead propagation is usually preponderant over lookahead
generation. So, in general Eqs is expected to contain many equations of the shape xi

.= {xj}.
An obvious optimization is computing only one of val(xi) and val(xj) and then, by need,
copying it into the other.

inizialize RVars and REqs to ∅ ;
while Eqs not empty do

x
.= ∆←− dequeue(Eqs) ;

if ∆ \ {x} = {x′} then
class(x)←− class(x′) ;

else
class(x)←− x ;
add x to RVars ;

foreach x ∈ RVars such that x .= ∆ ∈ Eqs do
update each x′ in ∆ to class(x′) ;
add x .= ∆ \ {x} to REqs ;

Algorithm 2: Reduced system of equations REqs for the variables in RVars ⊆ Vars

The algorithm for the computation of REqs is reported as Alg. 2. For every x ∈ Vars
we record the membership of the variable into an equivalence class. The equations in Eqs
are processed one at a time exploiting the generation order of the variables in Vars. We
first check whether ∆ \ {x} = {x′}. If so, then the equation at hand has either the shape
x

.= {x′} or the shape x .= {x′, x}. Hence the variable x is reached, in Eqs, exactly by the
same ground values that reach x′, and we let both variables belong to same equivalence class.
Moreover, by Lemma 2, if ∆ \ {x} = {x′} then x′ ≺ x. Hence, by the ordering of equation
processing, class(x′) has already been set when handling the equation for x. Once the set
of representative variables RVars has been identified, we start populating REqs. Suppose
x ∈ RVars, and assume that x .= ∆ ∈ Eqs. Then the equation installed into REqs for x is
obtained by updating ∆ as follows. First, non-representive variables in var(∆) are replaced
by the corresponding class representative. Second, the possible occurrence of x is removed
from the resulting set. This is a further optimization that, as done above, amounts to
disregard a possible self-recurrence in the computation of val(x). As an example, the system

P. Quaglia 79:9

of equations E1 = 〈x0
.= {$}, x1

.= {x0}, x2
.= {=, x0, x2, x3}, x3

.= {x1}〉 for grammar G1 is
reduced to 〈x0

.= {$}, x2
.= {=, x0}〉.

The following theorem is a consequence of the resolution strategy for Eqs that we have
illustrated so far.

I Theorem 8. Let As be the symbolic automaton for G, x ∈ Vars = {xi}i, and Eqs =
{xi

.= ∆i}i. Also, let RVars, REqs, and class(x) be as computed by Alg. 2. Then, for
every xi ∈ RVars, val(xi) =

⋃
xk : xigets∗

REqs
xk

ground(∆k), and, for every xi ∈ Vars \RVars,
val(xi) = val(class(xi)).

Commenting on the complexity of the resolution of Eqs, we notice that Alg. 2 is linear
in the size of Vars, and that val(xi) can be efficiently computed by a depth-first search
algorithm run on the dependency graph of the relation getsREqs. Briefly, each node xi of
the graph can be initially associated with the value ground(∆i). Then the graph is visited
and the values associated with the farthest nodes are accumulated with the values of the
nodes found along the way back to the origin of the path. The visit can be organized in such
a way that strongly connected components, if any, are recognized on-the-fly and traversed
only once (see, e.g., [13, 8, 5]). By that, the search algorithm is linear in the size of the
dependency graph of the relation getsREqs. Referring again to G1, the computation of the
actual lookahead-sets goes through the depth-first visit of the dependency graph

•
[[x2]]

•
[[x0]]

where [[x0]] and [[x2]] stand for the equivalence classes of x0 and of x2, respectively.
The following result, which is a consequence of Theorem 7 and of Theorem 8, concludes

the section by concretizing the symbolic correspondence between As and Am.

I Theorem 9. Let As be the symbolic automaton for G. Also, for P ∈ Fs and [A→ β·,∆] ∈
P , let

LA(P, [A→ β·,∆]) = ground(∆)∪
⋃

x : x′∈∆ and x=class(x′)

val(x) .

Then the pair consisting of As and of {LA(P, [A→ β·,∆])}P∈Fs,[A→β·,∆]∈P is an LALR(1)
parsing table for G.

5 LR(1) tables

Below we will briefly overview the strategy we propose for deciding whether the grammar at
hand is LR(1), and for constructing a compact LR(1) parsing table in the positive case.

We adopt an optimistic approach, and build an LR(1) parsing table by appropriately
expanding the LALR(1) table. The cases when the LALR(1) table does not contain any
conflict, or only contains shift/reduce (s/r) conflicts are equally not relevant for our argument.
Indeed, in the first case the grammar is LALR(1), and in the second case it is surely not
LR(1). So, we focus on the reduce/reduce (r/r) conflicts of the LALR(1) table. If the
grammar at hand is not LR(1), then at least one of these conflicts is a genuine LR(1)
conflict. This is the case, e.g., for the r/r conflict of the table for the ambiguous grammar
G2 with start symbol S2 and productions in the set {S2 → Ab | Bb,A → a,B → a}. If
instead the grammar is LR(1), then the r/r conflicts in the LALR(1) table depend on
the fact that the procedure for the construction of As caused the merging of states which
would have remained separated in the construction of the LR(1)-automaton. Our goal

MFCS 2016

79:10 Symbolic Lookaheads for Bottom-Up Parsing

•0

•1 •2
•3

•4•5

•6
•8

•7
(a)

•0

•1 •2
•3

•4••

••
•8

•7
(b)

a
c

b

a

c
c c

e C

D

a
c

b

a

c
c c

e e
C

D D

Figure 1 Partial layout of the symbolic automaton for G3 before (a) and after (b) the splitting
due to the r/r conflict at state 6.

is eliminating that sort of r/r conflicts by appropriately splitting the critical states that
cause those spurious r/r conflicts. Suppose that the symbolic state P is one of such merged
states of As, and that P stands for the union of the LR(1)-states L1, . . . , Lk. Also, assume
that P = {[Ai → αi · βi,∆i]}i, and that the instantiation of variables in the lookahead-sets
transforms P to Pval = {[Ai → αi · βi,Σi]}i. Then, there exist k cuts of Pval of the form
Pvalj = {[Ai → αi · βi,Σij]}i where

⋃
j=1,...,k Σij = Σi, and each Pvalj plays the LR(1)-state

Lj . Modulo an appropriate tuning of the automaton transition function, a way out for
the elimination of the original r/r conflict would be exploding Pval in Pval1 , . . . , Pvalk , and
accordingly replicating the subgraph rooted at Pval. Two observations are in place here, both
related to the space complexity of the resulting structure. Splitting Pval in k states might be
an overkill, because, e.g., the conflict would be eliminated as well by letting Pval1 be still
merged with Pval2 . For analogous reasons, replicating the whole subgraph rooted at Pval
can be a waste, too.

We aim at applying the procedure hinted above while limiting the replication of states
as much at possible. In the overall, we take the following steps. We start analyzing the r/r
conflicts of the LALR(1) table, and check whether the conditions to eliminate them are met
or not. If we find any r/r conflict that cannot be eliminated, we infer that the grammar is
not LR(1) and conclude. Otherwise, we apply an optimized state splitting procedure to the
states involved in the r/r conflicts. Operationally, this is performed by replicating some of
the rows of the LALR(1) table, up to minor modifications to their contents. At worst, the
resulting table has the same size as the LR(1) table built from the LR(1)-automaton.

A crucial issue in the application of the procedure is the ability to identify critical states.
Also, when a state P is recognized as critical, a key point is how we actually split it under the
guarantee that the intended LR(1) behaviour is preserved. The lookahead propagation flow
embedded by getsEqs provides the needed support. We describe below the technique for the
identification of critical states. The very first step towards this end is locating the states where
the lookaheads leading to conflicts, called critical lookaheads, are actually generated. Assume
we are considering an r/r conflict at state Q for the critical lookahead d. Also, suppose that
the symbolic lookahead-sets associated with the conflicting reducing items get instantiated
to Σ and to Σ′. There are various combinations here, depending on whether d is a ground
element of one or both of the symbolic lookahead-sets, or it is the by-product of variable
instantiation. Here we consider this last case which is the most intricate one. An example of
this scenario is given by the LR(1) grammar G3 with start symbol S3 and production set
P3 = {S3 → aAd | aBc | baAe | baBd | cAd | cBc, A→ ce, B → cC, C → eD,D → ε}. The

P. Quaglia 79:11

relevant portion of the layout of the symbolic automaton for G3 is drawn in Fig. 1(a), where
0 is the initial state. The r/r conflict for d is at state 6 and is induced by the reducing items
[A→ ce·, {x7}] and [D → ·, {x11}] where x7

.= {d, e}, x11
.= {x8}, and x8

.= {c, d} are the
relevant equations in Eqs. So, for this specific instance of state Q, Σ = {d, e} and Σ′ = {c, d}.
By an analysis of gets∗Eqs, we infer that the lookaheads d and e for A → ce· come from
the kernel item which owns x7, say i7, and the lookaheads c and d for D → · come from
the kernel item which owns x8, say i8 (both i7 and i8 are located at state 5). The items
that actually generate the critical lookaheads are located in the predecessors of the state
containing i7 and i8 (states 1, 2, and 4), and their identity can be inferred by inspection of
the projections of i7 and i8.

Once the states generating the critical lookaheads have been identified, we check whether
the r/r conflict in Q is either genuine or spurious. In the second case, we also decide which
is the best possible split of Q. First, we set up two sets of pairs, say loc(Σ) and loc(Σ′),
to associate each lookahead in Σ and in Σ′ with the state where the lookahead is actually
generated. Then, for all the pairs in loc(Σ) and loc(Σ′) that share the same lookahead, we
deduce that the associated source states Q1 and Q2 are in conflict, written Q1#Q2. E.g., for
the running example, loc(Σ) = {(d, 1), (d, 2), (e, 4)}, loc(Σ′) = {(c, 1), (c, 2), (d, 4)}, and, by
(d, 1), (d, 2) ∈ loc(Σ) and (d, 4) ∈ loc(Σ′), we infer 1#4, and 2#4. The conflict relation # is
the basic tool for deciding whether the r/r conflict at hand is a genuine LR(1) conflict or not.
The intuition here is that if the r/r conflict at state Q is spurious, then, as discussed above,
it must be possible finding cuts of Q that match the lookaheads contributed by the various
merged states. Operationally, we check whether the source states occurring in loc(Σ) and in
loc(Σ′) can be partitioned in at least two groups of maximal size so that each group G of
the partition meets the following requirements: (i) G contains non-conflicting states; (ii) the
restriction of loc(Σ) to the pairs whose second component is in G, written loc(Σ)�G, is non
empty; (iii) loc(Σ′)�G is non empty either. For the example at hand, we end up partitioning
{1, 2, 4} in the two groups {1, 2} and {4}.

If the above partition cannot be found, then the analyzed r/r conflict in P is a genuine
LR(1) conflict, and we conclude that the grammar is not LR(1). This is always the case, e.g.,
if the conflict relation contains a pair R#R. This conflict reveals that a critical lookahead is
generated by distinct items of the state R. Hence this particular lookahead directly depends
on the projection of R, which is the same either in As or in Al. (An instance of this scenario
is found in the analysis of the ambiguous grammar G2 for the critical lookahead b that is
generated in the initial state for either A→ ·a or B → ·a.)

If the source states of the actual lookahead-sets of Q can be partioned into the groups
G1, . . . , Gj , then Q is split in j replica. For each actualized lookahead-set Σi, the jth replica
of Q is assigned the lookahead-set containing the first elements of the pairs in Σi�Gj . At
the same time, relying upon gets∗Eqs we identify the paths γ1, . . . , γm that start at the states
where the critical lookaheads are sourced and that lead to Q. Such paths share at least one
state that is Q at latest. Among the states traversed by γ1, . . . , γm, those states which are
shared by paths from conflicting source states are all critical (states in red in Fig. 1(a)).
We split them to grant distinct and parallel routes to the contributions from the states of
each group Gj to the corresponding replica of Q. As for the elimination of the spurious r/r
conflict at hand, no other state needs to be replicated.

Looking at the splitting procedure from the perspective of the parsing table, the modi-
fications performed are as follows. The row for state Q is copied j times, and each copy
retains only the reduction steps for the represented group. The row for each replica of the
other critical states is copied from the row of the replicated state. The shift moves of the

MFCS 2016

79:12 Symbolic Lookaheads for Bottom-Up Parsing

non-conflicting predecessors of critical states (edges in magenta and in blue in Fig. 1(b))
are redirected to the replica for the appropriate group. Here we notice that each new row
of the table has shift moves exactly for the same symbols as the old copy of the row, and
fewer reduce moves. So, each pass of the splitting procedure cannot generate neither new s/r
conflict nor new r/r conflicts.

The described approach for the construction of LR(1) tables guarantees the early detection
that the grammar is not LR(1). In the opposite case, when all the r/r conflicts are eliminated,
we get a table for LR(1) parsing where all the states whose merging is not critical are still
merged as in an LALR(1) table. The generated table is then expected to be generally smaller
than the table constructed on top of LR(1)-automata. An easy example of this is the size of
the LR(1) table that we obtain by applying the above algorithm to the grammar G4 with
start symbol S4 and with production set {S4 → S1 | S3}∪P1 ∪P3. The symbolic automaton
for G4 has two separated sub-graphs corresponding to the symbolic automata for G1 and
for G3, respectively. The subgraph representing the symbolic automaton for G3 is refined as
described above. The sub-graph for G1, though, remains untouched, and hence definitely
smaller than the LR(1)-automaton for G1.

6 Concluding remarks

We defined symbolic characteristic automata, and used them as the basis for the construction
of LALR(1) parsing tables, for the construction of LR(1) parsing tables, and for early
detecting that grammars are non LR(1).

Among the algorithms for the construction of LALR(1) parsing tables, the most popular
ones are the Yacc algorithm [9, 2], and the algorithm by DeRemer and Pennello [5]. The
algorithm we proposed is more similar to the Yacc algorithm than to the algorithm by
DeRemer and Pennello. In fact, our technique retains, although making it symbolic, the Yacc
strategy of generating/propagating LR(1) lookaheads. The approach taken by DeRemer
and Pennello is instead a refinement of the SLR(1) technique. In a nutshell, the algorithm
by DeRemer and Pennello elaborates on the state of the LR(0)-automaton where A→ β·
is located, and infers which precise subset of the productions of the grammar should be
considered when computing the follow-set of that specific occurrence of A.

In [11], Pager presented an algorithm that is used in the implementation of Menhir [7],
the parsing engine of OCaml [10]. The algorithm by Pager generates on-the-fly a compact
LR(1)-automaton by checking whether already generated states can be the target of the
processed transition. We adopt a quite different strategy. Driven by local reasoning on r/r
conflicts, we construct LR(1) parsing tables as refinements of the corresponding LALR(1)
tables. This delays as much as possible any sort of check on the content of states.

In the algorithms for the construction of parsing tables, the number of set-union operations
on lookahead-sets is typically taken as performance measure. Distinct algorithms execute
those operations on different kinds of auxiliary structures, and the size of these structures is
often grammar-dependent. So, even statistical reasoning about performance, which in many
cases is likely as much as we can do, has to be very carefully tuned. Precise comparisons
between our algorithms and those mentioned above are untimely at this stage, as they should
be based on large test-sets.

The symbolic techniques we presented can be extended to produce parsing tables for
grammars in classes bigger than LALR(1). E.g., we used it to define LALR(k) parsing
tables for k > 1. The major benefit of the symbolic structures we proposed is, however, that
equations over variables, together with the fact that each variable uniquely identifies an

P. Quaglia 79:13

item, provide a compact and synthetic feedback on the origin of lookaheads, on their flow,
and on their inter-dependency. The explicit representation of lookahead propagation can
be most useful in the design phase of grammars, i.e. especially when the grammar under
investigation is not yet in the wanted class. Orthogonally, the algorithm we presented for
upgrading LALR(1) tables to LR(1) tables shows another sort of application of the explicit
encoding of lookahead propagation in LALR(1)-automata.

References
1 Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools (2nd Edition). Prentice Hall, 2006.
2 Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-Wesley,

1977.
3 Frank DeRemer. Practical Translators for LR(k) Languages. PhD thesis, MIT, Cambridge,

Mass., 1969.
4 Frank DeRemer. Simple LR(k) Grammars. Commun. ACM, 14(7):453–460, 1971. doi:

10.1145/362619.362625.
5 Frank DeRemer and Thomas J. Pennello. Efficient Computation of LALR(1) Look-Ahead

Sets. ACM Trans. Program. Lang. Syst., 4(4):615–649, 1982. doi:10.1145/69622.357187.
6 Charles Donnelly and Richard Stallman. Bison: The Yacc-compatible Parser Generator

(Ver. 3.0.4). 2015. URL: http://www.gnu.org/software/bison/manual/bison.pdf.
7 François Pottier et Yann Régis-Gianas. Menhir. URL: http://pauillac.inria.fr/

~fpottier/menhir/menhir.html.fr.
8 J. Eve and Reino Kurki-Suonio. On Computing the Transitive Closure of a Relation. Acta

Inf., 8:303–314, 1977. doi:10.1007/BF00271339.
9 Stephen C. Johnson. Yacc: Yet Another Compiler-Compiler. Tech. Rep. CSTR 32, Bell

Laboratories, Murray Hill, N.J., 1974. URL: http://dinosaur.compilertools.net/.
10 Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme

Vouillon. The OCaml system release 4.02. 2014. URL: http://caml.inria.fr/pub/docs/
manual-ocaml/.

11 David Pager. A Practical General Method for Constructing LR(k) Parsers. Acta Inform-
atica, 7:249–268, 1977.

12 Seppo Sippu and Eljas Soisalon-Soininen. Parsing Theory – Volume II: LR(k) and LL(k)
Parsing, volume 20 of EATCS Monographs on Theoretical Computer Science. Springer,
1990. doi:10.1007/978-3-662-08424-3.

13 Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput.,
1(2):146–160, 1972. doi:10.1137/0201010.

MFCS 2016

http://dx.doi.org/10.1145/362619.362625
http://dx.doi.org/10.1145/362619.362625
http://dx.doi.org/10.1145/69622.357187
http://www.gnu.org/software/bison/manual/bison.pdf
http://pauillac.inria.fr/~fpottier/menhir/menhir.html.fr
http://pauillac.inria.fr/~fpottier/menhir/menhir.html.fr
http://dx.doi.org/10.1007/BF00271339
http://dinosaur.compilertools.net/
http://caml.inria.fr/pub/docs/manual-ocaml/
http://caml.inria.fr/pub/docs/manual-ocaml/
http://dx.doi.org/10.1007/978-3-662-08424-3
http://dx.doi.org/10.1137/0201010

	Introduction
	Preliminaries
	Symbolic characteristic automata
	LALR(1) tables
	LR(1) tables
	Concluding remarks

