
Coalgebraic Trace Semantics for Büchi and Parity
Automata∗

Natsuki Urabe†1, Shunsuke Shimizu2, and Ichiro Hasuo3

1 Department of Computer Science, The University of Tokyo, Japan and
JSPS Research Fellow
urabenatsuki@is.s.u-tokyo.ac.jp

2 Department of Computer Science, The University of Tokyo, Japan
shunsuke@is.s.u-tokyo.ac.jp

3 Department of Computer Science, The University of Tokyo, Japan
ichiro@is.s.u-tokyo.ac.jp

Abstract
Despite its success in producing numerous general results on state-based dynamics, the theory
of coalgebra has struggled to accommodate the Büchi acceptance condition—a basic notion in
the theory of automata for infinite words or trees. In this paper we present a clean answer
to the question that builds on the “maximality” characterization of infinite traces (by Jacobs
and Cîrstea): the accepted language of a Büchi automaton is characterized by two commuting
diagrams, one for a least homomorphism and the other for a greatest, much like in a system
of (least and greatest) fixed-point equations. This characterization works uniformly for the
nondeterministic branching and the probabilistic one; and for words and trees alike. We present
our results in terms of the parity acceptance condition that generalizes Büchi’s.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases coalgebra, Büchi/parity/probabilistic/tree automaton

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.24

1 Introduction

Büchi Automata. Automata are central to theoretical computer science. Besides their sig-
nificance in formal language theory and as models of computation, many formal verification
techniques rely on them, exploiting their balance between expressivity and tractable com-
plexity of operations on them. See e.g. [30, 12]. Many current problems in verification are
about nonterminating systems (like servers); for their analyses, naturally, automata that
classify infinite objects—such as infinite words and infinite trees—are employed.

The Büchi acceptance condition is the simplest nontrivial acceptance condition for au-
tomata for infinite objects. Instead of requiring finally reaching an accepting state —which
makes little sense for infinite words/trees—it requires accepting states visited infinitely often.
This simple condition, too, has proved both expressive and computationally tractable: for
the word case the Büchi condition can express any ω-regular properties; and the emptiness
problem for Büchi automata can be solved efficiently by searching for a lasso computation.

∗ The authors are supported by Grants-in-Aid No. 24680001 & 15KT0012, JSPS.
† N.U. is supported by Grant-in-Aid for JSPS Fellows.

© Natsuki Urabe, Shunsuke Shimizu and Ichiro Hasuo;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 24; pp. 24:1–24:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Coalgebraic Trace Semantics for Büchi and Parity Automata

Coalgebras. Studies of automata and state-based transition systems in general have been
shed a fresh categorical light in 1990’s, by the theory of coalgebra. Its simple modeling
of state-based dynamics—as a coalgebra, i.e. an arrow c : X → FX in a category C—
has produced numerous results that capture mathematical essences and provide general
techniques. Among its basic results are: behavior-preserving maps as homomorphisms; a
final coalgebra as a fully abstract domain of behaviors; coinduction (by finality) as definition
and proof principles; a general span-based definition of bisimulation; etc. See e.g. [16, 22].
More advanced results are on: coalgebraic modal logic (see e.g. [7]); process algebras and
congruence formats (see e.g. [18]); generalization of Kleene’s theorem (see e.g. [24]); etc.

Büchi Automata, Coalgebraically. In the coalgebra community, however, two important
phenomena in automata and/or concurrency have been known to be hard to model—many
previous attempts have seen only limited success. One is internal (τ -)transitions and weak
(bi)similarity; see e.g. recent [11]. The other one is the Büchi acceptance condition.

FX
Ff
// FY

X
f
//

c
OO

Y
d
OO

Here is a (sketchy) explanation why these two phenomena should be hard
to model coalgebraically. The theory of coalgebra is centered around homo-
morphisms as behavior-preserving maps; see the diagram on the right. Deep
rooted in it is the idea of local matching between one-step transitions in c and those in d. This
is what fails in the two phenomena: in weak bisimilarity a one-step transition in c is matched
by a possibly multi-step transition in d; and the Büchi acceptance condition—stipulating
that accepting states are visited infinitely often, in the long run—is utterly nonlocal.

There have been some works that study Büchi acceptance conditions (or more general
parity or Muller conditions) in coalgebraic settings. One is [5], where they rely on the
lasso characterization of nonemptiness and use Sets2 as a base category. Another line is on
coalgebra automata (see e.g. [31]), where however Büchi/parity/Muller acceptance conditions
reside outside the realm of coalgebras.1 Inspired by these works, and also by our work [14]
on alternating fixed points and coalgebraic model checking, the current paper introduces a
coalgebraic modeling of Büchi and parity automata based on systems of fixed-point equations.

Contributions. We present a clean answer to the question of “Büchi automata, coalge-
braically,” relying on the previous work on coalgebraic infinitary trace semantics [15, 6] and
fixed-point equations [14]. Our modeling, hinted in (1), features: 1) accepting states as a
partition of a state space; and 2) explicit use of µ and ν—for least/greatest fixed points—in
diagrams. We state our results for the parity condition (that generalizes the Büchi one).

FX
� //

=ν

FZ

X

_c
OO

�
tr∞(c)

// Z

_Jζ∼=
OO in a Kleisli

category K`(T)

Characterization of languages under no (i.e.
the trivial) acceptance condition [15, 6]

=⇒

FX
� //

=µ

FZ

X1

_c1
OO

�
trp(c1)

// Z

_Jζ∼=
OO FX

� //
=ν

FZ

X2

_c2
OO

�
trp(c2)

// Z

_Jζ∼=
OO

Under the Büchi acceptance condition,
with X1 = { ’s} and X2 = { ’s}

(1)

Our framework is generic: its leading examples are nondeterministic and (generative) prob-
abilistic tree automata, with the Büchi/parity acceptance condition.

Our contributions are: 1) coalgebraic modeling of automata with the Büchi/parity con-
ditions; 2) characterizing their accepted languages by diagrams with µ’s and ν’s (trp in (1));

1 More precisely: a coalgebra automaton is an automaton (with Büchi/parity/Muller acceptance condi-
tions) that classifies coalgebras (as generalization of words and trees). A coalgebra automaton itself is
not described as a coalgebra; nor is its acceptance condition.

N. Urabe, S. Shimizu and I. Hasuo 24:3

and 3) proving that the characterization indeed captures the conventional definitions. The
last “sanity-check” proves to be intricate in the probabilistic case, and our proof—relying
on previous [6, 23]—identifies the role of final sequences [32] in probabilistic processes.

With explicit µ’s and ν’s—that specify in which homomorphism, among many that ex-
ist, we are interested—we depart from the powerful reasoning principle of finality (existence
of a unique homomorphism). We believe this is a necessary step forward, for the theory
of coalgebra to take up long-standing challenges like the Büchi condition and weak bisim-
ilarity. Our characterization (1)—although it is not so simple as the uniqueness argument
by finality—seems useful, too: we have obtained some results on fair simulation notions
between Büchi automata [28], following the current work.

Organization of the Paper. In Section 2 we provide backgrounds on: the coalgebraic
theory of trace in a Kleisli category [15, 6] (where we explain the diagram on the left in (1));
and systems of fixed-point equations. In Section 3 we present a coalgebraic modeling of
Büchi/parity automata and their languages. Coincidence with the conventional definitions
is shown in Section 4 for the nondeterministic setting, and in Section 5 for the probabilistic
one.

Most proofs are deferred to the appendices, that are found in [27].

Future Work. Here we are based on the coalgebraic theory of trace and simulation [21, 15,
13, 25]; it has been developed under the trivial acceptance condition (any run that does not
diverge, i.e. that does not come to a deadend, is accepted). The current paper is about ac-
commodating the Büchi/parity conditions in the trace part of the theory; for the simulation
part we also have exploited the current results to obtain sound fair simulation notions for
nondeterministic Büchi tree automata and probabilistic Büchi word automata [28].

On the practical side our future work mainly consists of proof methods for trace/language
inclusion, a problem omnipresent in formal verification. Simulations—as one-step, local
witnesses for trace inclusion—have been often used as a sound (but not necessarily complete)
proof method that is computationally more tractable; with the observations in [28] we
are naturally interested in them. Possible directions are: synthesis of simulation matrices
between finite systems by linear programming, like in [26]; synthesis of simulations by other
optimization techniques for program verification (where problem instances are infinite due
to the integer type); and simulations as a proof method in interactive theorem proving.

2 Preliminaries

2.1 Coalgebras in a Kleisli Category

We assume some basic category theory, most of which is covered in [16].
The conventional coalgebraic modeling of systems—as a function X → FX—is known

to capture branching-time semantics (such as bisimilarity) [16, 22]. In contrast accepted
languages of Büchi automata (with nondeterministic or probabilistic branching) constitute
linear-time semantics; see [29] for the so-called linear time-branching time spectrum.

For the coalgebraic modeling of such linear-time semantics we follow the “Kleisli model-
ing” tradition [21, 15, 13]. Here a system is parametrized by a monad T and an endofunctor
F on Sets: the former represents the branching type while the latter represents the (linear-

CONCUR 2016

24:4 Coalgebraic Trace Semantics for Büchi and Parity Automata

time) transition type; and a system is modeled as a function of the type X → TFX.2
A function X → TFX is nothing but an F -coalgebra X →p FX in the Kleisli category

K`(T)—where F is a suitable lifting of F . This means we can apply the standard coalgebraic
machinery to linear-time behaviors, by changing the base category from Sets to K`(T).

A monad T = (T, η, µ) on a category C induces the Kleisli category K`(T). The objects
of K`(T) are the same as C’s; and for each pair X,Y of objects, the homset K`(T)(X,Y) is
given by C(X,TY). An arrow f ∈ K`(T)(X,Y)—that is X → TY in C—is called a Kleisli
arrow and is denoted by f : X →p Y for distinction. Given two successive Kleisli arrows
f : X →p Y and g : Y →p Z, their Kleisli composition is given by µZ ◦Tg ◦ f : X →p Z (where
◦ is composition in C). This composition in K`(T) is denoted by g � f for distinction. The
Kleisli inclusion J : C→ K`(T) is defined by J(X) = X and J(f) = ηY ◦ f : X →p Y .

In this paper we mainly use two combinations of T and F . The first is the powerset
monad P and a polynomial functor on Sets; the second is the (sub-)Giry monad [10] G and
a polynomial functor on Meas, the category of measurable spaces and measurable functions.
The Giry monad [10] is commonly used for modeling (not necessarily discrete) probabilistic
processes. We shall use its “sub” variant; a subprobability measure over (X,FX) is a measure
µ such that 0 ≤ µ(X) ≤ 1 (we do not require µ(X) = 1).

I Definition 2.1 (P,G). The powerset monad P on Sets is: PX = {A ⊆ X}; (Pf)(A) =
{f(x) | x ∈ A}; its unit is ηPX(x) = {x}; and its multiplication is µPX(M) =

⋃
A∈M A.

The sub-Giry monad is a monad G = (G, ηG , µG) on Meas such that G(X,FX) =
(GX,FGX), where GX is the set of all subprobability measures on (X,FX), and FGX is
the smallest σ-algebra such that, for each S ∈ FX , the function evS : GX → [0, 1] defined by
evS(P) = P (S) is measurable. Moreover, ηG(X,FX)(x)(S) is 1 if x ∈ S and 0 otherwise (the
Dirac distribution), and µG(X,FX)(Ψ)(S) =

∫
G(X,FX) evS dΨ.

I Definition 2.2 (polynomial functors on Sets and Meas). A polynomial functor F on Sets
is defined by the BNF notation F ::= id | A | F1 × F2 |

∐
i∈I Fi. Here A ∈ Sets.

A (standard Borel) polynomial functor F on Meas is defined by the BNF notation
F ::= id | (A,FA) | F1 × F2 |

∐
i∈I Fi. Here I is countable, and we require each constant

(A,FA) ∈Meas be a standard Borel space (see e.g. [9]). The σ-algebra FFX associated to
FX is defined as usual, with (co)product σ-algebras, etc. F ’s action on arrows is obvious.

A standard Borel polynomial functor shall often be called simply a polynomial functor.

The technical requirement of being standard Borel—meaning that it arises from a Polish
space [9]—will be used in the probabilistic setting of Section 5; we follow [6, 23] in its use.

There is a well-known correspondence between a polynomial functor and a ranked alpha-
bet—a set Σ with an arity map | | : Σ→ N. In this paper a functor F (for the linear-time
behavior type) is restricted to be polynomial; this essentially means that we are dealing with
systems that generate trees over some ranked alphabet (with additional T -branching).

I Definition 2.3 (TreeΣ). An (infinitary) Σ-tree, as in the standard definition, is a possibly
infinite tree whose nodes are labeled with the ranked alphabet Σ and whose branching
degrees are consistent with the arity of labels. The set of Σ-trees is denoted by TreeΣ.

2 Another eminent approach to coalgebraic linear-time semantics is the Eilenberg-Moore one (see e.g. [17,
1]): notably in the latter a system is expressed as X → FTX. The Eilenberg-Moore approach can be
seen as a categorical generalization of determinization or the powerset construction. It is however not
clear how determinization serves our current goal (namely a coalgebraic modeling of the Büchi/parity
acceptance conditions).

N. Urabe, S. Shimizu and I. Hasuo 24:5

Table 1 Overview of existing results on coalgebraic trace semantics.

Semantics Finite trace Infinitary trace

Coalgebraic
modeling

FX

=

�F (tr(c))
// FA

X

_c
OO

�
tr(c)

// A

_Jα−1
final∼=

OO (3) FX

=ν

�F (tr∞(c))
// FZ

X

_c
OO

�
tr∞(c)

// Z

_Jζ
weakly
final∼=

OO (4)

Finality in K`(T) (Theorem 2.7) (Weak finality + maximality) in K`(T) (Theorem 2.8)

I Lemma 2.4. Let Σ be a ranked alphabet, and FΣ =
∐
σ∈Σ()|σ| be the corresponding poly-

nomial functor on Sets. The set TreeΣ of (infinitary) Σ-trees carries a final FΣ-coalgebra.
The same holds in Meas, for countable Σ and the corresponding polynomial functor FΣ. J

We collect some standard notions and notations for such trees in Appendix A in [27].

K`(T) F // K`(T)

C F //
J
OO

C
J
OO (2)

It is known [13, 25] that for (C, T) ∈ {(Sets,P), (Meas,G)} and
polynomial F on C, there is a canonical distributive law [20] λ : FT ⇒
TF—a natural transformation compatible with T ’s monad structure.
Such λ induces a functor F : K`(T)→ K`(T) that makes the diagram (2) commute.

Using this lifting F of F from C to K`(T), an arrow c : X → TFX in C—that is how we
model an automaton—can be regarded as an F -coalgebra c : X →p FX in K`(T).

Then the dynamics of A—ignoring its initial and accepting states—is modeled as an F -
coalgebra c : X →p FX in K`(P) where: F = {a, b} × (), X = {x1, x2} and c : X → PFX
is the function c(x1) = c(x2) = {(a, x1), (b, x2)}. The information on initial and accepting
states is redeemed later in

x1

x2

OO
a, 12ee

b, 12

HH
b, 12

yy

a, 12
��

I Example 2.5. LetM be the Markov chain on the right. The dynamics of
M is modeled as an F -coalgebra c : X →p FX in K`(G) where: F = {a, b}×
(), X = {x1, x2} with the discrete measurable structure, and c : X → GFX
is the (measurable) function defined by c(x)

{
(a, x1)

}
= c(x)

{
(b, x2)

}
= 1/2,

and c(x)
{

(d, x′)
}

= 0 for the other (d, x′) ∈ {a, b} ×X.
Later we will equip Markov chains with accepting states and obtain (generative) proba-

bilistic Büchi automata. Their probabilistic accepted languages will be our subject of study.
I Remark 2.6. Due to the use of the sub-Giry monad is that, in f : X →p Y in K`(G), the
probability f(x)(Y) can be smaller than 1. The missing 1− f(x)(Y) is understood as that
for divergence. In the nondeterministic case f : X →p Y in K`(P) diverges at x if f(x) = ∅.

This is in contrast with a system coming to halt generating a 0-ary symbol (such as X
in (5) later); this is deemed as successful termination.

2.2 Coalgebraic Theory of Trace
The above “Kleisli” coalgebraic modeling has produced some general results on: linear-time
process semantics (called trace semantics); and simulations as witnesses of trace inclusion,
generalizing the theory in [19]. Here we review the former; it underpins our developments
later. A rough summary is in Table 1: typically the results apply to T ∈ {P,D,G}—where
D is the subdistribution monad on Sets, a discrete variant of G—and polynomial F . In
what follows we present these previous results in precise terms, sometimes strengthening
the assumptions for the sake of presentation. The current paper’s goal is to incorporate the
Büchi acceptance condition in (the right column of) Table 1.

Firstly, finite trace semantics—linear-time behaviors that eventually terminate, such as
the accepted languages of finite words for NFAs—is captured by finality in K`(T).

CONCUR 2016

24:6 Coalgebraic Trace Semantics for Büchi and Parity Automata

I Theorem 2.7 ([13]). Let T ∈ {P,D} and F be a polynomial functor on Sets. An initial
F -algebra α : FA ∼=→ A in Sets yields a final F -coalgebra in K`(T), as in (3) in Table 1. J

The carrier A of an initial F -algebra in Sets is given by finite words/trees (over the alphabet
that corresponds to F). The significance of Theorem 2.7 is that: for many examples, the
unique homomorphism tr(c) induced by finality (3) captures the finite trace semantics of
the system c. Here the word “finite” means that we collect only behaviors that eventually
terminate.

What if we are also interested in nonterminating behaviors, like the infinite word bω =
bbb . . . accepted by the automaton in Example 2.5? There is a categorical characterization
of such infinitary trace semantics too, although proper finality is now lost.

I Theorem 2.8 ([15, 6, 25]). Let (C, T) ∈ {(Sets,P), (Meas,G)} and F be a polynomial
functor on C. A final F -coalgebra ζ : Z ∼=→ FZ in C gives rise to a weakly final F -coalgebra
in K`(T), as in (4) in Table 1. Moreover, the coalgebra Jζ additionally admits the greatest
homomorphism tr∞(c) with respect to the pointwise order v in the homsets of K`(T) (given
by inclusion for T = P, and by pointwise ≤ on subprobability measures for T = G). That
is: for each homomorphism f from c to Jζ we have f v tr∞(c). J

◦ X

(5)
//

a

�� //

In many examples the greatest homomorphism tr∞(c) captures the infini-
tary trace semantics of the system c. (Here by infinitary we mean both finite
and infinite behaviors.) For example, for the system (5) where X denotes
successful termination, its finite trace semantics is {ε, a, aa, . . . } whereas its infinitary trace
semantics is {ε, a, aa, . . . } ∪ {aω}. The latter is captured by the diagram (4), with T = P
and F = {X}+ {a} × ().

2.3 Equational Systems for Alternating Fixed Points
Nested, alternating greatest and least fixed points—as in a µ-calculus formula νu2.µu1. (p∧
u2) ∨ �u1—are omnipresent in specification and verification. For their relevance to the
Büchi/parity acceptance condition one can recall the well-known translation of LTL formulas
to Büchi automata and vice versa (see e.g. [30]). To express such fixed points we follow [8, 2]
and use equational systems—we prefer them to the textual µ-calculus-like presentations.

I Definition 2.9 (equational system). Let L1, . . . , Ln be posets. An equational system E

over L1, . . . , Ln is an expression

u1 =η1 f1(u1, . . . , un) , . . . , un =ηn fn(u1, . . . , un) (6)

where: u1, . . . , un are variables, η1, . . . , ηn ∈ {µ, ν}, and fi : L1×· · ·×Ln → Li is a monotone
function. A variable uj is a µ-variable if ηj = µ; it is a ν-variable if ηj = ν.

The solution of the equational system E is defined as follows, under the assumption that
Li’s have enough supremums and infimums. It proceeds as: 1) we solve the first equation
to obtain an interim solution u1 = l

(1)
1 (u2, . . . , un); 2) it is used in the second equation to

eliminate u1 and yield a new equation u2 =η2 f
‡
2 (u2, . . . , un); 3) solving it again gives an

interim solution u2 = l
(2)
2 (u3, . . . , un); 4) continuing this way from left to right eventually

eliminates all variables and leads to a closed solution un = l
(n)
n ∈ Ln; and 5) by propagating

these closed solutions back from right to left, we obtain closed solutions for all of u1, . . . , un.
A precise definition is found in Appendix B in [27].

It is important that the order of equations matters: for (u =µ v, v =ν u) the solution is
u = v = > while for (v =ν u, u =µ v) the solution is u = v = ⊥.

N. Urabe, S. Shimizu and I. Hasuo 24:7

Whether a solution is well-defined depends on how “complete” the posets L1, . . . , Ln are.
It suffices if they are complete lattices, in which case every monotone function Li → Li has
greatest/least fixed points (the Knaster-Tarski theorem). This is used in the nondetermin-
istic setting: note that PY , hence the homset K`(P)(X,Y), are complete lattices.

I Lemma 2.10. The system E (6) has a solution if each Li is a complete lattice. J

This does not work in the probabilistic case, since the homsets K`(G)(X,Y) = Meas(X,GY)
with the pointwise order—on which we consider equational systems—are not complete lat-
tices. For example GY lacks the greatest element in general; even if Y = 1 (when G1 ∼= [0, 1]),
the homset K`(G)(X, 1) can fail to be a complete lattice. See Example B.2 in [27]. Our
strategy is: 1) to apply the following Kleene-like result to the homset K`(G)(X, 1); and 2)
to “extend” fixed points in K`(G)(X, 1) along a final F -sequence. See Section 5.1 later.

I Lemma 2.11. The equational system E (6) has a solution if: each Li is both a pointed
ω-cpo and a pointed ωop-cpo; and each fi is both ω-continuous and ωop-continuous. J

In Appendix B in [27] we have additional lemmas on “homomorphisms” of equational
systems and preservation of solutions. They play important roles in the proofs of the later
results.

3 Coalgebraic Modeling of Parity Automata and Its Trace Semantics

Here we present our modeling of Büchi/parity automata. We shall do so axiomatically
with parameters C, T and F—much like in Section 2.1–2.2. Our examples cover: both
nondeterministic and probabilistic branching; and automata for trees (hence words as a
special case).

I Assumptions 3.1. In what follows a monad T and an endofunctor F , both on C, satisfy:
The base category C has a final object 1 and finite coproducts.
The functor F has a final coalgebra ζ : Z → FZ in C.
There is a distributive law λ : FT ⇒ TF [20], hence F : C→ C is lifted to F : K`(T)→
K`(T). See (2).
For each X,Y ∈ K`(T), the homset K`(T)(X,Y) carries an order vX,Y (or simply v).
Kleisli composition � and cotupling [,] are monotone with respect to the order v.
The latter gives rise to an order isomorphism K`(T)(X1 + X2, Y) ∼= K`(T)(X1, Y) ×
K`(T)(X2, Y), where + is inherited along a left adjoint J : C→ K`(T).
F : K`(T)→ K`(T) is locally monotone: for f, g ∈ K`(T)(X,Y), f v g implies Ff v Fg.

I Example 3.2. The category Sets, the powerset monad P (Definition 2.1) and a polynomial
functor F on Sets (Definition 2.2) satisfy Assumption 3.1. Here for X,Y ∈ K`(P), an order
vX,Y is defined by: f v g if f(x) ⊆ g(x) for each x ∈ X.

I Example 3.3. The category Meas, the sub-Giry monad G (Definition 2.1) and a polynomial
functor F on Meas (Definition 2.2) satisfy Assumption 3.1. For X,Y ∈ K`(G), a natural
order v(X,FX),(Y,FY) is defined by: f v g iff f(x)(A) ≤ g(x)(A) (in [0, 1]) for each x ∈ X
and A ∈ FY .

3.1 Coalgebraic Modeling of Büchi/Parity Automata
The Büchi and parity acceptance conditions have been big challenges to the coalgebra com-
munity, because of their nonlocal and asymptotic nature (see Section 1). One possible

CONCUR 2016

24:8 Coalgebraic Trace Semantics for Büchi and Parity Automata

modeling is to take the distinction between vs. —or different priorities in the parity
case—as state labels. This is much like in the established coalgebraic modeling of determin-
istic automata as 2 × ()Σ-coalgebras (see e.g. [22, 16]). Here the set 2 tells if a state is
accepting or not.

A key to our current modeling, however, is that accepting states should rather be specified
by a partition X = X1 +X2 of a state space, with X1 = { ’s} and X2 = { ’s}. This idea
smoothly generalizes to parity conditions, too, by Xi = {states of priority i}. Equipping
such partitions to coalgebras (with explicit initial states, as in Section 2.2) leads to the
following.

Henceforth we state results for the parity condition, with Büchi being a special case.

I Definition 3.4 (parity (T, F)-system). A parity (T, F)-system is given by a triple X =(
(X1, . . . , Xn), c : X →p FX, s : 1→p X

)
where n is a positive integer, and:

(X1, . . . , Xn) is an n-tuple of objects in C for states (with their priorities), and we define
X = X1 + · · ·+Xn (a coproduct in C);
c : X →p FX is an arrow in K`(T) for dynamics; and
s : 1→p X is an arrow in K`(T) for initial states.

For each i ∈ [1, n] we define ci : Xi →p FX to be the restriction c ◦ κi : Xi →p FX along the
coprojection κi : Xi ↪→ X, in case the maximum priority is n = 2, a parity (T, F)-system is
referred to as a Büchi (T, F)-system.

3.2 Coalgebraic Trace Semantics under the Parity Acceptance
Condition

On top of the modeling in Definition 3.4 we characterize accepted languages—henceforth
referred to as trace semantics—of parity (T, F)-systems. We use systems of fixed-point
equations; this naturally extends the previous characterization of infinitary traces (i.e. under
the trivial acceptance conditions) by maximality (Theorem 2.8; see also (1)).

I Definition 3.5 (trace semantics of parity (T, F)-systems). Let X =
(

(X1, . . . , Xn), c, s
)
be

a parity (T, F)-system. It induces the following equational system EX , where ζ : Z ∼=→ FZ

is a final coalgebra in C (see Assumption 3.1). The variable ui ranges over the poset
K`(T)(Xi, Z).

EX :=


u1 =µ (Jζ)−1 � F [u1, . . . , un]� c1 ∈ K`(T)(X1, Z)
u2 =ν (Jζ)−1 � F [u1, . . . , un]� c2 ∈ K`(T)(X2, Z)

...
un =ηn (Jζ)−1 � F [u1, . . . , un]� cn ∈ K`(T)(Xn, Z)


Here ηi = µ if i is odd and ηi = ν if i is even. The functions in the equations are seen to be
monotone, thanks to the monotonicity assumptions on cotupling, F and � (Assumption 3.1).

We say that (T, F) constitutes a parity trace situation, if EX has a solution for any parity
(T, F)-system X , denoted by trp

1(X) : X1 →p Z, . . . , trp
n(X) : Xn →p Z. The composite

trp(X) :=
(

1 s−→p X = X1 +X2 + · · ·+Xn
[trp1(X),trp2(X),...,trpn(X)]
−−−−−−−−−−−−−−−−→p Z

)
is called the trace semantics of the parity (T, F)-system X .

If X is a Büchi (T, F)-system, the equational system EX—with their solutions trp
1(X) and

trp
2(X) in place—can be expressed as the following diagrams (with explicit µ and ν). See (1).

N. Urabe, S. Shimizu and I. Hasuo 24:9

FX
�F [trp(c1),trp(c2)]

//

=µ
FZ

X1

_c1
OO

�
trp(c1)

// Z

_Jζ∼=
OO FX

�F [trp(c1),trp(c2)]
//

=ν
FZ

X2

_c2
OO

�
trp(c2)

// Z

_Jζ∼=
OO

(7)

4 Coincidence with the Conventional Definition: Nondeterministic

The rest of the paper is devoted to showing that our coalgebraic characterization (Defini-
tion 3.5) indeed captures the conventional definition of accepted languages. In this section
we study the nondeterministic case; we let C = Sets, T = P, and F be a polynomial functor.

We first have to check that Definition 3.5 makes sense. Existence of enough fixed points
is obvious because K`(P)(Xi, Z) is a complete lattice (Lemma 2.10). See also Example 3.2.

I Theorem 4.1. T = P and a polynomial F constitute a parity trace situation (Defini-
tion 3.5). J

Here is the conventional definition of automata [12].

I Definition 4.2 (NPTA). A nondeterministic parity tree automaton (NPTA) is a quadruple

X =
(

(X1, . . . , Xn), Σ, δ : X → P
(∐

σ∈ΣX
|σ|), s ∈ PX) ,

where X = X1 + · · · + Xn, each Xi is the set of states with the priority i, Σ is a ranked
alphabet (with the arity map | | : Σ → N), δ is a transition function and s is the set of
initial states.

The accepted language of an NPTA X is conventionally defined in the following way.
Here we are sketchy due to the lack of space; precise definitions are in Appendix A in [27].

A (possibly infinite) (Σ×X)-labeled tree ρ is a run of an NPTA X = (~X,Σ, δ, s) if: for
each node with a label (σ, x), it has |σ| children and we have

(
σ, (x1, . . . , x|σ|)

)
∈ δ(x) where

x1, . . . , x|σ| are the X-labels of its children. For a pedagogical reason we do not require the
root X-label to be an initial state. A run ρ of an NPTA X is accepting if any infinite branch
π of the tree ρ satisfies the parity acceptance condition (i.e. max{i | π visits states in Xi

infinitely often} is even). The sets of runs and accepting runs of X are denoted by RunX
and AccRunX , respectively.

The function rt : RunX → X is defined to return the root X-label of a run. For each
X ′ ⊆ X, we define RunX ,X′ by {ρ ∈ RunX | rt(ρ) ∈ X ′}; the set AccRunX ,X′ is similar.
The map DelSt : RunX → TreeΣ takes a run, removes all X-labels and returns a Σ-tree.

I Definition 4.3 (Lang(X) for NPTAs). Let X be an NPTA. Its accepted language Lang(X)
is defined by DelSt(AccRunX ,s).

(σ, x)

ρ|σ|· · ·ρ1 (8)

The following coincidence result for the nondeterministic set-
ting is fairly straightforward. A key is the fact that accepting runs
are characterized—among all possible runs—using an equational
system that is parallel to the one in Definition 3.5.

I Lemma 4.4. Let X = (~X,Σ, δ, s) be an NPTA, and lsol
1 , . . . , lsol

n be the solution of the
following equational system, whose variables u1, . . . , un range over P(RunX).

u1 =η1 ♦X (u1∪ · · · ∪un)∩RunX ,X1 , . . . , un =ηn ♦X (u1∪ · · · ∪un)∩RunX ,Xn (9)

CONCUR 2016

24:10 Coalgebraic Trace Semantics for Büchi and Parity Automata

Here: ♦X : P(RunX)→ P(RunX) is given by ♦XR :=
{(

(σ, x), (ρ1, . . . , ρ|σ|)
)
∈ RunX

∣∣σ ∈
Σ, x ∈ X, ρi ∈ R

}
(see the figure (8) above); X = X1 + · · ·+Xn; and ηi is µ (for odd i) or

ν (for even i). Then the i-th solution lsol
i coincides with AccRunX ,Xi . J

We shall translate the above result to the characterization of accepted trees (Lemma 4.5).
In its proof (that is deferred to the appendix in [27]) Lemma B.3—on homomorphisms of
equational systems—plays an important role.

I Lemma 4.5. Let X = (~X,Σ, δ, s) be an NPTA, and let l′sol
1 , . . . , l′sol

n be the solution of the
following equational system, where u′i ranges over the complete lattice

(
P(TreeΣ)

)Xi :
u′1 =η1 ♦δ([u′1, . . . , u′n]) � X1 , . . . , u′n =ηn ♦δ([u′1, . . . , u′n]) � Xn . (10)

Here ηi is µ (for odd i) or ν (for even i); () � Xi :
(
P(TreeΣ)

)X → (
P(TreeΣ)

)Xi denotes
domain restriction; and the function ♦δ :

(
P(TreeΣ)

)X → (
P(TreeΣ)

)X is given by

(♦δT)(x) :=
{(
σ, (τ1, . . . , τ|σ|)

) ∣∣ (σ, (x1, . . . , x|σ|)
)
∈ δ(x), τi ∈ T (xi)

}
.

Then we have a coincidence l′sol
i = DelSt′(AccRunX ,Xi), where the function DelSt′ : P(RunX)→

(P(TreeΣ))X is given by DelSt′(R)(x) := DelSt({ρ ∈ R | rt(ρ) = x}). Recall that rt returns
a run’s root X-label. J

I Theorem 4.6 (coincidence, in the nondeterministic setting). Let X = ((X1, . . . , Xn),Σ, δ, s)
be an NPTA, and FΣ =

∐
σ∈Σ()|σ| be the polynomial functor on Sets that corresponds to

Σ. Then X is identified with a parity (P, FΣ)-system; moreover Lang(X) (in the conven-
tional sense of Definition 4.3) coincides with the coalgebraic trace semantics trp(X) (Defi-
nition 3.5). Note here that TreeΣ carries a final FΣ-coalgebra (Lemma 2.4).

Proof. We identify X with the (P, FΣ)-system
(
(X1, . . . , Xn), δ : X →p FΣX, s : 1 →p X

)
,

and let 1 = {•}. The equational system EX in Definition 3.5 is easily seen to coincide with
(9) in Lemma 4.5. The claim is then shown as follows, exploiting the last coincidence.

trp(X) = [trp
1(X), . . . , trp

n(X)]� s(•) by Definition 3.5
= [DelSt′(AccRunX ,X1), . . . ,DelSt′(AccRunX ,Xn)](s)
= DelSt(AccRunX ,s) = Lang(X) by Definition 4.3. J

5 Coincidence with the Conventional Definition: Probabilistic

In the probabilistic setting the coincidence result is much more intricate. Even the well-
definedness of parity trace semantics (Definition 3.5) is nontrivial: the posets K`(G)(Xi, Z) of
our interest are not complete lattices, and they even lack the greatest element >. Therefore
neither of Lemmas 2.10–2.11 ensures a solution of EX in Definition 3.5. As we hinted
in Section 2.3 our strategy is: 1) to apply the Lemma 2.11 to the homset K`(G)(X, 1); and
2) to “extend” fixed points in K`(G)(X, 1) along a final F -sequence. Implicit in the proof
details below, in fact, is a correspondence between: abstract categorical arguments along a
final sequence; and concrete operational intuitions on probabilistic parity automata.

In this section we let C = Meas, T = G (Definition 2.1), and F be a polynomial functor.
I Remark 5.1. The class of probabilistic systems of our interest are generative (as opposed
to reactive) ones. Their difference is eminent in the types of transition functions:

X −→ G(A×X) (word) X −→ G(
∐
σ∈ΣX

|σ|) (tree) for generative;
X −→ (GX)A (word) X −→

∏
σ∈Σ G(X |σ|) (tree) for reactive.

N. Urabe, S. Shimizu and I. Hasuo 24:11

A generative system (probabilistically) chooses which character to generate; while a reactive
one receives a character from the environment. Reactive variants of probabilistic tree au-
tomata have been studied e.g. in [4], following earlier works like [3] on reactive probabilistic
word automata. Further discussion is in Appendix C.1 in [27].

5.1 Trace Semantics of Parity (G, F)-Systems is Well-Defined
In the following key lemma—that is inspired by the observations in [6, 23, 25]—a typical
usage is for XA = X1 + · · ·+Xi and XB = Xi+1 + · · ·+Xn.

I Lemma 5.2. Let X = ((X1, . . . , Xn), s, c) be a parity (G, F)-system, and suppose that we
are given a partition X = XA +XB of X := X1 + · · ·+Xn.

We define a function Γ: K`(G)(X,Z)→ K`(G)(X, 1) by Γ(g) = J !Z � g, where ! : Z → 1
is the unique function of the type. Its variants ΓA : K`(G)(XA, Z) → K`(G)(XA, 1) and
ΓB : K`(G)(XB , Z)→ K`(G)(XB , 1) are defined similarly.

For arbitrary gB : XB →p Z, we define GgB and HgB as the following sets of “fixed points”:

GgB :=
gA :
XA →p Z

∣∣∣∣∣∣∣∣
FX �F [gA,gB]

//

=
FZ

_Jζ−1
��

XA

_cA
OO

�
gA

// Z

 and

HgB :=
hA :
XA →p 1

∣∣∣∣∣∣∣∣
FX �F [hA,ΓB(gB)]

//

=
F1

_
J!F1��

XA

_cA
OO

�
hA

// 1

 (11)

Then ΓA restricts to a function GgB → HgB . Moreover, the restriction is an order isomor-
phism, with its inverse denoted by ∆gB : HgB ∼=→ GgB . J

In the proof of the last lemma (deferred to the appendix in [27]), the inverse ∆gB is defined
by “extending” hA : XA →p 1 to XA →p Z, along the final F -sequence 1 ← F1 ← · · · (more
precisely: the image of the sequence under the Kleisli inclusion J : Meas→ K`(G)).

We are ready to prove existence of EX ’s solution (Definition 3.5).

I Lemma 5.3. Assume the same setting as in Lemma 5.2. We define ΦX : K`(G)(X,Z)→p
K`(G)(X,Z) and ΨX : K`(G)(X, 1)→p K`(G)(X, 1), respectively, by

ΦX (g) := Jζ−1 � Fg � c and ΨX (h) := J !F1 � Fh� c ;

these are like the diagrams in (11), except that the latter are parametrized by XA, XB , gB.
Now consider the following equational systems, where: ηi = µ if i is odd and ηi = ν if i is
even; ui ranges over K`(G)(Xi, Z); and u′i ranges over K`(G)(Xi, 1).

E =

 u1 =η1 ΦX ([u1, . . . , un])� κ1
...

un =ηn ΦX ([u1, . . . , un])� κn

 E′ =

 u′1 =η1 ΨX ([u′1, . . . , u′n])� κ1
...

u′n =ηn ΨX ([u′1, . . . , u′n])� κn

 (12)

We claim that the equational systems have solutions (lsol
1 , . . . , lsol

n) and (l′sol
1 , . . . , l′sol

n); and
moreover, we have Γ(trp(X)) = Γ([lsol

1 , . . . , lsol
n]) = [l′sol

1 , . . . , l′sol
n]. J

I Theorem 5.4. T = G and a polynomial F constitute a parity trace situation (Defini-
tion 3.5). J

I Remark 5.5. The process-theoretic interpretation of the isomorphism GgB ∼= HgB is inter-
esting. Let us set XA = X and XB = ∅ for simplicity. The greatest element on the left is

CONCUR 2016

24:12 Coalgebraic Trace Semantics for Büchi and Parity Automata

the infinitary trace semantics (i.e. accepted languages under the trivial acceptance condi-
tion), as in Theorem 2.8 (cf. Table 1). The corresponding greatest element on the right—a
function hA : XA → G1 ∼= [0, 1]—assigns to each state x ∈ X the probability with which
a run from x does not diverge (recall from Remark 2.6 that the sub-Giry monad G allows
divergence probabilities). The accepted language under the parity condition is in general an
element of GgB that is neither greatest nor least; the corresponding element in HgB assigns
to each state the probability with which it generates a accepting run (over any Σ-tree).

5.2 Probabilistic Parity Tree Automata and Its Languages
I Definition 5.6 (PPTA). A (generative) probabilistic parity tree automaton (PPTA) is

X =
(

(X1, . . . , Xn), Σ, δ : X → G
(∐

σ∈ΣX
|σ|), s ∈ GX) ,

where X = X1 + · · ·+Xn, each Xi is a countable set and Σ is a countable ranked alphabet.
The subdistribution s over X is for the choice of initial states.

In Definition 5.6 the size restrictions on X and Σ are not essential: restricting to discrete
σ-algebras, however, makes the following arguments much simpler.

We shall concretely define accepted languages of PPTAs, continuing Section 4 and de-
ferring precise definitions to Appendix A in [27]. This is mostly standard; a reactive variant
is found in [4].

I Definition 5.7 (TreeΣ and RunX). Let Σ be a ranked alphabet; TreeΣ is the set of Σ-trees.
A finite (Σ∪{∗})-labeled tree λ, with its branching degrees compatible with the label arities,
is called a partial Σ-tree. Here the new symbol ∗ (“continuation”) is deemed to be 0-ary.
The cylinder set associated to λ, denoted by CylΣ(λ), is the set of (non-partial) Σ-trees that
have λ as their prefix (in the sense that a subtree is replaced by ∗). The (smallest) σ-algebra
on TreeΣ generated by the family {CylΣ(λ) | λ is a partial Σ-tree} will be denoted by FΣ.

A run of a PPTA X with state space X is a (possibly infinite) (Σ × X)-labeled tree
whose branching degrees are compatible with the arities of Σ-labels. RunX denotes the set
of runs. The measurable structure FX on RunX is defined analogously to FΣ: a partial run
ξ of X is a suitable (Σ∪{∗})×X-labeled tree; it generates a cylinder set CylX (ξ) ⊆ RunX ;
and these cylinder sets generate the σ-algebra FX . Finally, the set AccRunX of accepting
runs consists of all those runs all branches of which satisfy the (usual) parity acceptance
condition (namely: max{i | π visits states in Xi infinitely often} is even).

The following result is much like [4, Lemma 36] and hardly novel.

I Lemma 5.8. The set AccRunX of accepting runs is an FX -measurable subset of RunX . J

In the following NoDivX (x) is the probability with which an execution from x does not
diverge: since we use the sub-Giry monad (Definition 5.6), a PPTA can exhibit divergence.

I Definition 5.9 (µRun
X over RunGX). Let X = ((X1, . . . , Xn),Σ, δ, s) be a PPTA.

Firstly, for each k ∈ N, let NoDivX ,k : X → [0, 1] (“no divergence in k steps”) be defined
inductively by: NoDivX ,0(x) := 1 and

NoDivX ,k+1(x) :=
∑

(σ,(x1,...,x|σ|))∈
∐

σ∈Σ
X|σ|

δ(x)
(
σ, (x1, . . . , x|σ|)

)
·
∏
i∈[1,|σ|] NoDivX ,k(xi) .

We define NoDivX (x) :=
∧
k∈N NoDivX ,k(x).

N. Urabe, S. Shimizu and I. Hasuo 24:13

Secondly we define a subprobability measure µRun
X over RunX . It is given by

µRun
X (CylX (ξ)) := s

(
rt(ξ)

)
· PX (ξ) for each partial run ξ, where PX (ξ) is given by

PX (ξ) :=

{
NoDivX (x) if ξ =

(
(∗, x)

)
;

δ(x)
(
σ,
(
rt(ξ1), . . . , rt(ξ|σ|)

))
·
∏
i∈[1,|σ|] PX (ξi) if ξ =

(
(σ, x), (ξ1, . . . , ξ|σ|)

)
.

(13)

The above extends to a measure thanks to Carathéodory’s theorem. See Lemma C.3 in [27].
Thirdly we introduce a measure µTree

X over TreeΣ (“which trees are generated by what
probabilities”). It is a push-forward measure of µRun

X along DelSt : RunX → TreeΣ:

µTree
X (CylΣ(λ)) := µRun

X
(

DelSt−1(CylΣ(λ)) ∩AccRunX
)

for each partial Σ-tree λ. (14)

Since X is countable DelSt is easily seen to be measurable. Finally, the accepted language
Lang(X) ∈ G(TreeΣ) of X is defined by µTree

X in the above.

5.3 Coincidence between Conventional and Coalgebraic Languages
I Lemma 5.10. Let X = ((X1, · · · , Xn),Σ, δ, s) be a PPTA with X =

∐
iXi, and Ψ′X be

Ψ′X : [0, 1]X→ [0, 1]X, Ψ′X (p)(x) :=
∑

(σ,x1,...,x|σ|)∈
∐

σ
X|σ| δ(x)(σ, (x1, . . . , x|σ|))·

∏
i∈[1,|σ|]p(xi).

Let us define µTree
X ,x := µTree

X (x) where X (x) is the PPTA obtained from X by changing its ini-
tial distribution s into the Dirac distribution δx; µRun

X ,x is similar. We define AccProbX : X →
[0, 1]—it assigns to each state the probability of generating an accepting run—by AccProbX (x) :=
µRun
X ,x (AccRunX).
Consider the following equational system, where u′i ranges over K`(G)(Xi, 1), and () �

Xi denotes domain restriction.

u′1 =η1 Ψ′X ([u′1, · · · , u′n]) � X1, . . . , un =ηn Ψ′X ([u′1, · · · , u′n]) � Xn

We claim: 1) the system has a solution l′sol
1 , . . . , l′sol

n ; and 2) [l′sol
1 , . . . , l′sol

n] = AccProbX . J

Its proof (in [27]) relies on Lemma B.4 on homomorphisms of equational systems.

I Theorem 5.11 (coincidence, in the probabilistic setting). Let X = ((X1, . . . , Xn),Σ, δ, s) be
a PPTA, and X = X1 + · · · + Xn, and FΣ be the polynomial functor on Meas that corre-
sponds to Σ. Then X is identified with a parity (G, FΣ)-system; moreover its coalgebraic trace
semantics trp(X) (Definition 3.5) coincides with the (probabilistic) language Lang(X) con-
cretely defined in Definition 5.9. Precisely: trp(X)(•)(U) = Lang(X)(U) for any measurable
subset U of TreeΣ, where • is the unique element of 1 in trp(X) : 1→ G(TreeΣ). J

Acknowledgments. Thanks are due to Corina Cîrstea, Kenta Cho, Bartek Klin, Tetsuri
Moriya and Shota Nakagawa for useful discussions; and to the anonymous referees for their
comments.

References
1 Jirí Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Milius, and

Alexandra Silva. A coalgebraic perspective on minimization and determinization. In
Proc. FoSSaCS’12, volume 7213 of LNCS, pages 58–73. Springer, 2012. doi:10.1007/
978-3-642-28729-9_4.

CONCUR 2016

http://dx.doi.org/10.1007/978-3-642-28729-9_4
http://dx.doi.org/10.1007/978-3-642-28729-9_4

24:14 Coalgebraic Trace Semantics for Büchi and Parity Automata

2 André Arnold and Damian Niwiński. Rudiments of µ-Calculus, volume 146 of Stud-
ies in Logic and the Foundations of Mathematics. North-Holland, 2001. doi:10.1016/
S0049-237X(01)80001-X.

3 Christel Baier and Marcus Größer. Recognizing omega-regular languages with probabilistic
automata. In Proc. LICS’05, pages 137–146. IEEE Computer Society, 2005. URL: http:
//dx.doi.org/10.1109/LICS.2005.41, doi:10.1109/LICS.2005.41.

4 Arnaud Carayol, Axel Haddad, and Olivier Serre. Randomization in automata on infinite
trees. ACM Trans. Comp. Logic, 15(3):24:1–24:33, 2014. doi:10.1145/2629336.

5 Vincenzo Ciancia and Yde Venema. Stream automata are coalgebras. In Selected Pa-
pers of CMCS’12, volume 7399 of LNCS, pages 90–108. Springer, 2012. doi:10.1007/
978-3-642-32784-1_6.

6 Corina Cîrstea. Generic infinite traces and path-based coalgebraic temporal logics. Electr.
Notes in Theor. Comp. Sci., 264(2):83–103, 2010. doi:10.1016/j.entcs.2010.07.015.

7 Corina Cîrstea, Alexander Kurz, Dirk Pattinson, Lutz Schröder, and Yde Venema. Modal
logics are coalgebraic. Comp. Journ., 54(1):31–41, 2011. doi:10.1093/comjnl/bxp004.

8 Rance Cleaveland, Marion Klein, and Bernhard Steffen. Faster model checking for the
modal mu-calculus. In Proc. CAV’92, volume 663 of LNCS, pages 410–422. Springer, 1992.
doi:10.1007/3-540-56496-9_32.

9 Ernst-Erich Doberkat. Stochastic Coalgebraic Logic. Monographs in Theoretical Computer
Science. An EATCS Series. Springer, 2009. doi:10.1007/978-3-642-02995-0.

10 Michèle Giry. Categorical aspects of topology and analysis. In A categorical approach to
probability theory, an Intl. Conference at Carleton University, 1981, Proceedings, volume
915 of Lect. Notes in Math., pages 68–85. Springer, 1982. doi:10.1007/BFb0092872.

11 Sergey Goncharov and Dirk Pattinson. Coalgebraic weak bisimulation from recursive equa-
tions over monads. In Proc. ICALP’14, Part II, volume 8573 of LNCS, pages 196–207.
Springer, 2014. doi:10.1007/978-3-662-43951-7_17.

12 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research, volume 2500 of LNCS. Springer, 2002.
doi:10.1007/3-540-36387-4.

13 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction.
Logical Methods in Comp. Sci., 3(4):11:1–11:36, 2007. doi:10.2168/LMCS-3(4:11)2007.

14 Ichiro Hasuo, Shunsuke Shimizu, and Corina Cîrstea. Lattice-theoretic progress measures
and coalgebraic model checking. In Proc. POPL’16, pages 718–732. ACM, 2016. doi:
10.1145/2837614.2837673.

15 Bart Jacobs. Trace semantics for coalgebras. Electr. Notes in Theor. Comp. Sci., 106:167–
184, 2004. doi:10.1016/j.entcs.2004.02.031.

16 Bart Jacobs. Introduction to coalgebra. Towards mathematics of states and observations.
Draft of a book (ver. 2.0), available online, 2012. URL: http://www.cs.ru.nl/B.Jacobs/
CLG/JacobsCoalgebraIntro.pdf.

17 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. J.
Comp. & Syst. Sci., 81(5):859–879, 2015. doi:10.1016/j.jcss.2014.12.005.

18 Bartek Klin. Bialgebraic methods and modal logic in structural operational semantics. Inf.
& Comp., 207(2):237–257, 2009. doi:10.1016/j.ic.2007.10.006.

19 Nancy Lynch and Frits Vaandrager. Forward and backward simulations. Inf. & Comp.,
121(2):214–233, 1995. doi:10.1006/inco.1995.1134.

20 Philip S. Mulry. Lifting theorems for Kleisli categories. In Proc. MFPS’93, volume 802 of
LNCS, pages 304–319. Springer, 1994. doi:10.1007/3-540-58027-1_15.

21 John Power and Hayo Thielecke. Environments, continuation semantics and indexed
categories. In Proc. TACS’97, volume 1281 of LNCS, pages 391–414. Springer, 1997.
doi:10.1007/BFb0014560.

http://dx.doi.org/10.1016/S0049-237X(01)80001-X
http://dx.doi.org/10.1016/S0049-237X(01)80001-X
http://dx.doi.org/10.1109/LICS.2005.41
http://dx.doi.org/10.1109/LICS.2005.41
http://dx.doi.org/10.1109/LICS.2005.41
http://dx.doi.org/10.1145/2629336
http://dx.doi.org/10.1007/978-3-642-32784-1_6
http://dx.doi.org/10.1007/978-3-642-32784-1_6
http://dx.doi.org/10.1016/j.entcs.2010.07.015
http://dx.doi.org/10.1093/comjnl/bxp004
http://dx.doi.org/10.1007/3-540-56496-9_32
http://dx.doi.org/10.1007/978-3-642-02995-0
http://dx.doi.org/10.1007/BFb0092872
http://dx.doi.org/10.1007/978-3-662-43951-7_17
http://dx.doi.org/10.1007/3-540-36387-4
http://dx.doi.org/10.2168/LMCS-3(4:11)2007
http://dx.doi.org/10.1145/2837614.2837673
http://dx.doi.org/10.1145/2837614.2837673
http://dx.doi.org/10.1016/j.entcs.2004.02.031
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
http://dx.doi.org/10.1016/j.jcss.2014.12.005
http://dx.doi.org/10.1016/j.ic.2007.10.006
http://dx.doi.org/10.1006/inco.1995.1134
http://dx.doi.org/10.1007/3-540-58027-1_15
http://dx.doi.org/10.1007/BFb0014560

N. Urabe, S. Shimizu and I. Hasuo 24:15

22 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comp. Sci.,
249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

23 Christoph Schubert. Terminal coalgebras for measure-polynomial functors. In Proc.
TAMC’09, volume 5532 of LNCS, pages 325–334. Springer, 2009. doi:10.1007/
978-3-642-02017-9_35.

24 Alexandra Silva. A short introduction to the coalgebraic method. ACM SIGLOG News,
2(2):16–27, April 2015. doi:10.1145/2766189.2766193.

25 Natsuki Urabe and Ichiro Hasuo. Coalgebraic infinite traces and kleisli simulations. In
Lawrence S. Moss and Pawel Sobocinski, editors, Proc. CALCO’15, volume 35 of LIPIcs,
pages 320–335. Schloss Dagstuhl, 2015. doi:10.4230/LIPIcs.CALCO.2015.320.

26 Natsuki Urabe and Ichiro Hasuo. Quantitative simulations by matrices. Inf. & Comp.,
2016. In press. doi:10.1016/j.ic.2016.03.007.

27 Natsuki Urabe, Shunsuke Shimizu, and Ichiro Hasuo. Coalgebraic trace semantics for Büchi
and parity automata. arXiv preprint, 2016.

28 Natsuki Urabe, Shunsuke Shimizu, and Ichiro Hasuo. Fair simulation for nondeterministic
and probabilistic Büchi automata: a coalgebraic perspective. CoRR, abs/1606.04680, 2016.
URL: http://arxiv.org/abs/1606.04680.

29 R.J. van Glabbeek. The linear time – branching time spectrum I: The semantics of concrete,
sequential processes. In J.A. BergstraA. PonseS.A. Smolka, editor, Handbook of Process
Algebra, chapter 1, pages 3–99. Elsevier, 2001. doi:10.1016/B978-044482830-9/50019-9.

30 Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for
Concurrency, the of 8th Banff Higher Order Workshop, 1995, Proceedings, volume 1043 of
LNCS, pages 238–266. Springer, 1995. doi:10.1007/3-540-60915-6_6.

31 Yde Venema. Automata and fixed point logic: A coalgebraic perspective. Inf. & Comp.,
204(4):637–678, 2006. doi:10.1016/j.ic.2005.06.003.

32 James Worrell. On the final sequence of a finitary set functor. Theor. Comp. Sci., 338(1-
3):184–199, 2005. doi:10.1016/j.tcs.2004.12.009.

CONCUR 2016

http://dx.doi.org/10.1016/S0304-3975(00)00056-6
http://dx.doi.org/10.1007/978-3-642-02017-9_35
http://dx.doi.org/10.1007/978-3-642-02017-9_35
http://dx.doi.org/10.1145/2766189.2766193
http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.320
http://dx.doi.org/10.1016/j.ic.2016.03.007
http://arxiv.org/abs/1606.04680
http://dx.doi.org/10.1016/B978-044482830-9/50019-9
http://dx.doi.org/10.1007/3-540-60915-6_6
http://dx.doi.org/10.1016/j.ic.2005.06.003
http://dx.doi.org/10.1016/j.tcs.2004.12.009

	Introduction
	Preliminaries
	Coalgebras in a Kleisli Category
	Coalgebraic Theory of Trace
	Equational Systems for Alternating Fixed Points

	Coalgebraic Modeling of Parity Automata and Its Trace Semantics
	Coalgebraic Modeling of Büchi/Parity Automata
	Coalgebraic Trace Semantics under the Parity Acceptance Condition

	Coincidence with the Conventional Definition: Nondeterministic
	Coincidence with the Conventional Definition: Probabilistic
	Trace Semantics of Parity (G,F)-Systems is Well-Defined
	Probabilistic Parity Tree Automata and Its Languages
	Coincidence between Conventional and Coalgebraic Languages

