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Abstract
We propose a categorical framework for bisimulations and unfoldings that unifies the classical
approach from Joyal and al. via open maps and unfoldings. This is based on a notion of categories
accessible with respect to a subcategory of path shapes, i.e., for which one can define a nice notion
of trees as glueings of paths. We show that transition systems and presheaf models are instances
of our framework. We also prove that in our framework, several notions of bisimulation coincide,
in particular an “operational one” akin to the standard definition in transition systems. Also, our
notion of accessibility is preserved by coreflections. This also leads us to a notion of unfolding
that behaves well in the accessible case: it is a right adjoint and is a universal covering, i.e., it is
initial among the morphisms that have the unique lifting property with respect to path shapes.
As an application, we prove that the universal covering of a groupoid, a standard construction
in algebraic topology, is an unfolding, when the category of path shapes is well chosen.
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1 Introduction

Bisimulations were introduced in [12] as a way to express that two concurrent systems
are “equivalent”, in a way that would reflect not only trace equivalence, but also the
branching structure of executions. Later, Joyal, Nielsen and Winskel [6] developed a theory
of bisimulations using open maps, which are particular morphisms in some category of
models, which satisfy lifting properties with respect to a specified subcategory of execution
paths. They made explicit links between this abstract view of bisimulations and the classical
relational definition, for some models of concurrency, including transition systems and event
structures.

In some other line of work, Nielsen, Plotkin and Winskel [10] introduced a notion of
unfolding for 1-safe Petri nets. The unfolding produces an “equivalent” Petri net, which is
infinite in general (in the absence of cut-rules) and is non-looping. This is at the basis of
numerous verification methods on Petri nets [2]. Later, Winskel [13] developed the categorical
framework of Petri nets and unfoldings by relating them to coreflections (special cases of
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25:2 Bisimulations and Unfolding in P-Accessible Categorical Models

adjoint functors) between some categories of concurrent models, more particularly occurence
nets and event structures. Winskel also developed a classification of concurrent models by
coreflections [14].

As open maps, unfoldings are closely related to prominent concepts in algebraic topology.
Unfoldings are closely linked to coverings, which are nice fibered spaces which (also) satisfy
unique lifting properties (see e.g. [4]). Coverings are closely related to partial unfoldings of
the state space (see e.g. [13]). The universal covering can actually be defined, in ordinary
algebraic topology, as a complete delooping of paths in topological spaces, which makes
it very similar to unfoldings of transition systems. Although the analogy is enlightening,
formalizing it stumbles on various difficulties. In this paper, we propose to unify those
theories, by putting lifting properties of “paths” at the center of the picture.

In Section 2 we recall the case of transition systems, and the classical notion of bisimilarity
[12]. The categorical approaches to bisimulation via open maps and via “strong path-
bisimulation” of Joyal, Nielsen and Winskel [6] are equivalent to this classical notion of
bisimulation in the particular case of transition systems, but are not equivalent in general, if
we do not set up the proper context.

The framework of P-accessible models we are developing is going to define this context,
where those two notions of bisimilarities will be equivalent. We introduce accessible models
in Section 3 and prove this result in the same section. Somehow, these categories are the
right ones in the sense that their objects are closely tied with the glueing of paths within
them. It will be trivially the case for transition systems: they will be accessible models in
our sense.

In Section 4, we show that the framework of presheaf models of [6] is also a particular
case of our framework, yielding another proof of one of the main results of [6].

Many models are related through coreflections (see, e.g. [11]). In Section 5, we show that,
when two models are related this way, then accessibility is transferred from one the other.
This makes our notion possibly applicable to a great variety of models.

We then turn to unfoldings in accessible models, in Section 6. Indeed, there is a very nice
notion of paths and path extensions in accessible models, making the notion of unfolding
very natural. In particular, in Section 6.2, we show that the unfolding of a model is bisimilar
to the original model. As a bonus, unfoldings are defined in a canonical manner in accessible
categories: they are right adjoints (Section 6.3). Finally, we show that unfoldings in accessible
models enjoy unique path lifting properties (Section 7.2) making them similar to universal
coverings. In the case of groupoids for instance, we show that unfoldings are universal
coverings (recapped in Section 7.1).

2 Categorical models and bisimilarities

We first recall, from [6], two notions of bisimilarity in a category with a specified subcategory
of path shapes.

2.1 Category of models, subcategory of paths

We consider a categoryM (of models) together with a small subcategory (of path-shapes)
P . We assume thatM and P have a common initial object I, i.e., an object I ∈ P such that
for every object A of P (resp. ofM), there is a unique morphism in P (resp. inM) from I

to A. We note ιA this unique morphism. One typical example is the category of transition
systems, that we briefly recap below.
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Fix an alphabet Σ. A transition system T = (Q, i,∆) on Σ is the following data: a set
Q (of states); a initial state i ∈ Q; a set of transitions ∆ ⊆ Q× Σ×Q.

A morphism of transition systems on Σ f : T1 = (Q1, i1,∆1) −→ T2 = (Q2, i2,∆2)
is a function f : Q1 −→ Q2 such that f(i1) = i2 and for every (p, a, q) ∈ ∆1, (f(p), a, f(q)) ∈
∆2.

We note TS(Σ), the category of transition systems on Σ and morphisms of transition
systems.

The subcategory of path-shapes will be in this case the category of branches: for n ∈ N,
a n-branch shape on Σ is a transition system ([n], 0,∆) where:

[n] is the set {0, . . . , n};
∆ is of the form {(i, ai, i+ 1) | i ∈ [n− 1]} for some a0, ..., an−1 in Σ.

0 1 2 . . . n− 1 n
a0 a1 an−1

We then take Br(Σ) as the full subcategory of TS(Σ) of n-branch shapes for all n ∈ N.
A common initial object of TS(Σ) and Br(Σ) is then the 0-branch shape I = ([0], 0,∅).
We call n-branch of a transition system T any morphism of transition system from a
n-branch form to T .

2.2 A relational bisimilarity of models: path-bisimilarity
Equivalence of transition systems is defined through the notion of bisimulation. Classically
[12], a bisimulation between T1 = (Q1, i1,∆1) and T2 = (Q2, i2,∆2) is a relation R ⊆ Q1×Q2
such that:
(i) (i1, i2) ∈ R;
(ii) if (q1, q2) ∈ R and (q1, a, q

′
1) ∈ ∆1 then there is q′2 ∈ Q2 such that (q2, a, q

′
2) ∈ ∆2 and

(q′1, q′2) ∈ R;
(iii) if (q1, q2) ∈ R and (q2, a, q

′
2) ∈ ∆2 then there is q′1 ∈ Q1 such that (q1, a, q

′
1) ∈ ∆1 and

(q′1, q′2) ∈ R.
We then say that two transition systems are bisimilar if there is a bisimulation between
them.

A bisimulation between T1 and T2 induces a relation R′n between n-branches of T1 and
n-branches of T2 by:

R′n = {(f1 : B1 −→ T1, f2 : B2 −→ T2) | ∀i ∈ [n], (f1(i), f2(i)) ∈ R}

These relations satisfy that:
(ιT1 , ιT2) ∈ R′0 by (i);
by (ii), if (f1, f2) ∈ R′n and if (f1(n), a, q1) ∈ ∆1 then there is q2 ∈ Q2 such that
(f2(n), a, q2) ∈ ∆2 and (f ′1, f ′2) ∈ R′n+1 where f ′i(j) = fi(j) if j ≤ n, qi otherwise;
symmetrically with (iii);
if (f1, f2) ∈ R′n+1 then (f ′1, f ′2) ∈ R′n where f ′i is the restriction of fi to [n].

In fact, bisimilarity of transition systems is equivalent to the existence of such relations
on n-branches. This leads us to the general notion of strong path-bisimulation [6].

A strong path-bisimulation R between X and Y , objects ofM is a set of elements of
the form X

f←−−− P g−−−→ Y with P object of P such that:
(a) X ιX←−−−− I ιY−−−−→ Y belongs to R;
(b) if X f←−−− P

g−−−→ Y belongs to R then for every path extension of X, i.e, every
morphism p in P such that:

CONCUR 2016



25:4 Bisimulations and Unfolding in P-Accessible Categorical Models

P X

Q

p

f ′

f

commutes then there exists a path extension of Y

P Y

Q

p

g′

g

such that X f ′←−−−− Q g′−−−→ Y belongs to R;
(c) symmetrically;
(d) if X f←−−− P

g−−−→ Y belongs to R and if we have a morphism p : Q −→ P ∈ P then
X

f◦p←−−−−− Q g◦p−−−−→ Y belongs to R;
We say that X and Y are strong path bisimilar iff there exists a strong path bisimulation
between them.

2.3 A fibrational bisimilarity of models: P-bisimilarity

Lifting properties are a useful ingredient in category theory and algebraic topology. In [6],
they permit to design an abstract notion of bisimilarity via morphisms which satisfy lifting
properties with respect to paths, recovering a large variety of models and motivating the use
of presheaf models by the work on pretopoi in [5].

We say that a morphism f : X −→ Y ofM is (P-)open iff for all commutative diagrams:

P X

Q Y

x

f

y

p

with p : P −→ Q ∈ P, there exists a morphism θ : Q −→ X such that the following diagram
commutes:

P X

Q Y

x

f

y

p
θ

We then say that two objects X and Y of M are P-bisimilar iff there exists a span
f : Z −→ X and g : Z −→ Y where f and g are P-open.

It is known that if X and Y are P-bisimilar then they are strong path bisimilar [6]. The
converse also holds in the case of transition systems (both P and path bisimilarities coincide
with the classical bisimilarity), but there is no general result for the converse. The purpose
of the following section is to investigate a general framework in which those two notions of
bisimilarity will coincide.
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3 Accessible models and equivalence of bisimilarities

For the converse, we must build a span of open maps from a strong path-bisimulation. It
requires in particular that we construct an object ofM, which will be the tip of the span.
One way of doing so is to glue the elements of the bisimulation in order to obtain an "object
of bisimilar paths". Categorically, a glueing is a colimit, so a natural hypothesis should be
the existence of some colimits inM.

Concretely, a P-tree inM is a colimit inM of a small diagram with values in P , i.e., of
a functor D : D −→ P where D is a small category. We say that all P-trees exist in M
if every small diagram with values in P has a colimit inM. In the category of transition
systems, Br(Σ)-trees are exactly synchronization trees, i.e., a transition system T = (Q, i,∆)
such that:

every state in Q is accessible, i.e., for every q ∈ Q, there is a n-branch f : B −→ T for
some n ∈ N such that f(n) = q;
T is acyclic, i.e., for every branch f : B −→ T , there is no i 6= j such that f(i) = f(j);
T is non-joining, i.e., if (q1, a, p) and (q2, b, p) ∈ ∆ then a = b and q1 = q2.

In particular, all Br(Σ)-trees exists in TS(Σ). We note Tree(M,P) for the full subcategory
ofM of P-trees.

Let R be a strong path bisimulation between X and Y and assume that all P-trees exist.
Let us construct a span of maps between X and Y . First, we construct the tip of the span as
the colimit of a particular diagram with values in P , defined from R. Let C be the following
category:

objects of C are elements of R;
morphisms from X

x←−−− P y−−−→ Y to X x′←−−−− Q y′−−−−→ Y are morphisms p : P −→ Q

of P such that the following diagram commutes:
P

YX

Qx′

x

p

y′

y

Then define the diagram F : C −→ P which maps every X x←−−− P y−−−→ Y ∈ R to P and
every p to itself. Since P-trees exist (F is small because R is a set), let (Z, ([α])α∈R) be the
colimit of F , where the [X x←−−− P

y−−−→ Y ] : P = F (X x←−−− P
y−−−→ Y ) −→ Z are the

maps from the colimit.
Z will be the tip of our span. Now we need to construct maps Φ : Z −→ X and

Ψ : Z −→ Y . Let us do it for Φ: since (X, (F (X x←−−− P y−−−→ Y ) x−→ X)) is a cocone of F ,
there exists a unique morphism Φ : Z −→ X such that for all X x←−−− P y−−−→ Y ∈ R the
following diagram commutes:

P Z

X

x
Φ

[X x←−−− P y−−−→ Y ]

To prove that strong path-bisimilarity implies P-bisimilarity, we just need to prove that
Φ is open. But it does not hold in general. We will need that we do not create more paths
in a tree than the ones we used in the glueing. In the case of transition systems, this says
that every path in a tree seen as the colimit of a certain diagram D with values in P is a
subbranch of some D(i). More generally, we will say thatM is P-accessible if :

CONCUR 2016



25:6 Bisimulations and Unfolding in P-Accessible Categorical Models

all P-trees exist;
every morphism f : P −→ Z where P ∈ P and (Z, (ηd)d∈D) is the colimit of a non-
empty small diagram D : D −→ P factorizes as f = ηd ◦ p for some d ∈ D with
p : P −→ D(d) ∈ P.

In particular, TS(Σ) is Br(Σ)-accessible.

I Remark. The name “accessible” is a reference to κ-accessible categories [8] where κ is
a cardinal, which is a very similar property of a category, requiring the existence of some
colimits (in this case, filtered colimits) and the same kind of factorizations for morphisms
whose codomain is such a colimit.

Assuming thatM is P-accessible, we can now prove that Φ is open. Consider a commut-
ative diagram of the form:

P Z

Q X

z

Φ

x

p

with p in P. As Z is a colimit of a non-empty (because R is non-empty) small diagram,
then by P-accessibility, z : P −→ Z factorizes as [X x′←−−−− P ′

y′−−−−→ Y ] ◦ p′ for some
X

x′←−−−− P ′
y′−−−−→ Y ∈ R and p′ : P −→ P ′ ∈ P. Then, by condition (d) of a strong path

bisimulation, X x′◦p′←−−−−−− P
y′◦p′−−−−−→ Y belongs to R. Moreover, the following diagram

commutes:

P

YX

P ′x′

x′ ◦ p′

p′

y′

y′ ◦ p′

Then, z = [X x′←−−−− P ′ y′−−−−→ Y ] ◦ p′ = [X x′◦p′←−−−−−− P y′◦p′−−−−−→ Y ].
So, x ◦ p = Φ ◦ z = Φ ◦ [X x′◦p′←−−−−−− P y′◦p′−−−−−→ Y ] = x′ ◦ p′ by definition of Φ. This means
that we have the following commutative diagram:

P X

Q

p
x

x′ ◦ p′

Then, by condition (b) of a strong path bisimulation, there is a path extension of Y :

P Y

Q

p
y

y′ ◦ p′

such that X x←−−− Q y−−−→ Y belongs to R.
Then the morphism θ = [X x←−−− Q y−−−→ Y ] : Q −→ Z is the lifting we were looking for:
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P Z

Q X

z

Φ

x

p
θ

So we deduce:

I Theorem 1. IfM is P-accessible and if X and Y are strong path bisimilar then they are
P-bisimilar.

4 Presheaf models

Presheaf models were introduced in [6], motivated by the work on pretopoi in [5]. We prove
in this section that presheaf models are a particular case of accessible models.

Assume given a small category ∆ with an initial object J . A rooted presheaf on ∆ is a
functor F from ∆op to Set such that F (J) is a singleton. Let [∆op, Set]∗ be the category of
rooted presheaves on ∆ and natural transformations. We have a functor (called the Yoneda
embedding) Y : ∆ −→ [∆op, Set]∗:

we associate an object P of ∆ with the rooted presheaf Y(P ) which maps:
every object Q of ∆ to ∆(Q,P )
every morphism p : Q −→ Q′ of ∆ to the function Y(P )(p) : ∆(Q′, P ) −→ ∆(Q,P )
f 7→ f ◦ p

we associate a morphism p : P −→ P ′ with the natural transformation Y(p) : Y(P ) −→
Y(P ′) defined by

Y(p)Q : ∆(Q,P ) −→ ∆(Q,P ′) f 7→ p ◦ f

I Theorem 2. Let P be the image of Y andM = [∆op, Set]∗. ThenM is P-accessible.

Proof.
P is a full embedding of M: by the Yoneda lemma.
computation of colimits in M: consider a small diagram D : U −→M. The colimit
in [∆op, Set]∗ of D is the colimit in [∆op, Set] (which is cocomplete [1]) of the small
(non-empty) diagram D⊥ : U⊥ −→M where:

U⊥ is the category obtained by adding an object ⊥ to U with a unique morphism from
⊥ to any object of U or ⊥ and no morphism from an object of U to ⊥
D⊥ maps ⊥ to Y(J) (which is the initial object ofM and P by the Yoneda lemma),
any object u of U to D(u), the morphism from ⊥ to u object of U⊥ to the unique
natural transformation ηu from Y(J) to D⊥(u) and any morphism ν of U to D(ν)

all trees exist: consequence of the previous point
P-accessibility: let D : U −→ P be a non-empty small diagram and f : Y(P ) −→
colim D a morphism ofM with P in ∆ and colim D the colimit of D inM. (colim D)(P )
is computed as the quotient:

(
⊔
u∈U

D(u)(P ) t∆(P, J))/ ∼

where ∼ is the equivalence relation on
⊔
u∈U

D(u)(P ) t∆(P, J) generated by:

for every ν : u −→ u′ of U , for every x ∈ D(u)(P ), x ∼ D(ν)P (x)
for every x ∈ ∆(P, J) and every u in U , x ∼ ηu(x)

CONCUR 2016



25:8 Bisimulations and Unfolding in P-Accessible Categorical Models

Since U is non-empty, every x in ∆(P, J) is equivalent to some element of
⊔
u∈U

D(u)(P ). So,

every element of (colim D)(P ) is the image of one of the projections of an element of some
D(u)(P ). Let v be an object of U and x ∈ D(v)(P ) such that fP (idP ) ∈ (colim D)(P ) is
the image of x by the projection from D(v)(P ) to (colim D)(P ). By the Yoneda lemma,
there exists a unique natural transformation θ : Y(P ) −→ D(v) such that θP (idP ) = x.
θ belongs to P because P is a full embedding of M. If πv : D(v) −→ colimD is the
morphism from the universal cocone, then by the Yoneda lemma, f = πv ◦ θ.

J

5 Relationships with coreflections

Coreflections are a nice categorical way to express the fact that a computational model can
be simulated by another one. This view was initiated in [13], where it was shown in particular
that there is a coreflection from event structures to occurrence nets and so to 1-safe Petri
nets. Note that the right adjoints of those coreflections give interesting constructions : in
the case of occurrence nets in Petri nets, the right adjoint gives what is called the unfolding
of a 1-safe Petri net. In this section, we prove that accessibility is preserved by coreflections.

In fact we can prove the even more general following theorem:

I Theorem 3. Let P (resp. P ′) be a subcategory ofM (resp. M′). Assume that:
M is P-accessible
there is a functor F :M−→M′ such that:
F preserves trees i.e. for every small diagram D : U −→ P, the colimit of F ◦D in
M′ exists and is equal to F (colim D)
F induces an functor from P to P ′
there is a functor G : P ′ −→ P and a natural isomorphism ν : F ◦G −→ idP′

ThenM′ is P ′-accessible.

The preservation of trees holds for example when F is a left adjoint. The other two
conditions hold for example when F induces a equivalence between P and P ′. So, we deduce:

I Corollary 4. If F :M−→M′ is a coreflection, if P ′ is the image of P by F and ifM is
P-accessible thenM′ is P ′-accessible.

Proof of Theorem 3. Let G : P ′ −→ P and ν : F ◦G −→ idP′ a natural isomorphism.
existence of trees: let D : U −→ P ′ be a small diagram. By preservation of trees
and existence of trees in M, the colimit of F ◦ G ◦ D in M′ exists and is equal to
F (colim G ◦D). But ν induces a natural isomorphism between D and F ◦G ◦D. Then
the colimit of D inM′ exists.
P ′-accessibility: Let z : P ′ −→ Z morphism ofM′ with P ′ ∈ P ′ and (Z, (ηu)u∈U ) is
the colimit of a non-empty small diagram D : U −→ P ′.
By naturality of ν, the following diagram commutes:

P ′ Z

F ◦G(P ′) F ◦G(Z)

z

ν−1
P ′

νZ

F ◦G(z)

By P-accessibility, G(z) : G(P ′) −→ G(colim D) = colim (G ◦D) factorizes as G(z) =
ηu ◦ p with p : G(P ′) −→ G ◦D(u) morphism of P and ηu : G ◦D(u) −→ colim(G ◦D)
is from the universal cocone. Then the following diagram commutes:



J. Dubut, E. Goubault, and J. Goubault-Larrecq 25:9

F ◦G ◦D(u)

P ′ colim D

F ◦G(P ′) F ◦G(colim D)

F (p) F (ηu)

z

ν−1
P ′

νcolim D

F ◦G(z)

Then z factorizes as η′u ◦ (νD(u) ◦ F (p) ◦ ν−1
P ′ ) with η′u : D(u) −→ colim D coming from

the universal cocone and νD(u) ◦ F (p) ◦ ν−1
P ′ : P ′ −→ D(u) morphism of P ′.

J

6 Unfoldings in accessible models

6.1 The case of TS(Σ)
The unfolding of a transition system is an equivalent system without loops, obtained by
“unfolding” the loops. More precisely, it is a tree which will be bisimilar to the transition
system. Given a transition system T = (Q, i,∆), the unfolding Unfold(T ) of T is the
synchronization tree (P, j,Γ) where:

P = {(q0, a1, q1, . . . , an, qn) | qi ∈ Q, ai ∈ Σ, (qi, ai+1, qi+1) ∈ ∆ ∧ q0 = i}
j = (i)
Γ = {((q0, a1, q1, . . . , an, qn), b, (q0, a1, q1, . . . , an, qn, b, q)) | (qn, b, q) ∈ ∆}

It is easy to check that {(qn, (q0, a1, q1, . . . , an, qn)) | (q0, a1, q1, . . . , an, qn) ∈ P} is a bisimu-
lation between T and Unfold(T ).
Equivalently, the unfolding of T can be defined as a glueing of all branches of T , this is the
way we will define more generally the unfolding in a categorical model.

6.2 P-unfolding and bisimilarity
LetM be a category where all P-trees exist and X an object ofM. Let P ↓ X be the small
comma category whose:

objects are morphisms x : P −→ X ofM with P in P
morphisms from x : P −→ X to x′ : Q −→ X are morphisms p : P −→ Q of P such that
the following diagram commutes:

P

X

Qx′

x

p

We then define the small diagram FX : P ↓ X −→ P which maps every x : P −→ X to
P and every p to itself. Let Unfold(X) be the colimit of FX in M. We call it the (P-)
unfolding of X. Since (X, (x : P −→ X)x) is a cocone of FX , there is a unique morphism
unfX : Unfold(X) −→ X such that for every x : P −→ X with P ∈ P , the following diagram
commutes:

FX(x : P −→ X) = P

X

Unfold(X)
unfX

x

[x : P −→ X]

CONCUR 2016



25:10 Bisimulations and Unfolding in P-Accessible Categorical Models

where [x : P −→ X] is the morphism coming from the colimit.
Using a similar argument as in Theorem 1, we have the following:

I Theorem 5. When M is P-accessible, unfX is P-open and so X and Unfold(X) are
P-bisimilar (strong path bisimilar).

6.3 Unfolding is a right adjoint
The following lemma implies that the unfolding of a tree (and so of an unfolding) is isomorphic
to the tree itself:

I Lemma 6.
(i) When all trees exist inM, Unfold extends to a functor Unfold :M−→ Tree(M,P).
(ii) When M is P-accessible, P is dense in Tree(M,P) i.e. for all X ∈ Tree(M,P),

(X, (x)x:P−→X) is a colimit of FX .

Proof.
(i) Let f : X −→ Y be a morphism ofM. Then (Unfold(Y ), ([f ◦ x : P −→ Y ])x:P−→X) is

a cocone of FX . So there is a unique morphism Unfold(f) : Unfold(X) −→ Unfold(Y )
such that for every path x : P −→ X of X, the following diagram commutes:

P

Unfold(X)

Unfold(Y )Unfold(f)

[x : P −→ X]

[f ◦ x : P −→ Y ]

(ii) Assume given another cocone (Z, (κx : P −→ Z)x:P−→X) of FX . We construct a
morphism Φ : X −→ Z like this: as X is in Tree(M,P), there is a small non-empty
diagram G : U −→ P such that (X, (µu)u∈U ) is a colimit of G for some µu. So, for all u,
µu : D(u) −→ X is an object of P ↓ X. Since (Z, (κµu : D(u) −→ Z)u∈U ) is a cocone
of D, there is a unique morphism Φ : X −→ Z such that for all u ∈ U , the following
diagram commutes:

D(u)

Z

X
µu

κµu

Φ

Then, we can check that Φ is a morphism of cocones from (X, (x)x:P−→X) to (Z, (κx :
P −→ Z)x:P−→X) and that it is the unique such morphism.

J

From this sort of density property, we deduce that the unfolding is a right adjoint of the
inclusion of trees inM. This result is similar to the one from [13] stating that the unfolding
is the right adjoint of the inclusion of occurrence nets in 1-safe Petri nets.

I Theorem 7. WhenM is P-accessible, Unfold is a right adjoint of inj : Tree(M,P) −→
M, the embedding of Tree(M,P) inM. In particular, the injection of Tree(M,P) inM
is a coreflection.

Proof.
definition of the counit ε : inj ◦Unfold −→ idM: εX = unfX .
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definition of the unit η : idTree(M,P) −→ Unfold◦ inj: by density of P in Tree(M,P),
for all X ∈ Tree(M,P) there is a unique (iso)morphism ηX : X −→ Unfold(X) such
that for all x : P −→ X, ηX ◦ x = [x : P −→ X].

J

7 Unfoldings and universal coverings

Unfoldings and coverings of spaces [9] are very similar in the sense that they both “unfold”
loops (or “kill” the first homotopy group). But it seems that there were no general formal
links in the literature between those two structures. We present here a view toward this.

7.1 Coverings of groupoids
Coverings of groupoids are more natural than coverings of spaces as they are defined by
lifting properties and their existence does not assume any hypothesis on the groupoid. They
are very close to coverings of spaces since a covering of a space induces a covering of its
fundamental groupoid and lots of properties of coverings of spaces can be expressed on the
induced coverings of groupoids [9].

A small pointed connected groupoid (spc groupoids for short) is a pair (C, c) of
a small connected groupoid C and an object c of C. A pointed functor is a functor
F : (C, c) −→ (D, d) between spc groupoids such that F (c) = d. We note Grpd? the category
of spc groupoids and pointed functors.

A covering of a spc groupoids (C, c) is a pointed functor F : (C̃, c̃) −→ (C, c) such
that for every morphism f : c −→ c′ of C there exists a unique object c̃′ of C̃ and an
unique morphism f̃ : c̃ −→ c̃′ such that F (f̃) = f . We say that a covering is universal if
C̃(c̃, c̃) = {idc̃}.

Covering are similar to open maps since they satisfy a lifting property. In fact, they
are open maps when we consider the following subcategory of paths. Let I be the full
subcategory of Grpd? whose objects are the following to spc groupoids:

0, the spc groupoid with one object and only the identity as morphism
1, the spc groupoid with two objects:

0 1

pointed on 0.

It is easy to check that Grpd? is I-accessible.
Coverings are exactly the open maps whose lifts are unique. Universal coverings are

universal in the category of coverings in the following sense [9]: given a universal covering
F : (C̃, c̃) −→ (C, c) and a covering G : (D, d) −→ (C, c), then there is a unique pointed
functor H : (C̃, c̃) −→ (D, d) such that G ◦H = F . Moreover, H is a covering. This means
that universal covering is initial in the category of coverings. In particular, universal coverings
are unique up to isomorphism. Contrary to universal coverings of spaces, universal coverings
of groupoids always exist [9].

7.2 Unfoldings and unique path lifting property
We have just seen that (universal) coverings are defined by unique lifting property. Now let
us see the link between unfoldings and unique liftings.

We say that a morphism f : X −→ Y is a (P-) covering if it has the unique path
lifting property, i.e., if for all commutative diagram:
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P X

Q Y

x

f

y

p

with p : P −→ Q ∈ P, there exists a unique morphism θ : Q −→ X such that the following
diagram commutes:

P X

Q Y

x

f

y

p
θ

I Remark. This is the same as P-open but with the unicity of the lift.
The following result states that unfolding is a covering and that moreover it is initial

among coverings.

I Theorem 8. WhenM is P-accessible:
(i) unfX has the unique path lifting property
(ii) for every morphism f : Y −→ X which has the unique lifting property, there is a unique

morphism f̃ : Unfold(X) −→ Y such that f ◦ f̃ = unfX . Moreover, f̃ has the unique
path lifting property.

Proof.
(i) This is a consequence of ii) because idX has the unique path lifting property and

idX ◦ unfX = unfX and so unfX = ĩdX .
(ii) construction of f̃ : For every x : P −→ X, by the unique path lifting property,

there is a unique x̃ : P −→ Y such that

I Y

P X

ιY

f

x

ιP
x̃

i.e. a unique x̃ such that f ◦ x̃ = x. Since (Y, (x̃)x:P−→X) is a cocone of FX and since
(Unfold(X), ([x])x) is a colimit of FX , there is a unique f̃ : Unfold(X) −→ Y such
that for every x : P −→ X, f̃ ◦ ιx = x̃ and so, f ◦ f̃ ◦ ιx = f ◦ x̃ = x = unfX ◦ ιx and
by unicity of the definition of unfX , f ◦ f̃ = unfX .
unicity of f̃ : consequence of the unique path lifting property of f .
existence of the lift: The lift of a diagram of the form:

P Unfold(X)

Q Y

z

f̃

y

p

with p ∈ P, is obtained as a lift of the following diagram:
P Unfold(X)

Q X

z

unfX

f ◦ y

p
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coming from the fact that unfX is P-open.
unicity of the lift: consequence of P-accessibility.

J

In the case of Grpd? and I, this implies that the unfolding is a covering and is initial in
the category of coverings. So we deduce:

I Corollary 9. The universal covering of a spc groupoid coincides with its I-unfolding.

8 Conclusion

We have generalized Joyal, Nielsen and Winskel’s approach of [6] to what we called accessible
models. We have shown in particular that presheaf models and transitions systems are
particular cases of accessible models. In these models, not only do we have a faithful
formulation of bisimulation in the form of open maps, but also, we have a nice characterization
of unfoldings, as form of generalized universal covering.

In the future, we would like to exploit this framework on a variety of models. As
coreflections produce accessible categories from accessible categories, this is already the
case for some interesting models. On top of this, we would like to study the case of 1-safe
Petri nets in more detail and also, hybrid and stochastic hybrid models for which notions of
bisimulations have been defined in the literature, see e.g. [7, 3].
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