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Abstract
QCTL extends the temporal logic CTL with quantification over atomic propositions. While
the algorithmic questions for QCTL and its fragments with limited quantification depth are
well-understood (e.g. satisfiability of QkCTL, with at most k nested blocks of quantifiers, is
(k + 1 )-EXPTIME-complete), very few results are known about the expressiveness of this logic.
We address such expressiveness questions in this paper. We first consider the distinguishing power
of these logics (i.e., their ability to separate models), their relationship with behavioural equi-
valences, and their ability to capture the behaviours of finite Kripke structures with so-called
characteristic formulas. We then consider their expressive power (i.e., their ability to express
a property), showing that in terms of expressiveness the hierarchy QkCTL collapses at level 2
(in other terms, any QCTL formula can be expressed using at most two nested blocks of quanti-
fiers).
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1 Introduction

Temporal logics have been introduced in computer science in the late 1970’s [18]; they provide
a powerful formalism for specifying and verifying (e.g. model checking [19, 3]) correctness
properties of (finite-state models representing) evolving systems. Various kinds of temporal
logics have been defined, with different expressiveness, succinctness and algorithmic properties.
For instance, the Computation Tree Logic (CTL) expresses properties of the computation
tree of the system under study; it has rather limited expressive power (it cannot express
fairness), but enjoys PTIME-complete model-checking. The Linear-time Temporal Logic (LTL)
expresses properties of a single execution at a time. It can express fairness along that single
execution, but cannot express properties of other possible executions; LTL model checking is
PSPACE-complete. The logic CTL∗ combines CTL and LTL, offering better expressiveness
than CTL with the same (theoretical) complexity as LTL.

In terms of expressiveness, CTL∗ still has some limitations: in particular, it lacks the
ability of counting. For instance, it cannot express that an event occurs (at least) at every
even position along a path, or that a state has two successors. In order to cope with this,
temporal logics have been extended with propositional quantifiers [20]: those quantifiers
allow for adding fresh atomic propositions in the model before evaluating the truth value of
a temporal-logic formula. That a state has at least two successors can then be expressed

∗ Work supported by STREP project Cassting (FP7-601148) and ERC Stg Grant EQualIS (FP7-308087).

© Amélie David, François Laroussinie, and Nicolas Markey;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 28; pp. 28:1–28:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


28:2 On the Expressiveness of QCTL

(in quantified CTL, hereafter written QCTL) by saying that it is possible to label the model
with atomic proposition p in such a way there is a successor that is labelled with p and one
that is not.

The algorithmic questions about QCTL have been extensively studied [14, 7, 17, 8, 4, 15],
with various semantic assumptions (in particular, depending on whether the labellings refer
to the finite-state model or to its execution tree). In the latter case, model-checking QCTL
with at most k nested propositional quantifiers (written QkCTL) has been shown k-EXPTIME-
complete [15], which tends to indicate that propositional quantification substantially increases
the expressiveness of the logic.

However, the expressiveness of QCTL has remained mostly unexplored, except for a few
(rather straightforward) results: QCTL is as expressive as1 MSO; QCTL and QCTL∗ are
equally expressive; QCTL formulas can be written in prenex normal form. To the best of
our knowledge, no results are known about the relative expressiveness of QCTL and its
fragments QkCTL with limited quantification height.

In this paper, we focus on the so-called tree semantics, where quantification refers to the
execution tree. The main contributions presented in this paper are the following:

all logics from Q1CTL to full QCTL∗ have the same distinguishing power. We define a
bisimulation equivalence that precisely corresponds to the distinguishing power of these
logics.
given a regular tree T , one can build a characteristic formula ΦT in Q2CTL such that
any tree T ′ satisfying ΦT is isomorphic to T . This completes the result of [2], where
a construction of characteristic formulas in CTL was presented for the bisimulation
equivalence.
all logics from Q2CTL to QCTL∗ have the same expressiveness, but Q1CTL and Q1CTL∗

are less expressive. In particular, any QCTL or QCTL∗ formula can be translated into a
formula in Q2CTL (i.e., with at most two nested blocks of propositional quantifiers)2.

The outline of the paper is as follows: we begin with setting up the necessary formalism
in order to define QCTL∗ and its fragments. We then devote Section 3 to the study of the
distinguishing power of QkCTL, showing in particular that if QCTL can distinguish between
two finite-state models, then already Q1CTL can. We also develop characteristic formulas
in this section. Finally, Section 4 focuses on expressiveness, with as main result the fact
that any QCTL∗ formula has an equivalent formula in Q2CTL, but Q2CTL is strictly more
expressive than Q1CTL∗.

2 Definitions

2.1 Words and trees

Let Σ be a finite alphabet. A finite word over Σ is a finite sequence w = (wi)1≤i≤k. The in-
teger k is the length of w, usually denoted by |w|. We write ε for the empty word, which is the
unique word of size zero, and identify the alphabet Σ with the set of words of length 1 as long

1 This requires adequate definitions, since a temporal logic formula may only deal with the reachable part
of the model, while MSO has a more global point of view.

2 Notice that a similar result exists for MSO over trees: one alternation of second-order quantifiers is
enough to express any MSO property. But while it relies on similar tree-automata techniques, our result
does not directly follow from the result for MSO: the translated MSO formula may contain first-order
quantifiers, which involves extra propositional quantifiers when translated to QCTL.
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as it raises no ambiguity. For a non-empty word w, we let last(w) = w|w|. The concatenation
of two words w and w′, denoted w · w′, is the word z of size |w|+ |w′| defined as

zi = wi when 1 ≤ i ≤ |w| zi = w′i−|w| when |w|+ 1 ≤ i ≤ |w|+ |w′|.

For a finite word w and a finite set of words S, we let w · S = {w · w′ | w′ ∈ S}. A word w
is a prefix of a word z if there exists a word w′ such that z = w · w′. This defines a partial
order ≤ over words. An infinite word is the limit of an infinite increasing sequence of finite
words; infinite words can equivalently be seen as infinite sequences of letters of Σ. The size of
an infinite word w is |w| = +∞. The notions of concatenation of a finite word with an infinite
word, and of prefix of an infinite word, are easily obtained from the definitions for finite words.
We write Σ∗ for the set of finite words, and Σω for the set of infinite words. Given an infinite
word w, we write Inf(w) ⊆ Σ for the set of letters that appear infinitely many times in w.

I Definition 1. Let D be a set and Σ be a finite alphabet. A Σ-labelled D-tree is a
pair T = 〈T, l〉, where

T ⊆ D∗ is a non-empty set of finite words on D satisfying the following constraints: for any
non-empty word x ∈ T , which can be written unequivocally as x = y · c with y ∈ D∗
and c ∈ D, the word y is in T . Moreover, we require that for every word y ∈ T , there
exists c ∈ D such that y · c ∈ T .
l : T → Σ is a labelling function.

Let T = 〈T, l〉 be a Σ-labelled tree. The elements of T are the nodes of T and the empty
word ε, which is easily shown to necessarily belong to T , is the root of T . Given a node
x ∈ T , we use SuccT (x) (or Succ(x) when the underlying tree is clear) to denote the set
of successors of x, defined as x · Σ ∩ T . The degree of x ∈ T , denoted dT (x) (or d(x)), is
the cardinality of Succ(x). A tree has bounded branching if the degree of all its nodes is
bounded. Given a node x ∈ T , we denote with Tx the subtree 〈Tx, lx〉 rooted at x, defined by
Tx = {y ∈ D∗ | x · y ∈ T}.

An (infinite) branch in T is an infinite increasing (for the prefix relation) sequence of
nodes. A branch can be identified with an infinite word ρ = (xi)i∈N over D; it can be
associated with the infinite word l(ρ) = (l(xi))i∈N over Σ. A branch ρ contains a node x
whenever x is a prefix of ρ.

2.2 Kripke structures
Fix a finite set AP of atomic propositions.

I Definition 2. A Kripke structure is a tuple K = 〈V,E, `〉 where V is a finite set of vertices,
E ⊆ V ×V is a set of edges (requiring that for any v ∈ V , there exists v′ ∈ V s.t. (v, v′) ∈ E),
and ` : V → 2AP is a labelling function.

A path in a Kripke structure is a finite or infinite word w over V such that (wi, wi+1) ∈ E
for all i < |w|. We write Path∗K and PathωK for the sets of finite and infinite paths of K,
respectively. Given a vertex v ∈ V , the execution tree of K from v is the 2AP-labelled
V -tree TK,v = 〈TK,v, ˆ̀〉 with TK,x = {w ∈ V ∗ | v · w ∈ Path∗K} and ˆ̀(v · w) = `(last(v · w)).
Notice that two nodes w and w′ of TK,v for which last(w) = last(w′) give rise to the same
subtrees. A tree is said regular when it corresponds to the execution tree of some finite
Kripke structure.

It will be convenient in some situations to allow Kripke structures to have infinitely many
states. For instance, a tree can be seen as an infinite-state Kripke structure.

CONCUR 2016
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2.3 QCTL∗ and its fragments
This section is devoted to the definition of the logic QCTL∗ and its fragments, and to the
semantics of these logics.

2.3.1 Syntax and (tree) semantics
I Definition 3. The syntax of QCTL∗ over a finite set AP of atomic propositions is defined
by the following grammar:

QCTL∗ 3 ϕs, ψs ::= q | ¬ϕs | ϕs ∨ψs | Eϕp | Aϕp | ∃p. ϕs
ϕp, ψp ::= ϕs | ¬ϕp | ϕp ∨ψp | Xϕp | ϕpUψp

where q and p range over AP. Formulas ϕs and ψs are called state formulas, while ϕp and ψp
are path formulas. The size of a formula ϕ ∈ QCTL∗, denoted |ϕ|, is the number of steps
needed to built ϕ. The logic CTL∗ is obtained from QCTL∗ by disallowing rule ∃p. ϕs. The
logics QCTL and CTL are obtained by using path formulas built with the following grammar:

ϕp, ψp ::= Xϕs | ϕsUψs.

Finally, LTL is the fragment of CTL∗ containing exactly one path quantifier3 (E or A); it is
easily seen that any LTL formula can be written as Eϕ or Aϕ, where ϕ contains no path
quantifier.

QCTL∗ formulas are evaluated over (execution trees of) finite Kripke structures. We begin
with defining the semantics of CTL∗ (and CTL). Given a CTL∗ formula ϕ, an infinite 2AP-
labelled D-tree T = 〈T, l〉, a branch ρ and a node (i.e., a prefix) x of ρ, we write T , ρ, x |= ϕ

to denote that ϕ holds at x along ρ. This is defined inductively as follows:

T , ρ, x |= p iff p ∈ l(x)
T , ρ, x |= ¬ϕ iff T , ρ, x 6|= ϕ

T , ρ, x |= ϕ∨ψ iff T , ρ, x |= ϕ or T , ρ, x |= ψ

T , ρ, x |= Eϕp iff ∃ρ′ containing x. T , ρ′, x |= ϕp

T , ρ, x |= Aϕp iff ∀ρ′ containing x. T , ρ′, x |= ϕp

T , ρ, x |= Xϕp iff ∃a ∈ D. x · a ≤ ρ and T , ρ, x · a |= ϕp

T , ρ, x |= ϕpUψp iff ∃w ∈ D∗. x · w ≤ ρ and
T , ρ, x · w |= ψp and ∀w′ � w. T , ρ, x · w′ |= ϕp

In order to extend this definition to QCTL∗, we first introduce some extra definitions. For a
function l : T → 2AP and P ⊆ AP, we write l∩P for the function defined as (l∩P )(q) = l(q)∩P
for all x ∈ T . Now, for P ⊆ AP, two trees T = 〈T, l〉 and T ′ = 〈T ′, l′〉 are said P -equivalent
(denoted by T ≡P T ′) if T = T ′, and l ∩ P = l′ ∩ P . Then:

T , ρ, x |= ∃p. ϕs iff ∃T ′ ≡AP\{p} T s.t. T ′, ρ, x |= ϕs.

It is easily noticed that for any state formula ϕs of QCTL∗ and any two paths ρ and ρ′
containing node x, we have T , ρ, x |= ϕs if, and only if, T , ρ′, x |= ϕs. In view of this,

3 It is more usual to assume that LTL formulas contain no path quantifier at all; our definition allows for
a more uniform presentation, and fits better in our branching-time setting, making it clear how LTL
formulas are to be evaluated (existentially or universally) in a tree.
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s t s′ t′u′

Figure 1 Two Kripke structures (with empty labelling functions) with s and s′ being bisimilar.

we define T , x |= ϕs in the natural way. Finally, for a Kripke structure K and one of its
states v, we write K, v |= ϕs whenever TK,v, ε |= ϕs.

In the sequel, we use standard abbreviations such as > = p∨¬p, ⊥ = ¬>, Fϕ = >Uϕ,
Gϕ = ¬F¬ϕ and ∀p. ϕs = ¬∃p. ¬ϕs. Also note that Aϕp = ¬E¬ϕp.

2.3.2 Discussion on the semantics.
Several other natural semantics coexist in the literature for propositional quantifiers. Above
we have introduced the tree semantics: ∃p. ϕ holds true when there exists a p-labelling of
the execution tree of the Kripke structure under which ϕ holds. Therefore two nodes (in the
tree) corresponding to the same state of the Kripke structure may be labelled differently
with the newly-quantified propositions. For example, in the Kripke structure depicted at
Fig. 1, we have: s |= ∃p.(EX p∧ EX EX ¬ p), because it is possible to label only the first
occurrence of t with p in the execution tree of this Kripke structure.

Another classical semantics (called the structure semantics) consists in labelling the
Kripke structure directly. With this semantics, ∃p.(EX p∧ EX EX ¬ p) would not hold
true in state s of Fig. 1: all the occurrences of state t in the execution tree would be labelled
the same way.

These two semantics have very different properties (see [15] for a deeper study of these
semantics). But none of them make QCTL bisimulation-invariant4: as we exemplify in the
next section, under both semantics, QCTL can count the number of successors of a given
state (and thus distinguish between states s and s′ in Fig. 1, even though they are bisimilar).

Finally, let us mention the amorphous semantics [7], where ∃p. ϕ holds true at a state s
in some Kripke structure K if, and only if, there exists some Kripke structure K′ with a state
s′ such that s and s′ are bisimilar and for which there exists a p-labeling making ϕ hold true
at s′. With this semantics, the logic is insensitive to unwinding, and more generally it is
bisimulation-invariant (for example, states s and s′ of Fig. 1 satisfy the same formulas). This
semantics corresponds to bisimulation quantification as studied in [5, 9].

2.3.3 Fragments of QCTL∗.
The central topic of this paper is the hierarchy of temporal logics defined by restricting
quantifications in QCTL formulas. We define this hierarchy here. Given QCTL∗ (state)
formulas ϕ and (ψi)i, and atomic propositions (pi)i that appear free in ϕ (i.e., not as
quantified propositions), we write ϕ[(pi → ψi)i] (or ϕ[(ψi)i] when (pi)i are understood from
the context) for the formula obtained from ϕ by replacing each occurrence of pi with ψi.
Given two sublogics L1 and L2 of QCTL∗, we write L1[L2] = {ϕ[(ψi)i] | ϕ ∈ L1, (ψi)i ∈ L2}.

For a set P = {pi | 1 ≤ i ≤ k} ⊆ AP, we define blocks of existential quantifiers ∃P. ϕ as
a shorthand for ∃p1. ∃p2 . . . ∃pk. ϕ. We write EQ1CTL for the set of formulas of the form
∃P. ϕ for ϕ ∈ CTL, and define Q1CTL = CTL[Q1CTL] and Qk+1CTL = Q1CTL[QkCTL].

4 The notion of bisimulation is formally defined in Section 2.4.
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I Example 4. Consider formula

E1Xϕ = EXϕ∧¬∃p.
(
EX (p∧ϕ)∧ EX (¬ p∧ϕ)

)
(where we assume that p does not appear in ϕ). This Q1CTL formula states that there is exactly
one successor satisfying ϕ: if there were two of them, then labelling only one of them with p
would falsify the formula. Now, for P = {pi | 1 ≤ i ≤ k} ⊆ AP, consider the following formula

ϕdupl(P ) = ∃{q1, q2}. E1X (q1)∧ E1X (q2)∧ AX (¬ q1 ∨¬ q2)∧∧
p∈P

(
EX (q1 ∧ p)⇔ EX (q2 ∧ p)

)
.

where P ∩ {q1, q2} = ∅. This formula in Q2CTL holds true whenever there are two different
successor nodes that carry the same atomic propositions of P . Formula ϕexp = ∀P. ϕdupl(P )
in Q3CTL is then true in nodes that have at least 2k +1 successors: it states that any labelling
with P gives rise to at least two successors with the exact same labelling. Of course, a simpler
formula could be obtained for expressing the existence of exactly k successors satisfying a
given property; for instance:

EkXϕ = ∃P.
[ ∧

1≤i≤k
E1X pi ∧

∧
1≤i 6=j≤k

AX ¬
(
pi ∧ pj

)
∧ AX

(( ∨
1≤i≤k

pi
)
⇔ϕ

)]
.

This formula is in Q2CTL. We can express that at least k successors satisfy ϕ in Q1CTL as
follows:

E≥kXϕ = ∃P.
( ∧

1≤i≤k
EX

(
pi ∧

∧
i′ 6=i

¬ pi′
)
∧ AX

(( ∨
1≤i≤k

pi
)
⇒ϕ

))
.

2.4 Expressive power and distinguishing power
In the sequel, we compare the relative expressiveness of the fragments QkCTL. Several criteria
are classically used to compare the expressiveness of temporal logics: one can compare their
ability to distinguish between models (the distinguishing power), their ability to express
properties (the expressive power), or their succinctness. In this paper, we only consider the
former two notions, which we now formally define.

Distinguishing power. A logic L is said to be at least as distinguishing as another logic L′
over a classM of models, denoted L ≥M L′ (we may omit to mentionM when it is clear
from the context), whenever any two states s and s′ of any two structures K and K′ inM
that are L-equivalent (i.e., for all ϕ ∈ L, it holds K, s |= ϕ if, and only if, K′, s′ |= ϕ) are
also L′-equivalent. Both logics are said equally distinguishing, written L ≡M L′, if L ≥M L′,
and L′ ≥M L; finally, L is strictly more distinguishing than L′, denoted L >M L′, whenever
L ≥M L′, and L′ 6≥M L. In our setting,M is the class of all finite Kripke structures.

For classical branching-time temporal logics, it is well known [10] that CTL∗, CTL, and
the fragment B(X ) of CTL not involving the Until modality, all have the same distinguishing
power. Note also that the distinguishing power is often related to some behavioral equivalence.
Here we recall the classical notion of (strong) bisimulation: given two Kripke structures K =
〈V,E, `〉 and K′ = 〈V ′, E′, `′〉, a relation R ⊆ V ×V ′ is a bisimulation when for any (v, v′) ∈ R,
the following properties hold:

`(v) = `′(v′);
for any transition (v, w) ∈ E, there is a transition (v′, w′) ∈ E such that (w,w′) ∈ R;
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for any transition (v′, w′) ∈ E, there is a transition (v, w) ∈ E such that (w,w′) ∈ R.
Two states v and v′ are bisimilar (denoted by v ∼ v′) whenever there exists a bisimulation
relation R such that (v, v′) ∈ R.

Bisimilarity characterizes the distinguishing power of CTL∗, CTL and B(X ) for finitely-
branching Kripke structures: in particular, two bisimilar states cannot be distinguished
by CTL [10]. For instance, CTL cannot distinguish between a finite Kripke structure and its
execution tree.

Expressive power. A logic L is said to be at least as expressive as a logic L′ over a classM
of models, which we denote by L �M L′ (omitting to mention M if it is clear from the
context), whenever for any formula ϕ′ ∈ L′, there is a ϕ ∈ L such that ϕ and ϕ′ are
equivalent overM. Both logics L and L′ are equally expressive, denoted L uM L′, when
L � L′ and L′ � L; finally, L is strictly more expressive than L′, written L �M L′, if L � L′
and L′ 6� L.

One easily notices that expressive power is finer than distinguishing power: being more
distinguishing implies being more expressive. The converse is not true: for instance, CTL∗ is
strictly more expressive than CTL [6], and CTL is strictly more expressive than B(X ).

3 Distinguishing power of QCTL

In this section, we prove the following:

I Theorem 5. Over finite Kripke structures, CTL < Q1CTL ≡ QkCTL ≡ QkCTL∗ ≡ QCTL ≡
QCTL∗ for k ≥ 1.

That CTL < Q1CTL is easily observed, for instance using the Kripke structures of Fig. 1:
states s and s′ are bisimilar, thus equivalent for CTL, but formula E1X> (“there is exactly
one successor”) is true in s and false in s′. We now prove the equivalences of Theorem 5.

3.1 Characteristic formulas with QCTL
As said above, CTL has enough power to distinguish between two non-bisimilar states. More
precisely, given a finite Kripke structure K and a state v, one can build a CTL formula αK,v
such that for any Kripke structure K′ and any state v′, we have: K′, v′ |= αK,v if, and only if,
v ∼ v′ [2].

For QCTL and QCTL∗, the appropriate behavioural equivalence is the isomorphism of
the execution tree. Two trees T = 〈T, `〉 and T ′ = 〈T ′, `′〉 are said isomorphic if there exists
a bijection ϕ : T → T ′ such that `′(ϕ(t)) = `(t) for all t, and ϕ(εT ) = εT ′ and ϕ(u) is a
successor of ϕ(t) in T ′ if, and only if, u is a successor of t in T . As we now explain, QCTL
can capture the behaviour of K up to tree isomorphism: there exists a Q2CTL formula βK,v
such that for any tree T ′, it holds T ′ |= βK,v if, and only if, TK,v and T ′ are isomorphic.

Given a finite Kripke structure K = 〈V,E, `〉, and a vertex v ∈ V = {v0, . . . , vn}, we define
the Q2CTL formula βK,v as follows:

βK,v = ∃V.
[
v ∧ AG

n∧
i=0

(
vi ⇒

(∧
j 6=i
¬vj ∧

∧
p∈`(vi)

p∧
∧

p∈AP\V ∪`(vi)

¬ p∧

¬ E≥d(vi)+1X>∧
∧

(vi,vj)∈E

E1X vj

)]

CONCUR 2016
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Formula βK,v holds true at the root of a tree T ′ when it is possible to associate with every
node of T a state v of K in such a way that this node will behave exactly as v (same labelling
and same successors).

I Lemma 6. Let K = (V,E, `) be a finite Kripke structure, and v ∈ V . For any tree
T ′ = (T ′, `′), we have: T ′, εT ′ |= βK,v if, and only if, TK,v and T ′ are isomorphic.

Lemma 6 shows that Q2CTL is powerful enough to distinguish between two finite Kripke
structures that do not have isomorphic execution trees. Conversely:

I Lemma 7. Two finite Kripke structures that have isomorphic execution trees cannot be
separated by QCTL∗.

3.2 Q1CTL, QCTL and QCTL∗ have the same distinguishing power
We show in this section that Q1CTL is sufficient to separate non-isomorphic trees.

I Proposition 8. Q1CTL has the same distinguishing power as QCTL and QCTL∗ over finite
Kripke structures.

Proof. Given a finite tree U , we can easily define a Q1CTL formula γU expressing that U is
embedded as a subtree, in the following sense: any infinite tree T satisfying γU contains a
subtree that is isomorphic to U . Write U = {pi | 0 ≤ i ≤ k} for the set of nodes of U (with
p0 = εU being the root of U). Formula γU first existentially quantifies over p0, . . . , pk (seen
here as atomic propositions), labelling nodes of T with names of nodes of U . Then γU checks
that

p0 holds true initially;
at most one pi can be true at a time;
if pj is a successor of pi in U , then γU enforces AG (pi⇒ EX pj);
the labelling function of T matches that of U .

Notice that we do not prevent any of the pi to hold true at several places, which would require
an extra universal quantification. Obviously, any tree T containing a subtree isomorphic to U
satisfies γU . The converse also holds: assuming T has been labelled with {pi | 0 ≤ i ≤ k},
we extract a subtree V as follows: the root of T (labelled with p0) is in V, and for each
node n in V labelled with some pi, for each successor pj of pi in U , we insert into V exactly
one successor of n labelled with pj (γU enforces the existence of such a node). It is easily
seen that V is isomorphic to U .

Now, if two regular trees are not isomorphic, there must exist a finite subtree U of one
of them that cannot be embedded into the second one. Then γU will distinguish between
these two trees. It follows that Q1CTL and QCTL (and QCTL∗) have the same distinguishing
power over finite Kripke structures. J

3.3 Behavioural equivalences for QkCTL
We conclude our study of the fragments of QCTL by defining intermediary notions of
bisimulations which we prove characterize each level of the QkCTL hierarchy. We begin with
defining those refined bisimulations. In this definition, for two labelling functions ` : T → 2AP

and ν : T → 2P with P ⊆ AP, we write ` ◦ ν : T → 2AP for the labelling function mapping
each t ∈ T to [`(t) ∩ (AP \ P )] ∪ ν(t).

I Definition 9. Consider two regular trees T = 〈T, `〉 and T ′ = 〈T ′, `′〉. A relation
R ⊆ T × T ′ is a k-labelling bisimulation if R is a bisimulation and either k = 0, or k > 0 and
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for any (t, t′) ∈ R, for any P ⊆ AP and any regular labelling ν : T → 2P (resp. ν′ : T → 2P ),
there exists a regular labelling ν′ : T ′ → 2P (resp. ν : T → 2P ) such that there exists a
(k−1)-labelling bisimulation in the trees U = 〈T, `∪ν〉 and U ′ = 〈T ′, `′∪ν′〉 containing (t, t′).
We write t ≈k t′ when there exists a k-labelling bisimulation containing (t, t′).

Notice that for all k, it holds ≈k+1 ⊆ ≈k. The relation ≈∞ can thus be defined as the
limit of these sequences of relations.

In this definition, with regular labelling of a regular tree 〈T, `〉, we mean a labelling ν such
that 〈T, `◦ν〉 is still regular. We let ∃rp.ϕ be a new QCTL∗ modality where the quantification
ranges only over regular labellings. Formally:

T , ρ, x |= ∃rp.ϕ iff ∃ν : T → 2{p}. ν is regular and 〈T, ` ◦ ν〉, ρ, x |= ϕ.

Quantifying over regular labelling does not restrict the expressive power of our logics:

I Lemma 10. Given a finite Kripke structure K, a state s, and a QCTL∗ formula ∃p.ϕ,

K, s |= ∃p.ϕ iff K, s |= ∃rp.ϕ

Fix two Kripke structures K and K′, and a logic L (intended to range over QkCTL
and QkCTL∗). For any two states s and s′, in K and K′ respectively, we write s ≡L s′ when
s and s′ are L-equivalent (i.e., when they cannot be distinguished by L). It is easily noticed
that if L ⊆ L′, then ≡L′ ⊆ ≡L.

I Lemma 11. Over finite Kripke structures, for any k ≥ 0, the relations ≈k, ≡QkCTL
and ≡QkCTL∗ coincide. More precisely, for any two states s and s′,

s ≈k s′ iff s ≡QkCTL s
′ iff s ≡QkCTL∗ s

′.

As a corollary of Lemmas 6, 7 and 11, we get:

I Corollary 12. For every k, k′, k′′ ≥ 2, the relations ≡QkCTL∗ , ≡Qk′CTL, ≡QCTL, ≈k′′ ,
and ≈∞ coincide.

4 Expressive power of QCTL

We now focus on the relative expressive power of the QkCTL hierarchy. Notice that being
more distinguishing implies being more expressive. Hence we already have CTL ≺ Q1CTL.
In this section, we prove the following:

I Theorem 13. Over finite Kripke structures, CTL ≺ Q1CTL � Q1CTL∗ ≺ Q2CTL u
QkCTL u QkCTL∗ u QCTL u QCTL∗ for k ≥ 2.

4.1 Q2CTL is strictly more expressive than Q1CTL and Q1CTL∗

In order to prove this, we have to exhibit a formula of Q2CTL with no equivalent formula
in Q1CTL. First consider the Kripke structures depicted at Fig. 2. Those structures depend
on an integer parameter p. As stated in the following lemma, these structures cannot be
distinguished by any Q1CTL∗ formula of size less than p:

I Lemma 14. For the Kripke structures Kp and K′p of Fig. 2, and for any ϕ ∈ Q1CTL∗ of
size less than p it holds Kp, s0 |= ϕ if, and only if, K′p, s′0 |= ϕ.
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Kp s0

r ta
[p]

[2]

K′p s′0

r ta
[2] [p]

[2]

Figure 2 The states s0 and s′
0 can be distinguished by E1X ( E1X a) (we use double arrows

labelled with [k] to indicate the presence of k arrows).

I Theorem 15. We have Q2CTL � Q1CTL and Q2CTL � Q1CTL∗.

Proof. Q1CTL is syntactically contained in Q2CTL, so that Q2CTL � Q1CTL. Moreover,
from Theorem 16, every QCTL∗ formula can be expressed in Q2CTL, i.e. Q2CTL � QCTL∗,
which in particular entails Q2CTL � Q1CTL∗.

Moreover the Q2CTL formula E1X (E1X a) (which states that there exists a unique path
leading to a state where there is a unique successor verifying a) allows us to distinguish the
trees of Fig. 2 (for any p): indeed E1X (E1X a) holds true in s0, but not in s′0.

Now assume that E1X (E1X a) have an equivalent formula in Q1CTL∗. On the one hand,
for any p, this formula would holds true in s0 and not in s′0; on the other hand, it would
have a given size p0, and according to Lemma 14 it could not distinguish between s0 and s′0.
Hence E1X (E1X a) has no Q1CTL∗ formula. J

4.2 QCTL and Q2CTL are equally expressive

In this section we prove that the hierarchies QkCTL and QkCTL∗ also collapse in terms of
expressive power. We propose an effective translation, using symmetric tree automata, which
proves the following result:

I Theorem 16. Any QCTL∗ formula can be translated into an equivalent formula in Q2CTL.

4.2.1 Symmetric tree automata

We consider here so-called symmetric tree automata (i.e., automata over unranked trees
of arbitrary branching), borrowing formalism from MSO-automata of [12, 13, 24], in order
to prove that the expressiveness hierarchy of QkCTL collapses: the proof consists in first
translating any QCTL formula into a (symmetric) tree automaton, and then expressing
acceptance of such a tree automaton as a Q2CTL formula. Using “classical” tree automata
(as in [16]), the second step would not be possible (at least not easily), as QCTL cannot
distinguish the different successors in a ranked tree; moreover, it would only provide an
equivalent formula for a limited branching degree.

In the literature, a similar construction is done for MSO [23, 11, 1, 24]: MSO-automata
are powerful tree automata whose transition functions are defined with first-order-logic
formulas (where the states of the automata are used as unary predicates); this provides a
powerful way of describing transition functions for unranked trees with arbitrary branching.
Then any MSO formula ϕ can be turned into a MSO-automaton Aϕ recognizing exactly the
trees satisfying ϕ. Here we use an slightly different (but equally expressive) model of tree
automata, which correspond to MSO-automata where transition functions are in a so-called
basic form (see [24] for full details). Formally:
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I Definition 17. Fix an alphabet Σ. A symmetric parity tree automaton over Σ is a
tuple A = 〈Q, q0, δ,Ω〉 where

Q is the finite set of states of the automaton, and q0 is the initial state;
δ : Q× Σ→ 2(N2Q

×22Q
) is the transition function;

Ω: Q→ N defines the parity acceptance condition.

An execution of such a tree automaton 〈Q, q0, δ,Ω〉 over a Σ-labelled D-tree T = 〈T, l〉 is
a Q× T -labelled Q×D-tree T ′ = 〈T ′, l′〉 satisfying the following requirements:

l′(εT ′) = (q0, εT ), and for any node n = (qi, di)1≤i≤k, it holds l′(n) = (qk, (di)1≤i≤k);
for any node n = (qi, di)1≤i≤k of T ′, there is a tuple (E,U) ∈ δ(l′(n)) such that, writing
e =

∑
s∈2Q E(s) and viewing E as a multiset {Ej | 1 ≤ j ≤ e}, there exists a set

∆ = {d′j | 1 ≤ j ≤ e} of e distinct directions in D such that
for all 1 ≤ j ≤ e, it holds (di)1≤i≤k · d′j ∈ T ,
for all 1 ≤ j ≤ e, and for all q ∈ Ej , node n · (q, d′j) is in T ′,
for all node (di)1≤i≤k+1 in T such that dk+1 /∈ ∆, for there exists q ∈ U , such that for
all q ∈ q, node n · (q, dk+1) is in T ′.

A branch of an execution tree is accepting if its associated sequence of states of A satisfies
the parity condition (the least priority appearing infinitely often is even). An execution tree
is accepting whenever all its branches are. The language L(A) of such an automaton A is
the set of trees over which A has an accepting execution tree.

I Example 18. Let AP = {a, b} and Σ = 2AP. Let A be the automaton with states {q0, q1, q2},
with q0 being the initial state, and with

δ(q0, σ) =
{

(q1 7→ 1; q0) if a ∈ σ
(∅; q0) otherwise

δ(q1, σ) =


(∅; q2) if b /∈ σ
(q1 7→ 1; q0) if a, b ∈ σ
(∅; q0) otherwise

and δ(q2, σ) = (∅; q2) for any σ. The transition δ(q0, a) = (q1 7→ 1; q0) means that when the
automaton is visiting some node n in state q0, one successor of n will be visited in state q1,
and all the other nodes will be visited in state q0. Similarly, δ(q2, σ) = (∅; q2) indicates that
when the automaton is in state q2, it will remain in state q2 when visiting all the successors
of the node being visited; in this case, ∅ represents the empty multiset, or equivalently the
constant function 0. In the end, assuming that q0 and q1 are accepting (Büchi condition),
this automaton accepts those tree in which any node labelled with a has a successor labelled
with b.

As defined above, symmetric tree automata are alternating, in the sense that they may
launch several computations along the same subtree of the input tree. A symmetric tree
automaton is said non-alternating5 when the transition function takes values in 2(NQ×2Q).
One may notice that in this case, any execution tree can be seen as a D-tree, instead of a
Q×D-tree. The automaton of Example 18 is non-alternating.

It is not difficult to notice that symmetric tree automata are closed under union: given
two symmetric tree automata A and B, there exists a tree automaton C accepting the union

5 The classical terminology for this class of automata is non-deterministic, for historical reasons. We prefer
using non-alternating, which better characterizes this class.
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of the set of trees accepted by A and B. Similarly, non-alternating symmetric tree automata
are easily seen to be closed under projection.

Symmetric tree automata can also be proven to be closed under complement; this however
involves dualizing the transition function and writing it back under the expected basic
form. Finally, any symmetric tree automaton can be transformed into a non-alternating one
accepting the same set of trees. This can be achieved by a refined powerset construction, as
explained in [24]. In the end:

I Theorem 19 ([24]). Any symmetric tree automaton can be made non-alternating. Non-
alternating symmetric tree automata are closed under union, intersection, projection and
complement.

4.2.2 From QCTL to symmetric tree automata
In this section, we briefly explain how a state formula of QCTL∗ can be translated into a (non-
alternating) symmetric tree automaton accepting the same tree language. This construction
follows the same ideas as explained in [16]: in that paper however, the construction builds
a “classical” tree automaton, running on bounded-branching ranked trees. The translation
back to QCTL is not possible for such tree automata, as QCTL cannot distinguish between
ranked successors of a node.

The construction is inductive, using Theorem 19 for the various rules defining state-
formulas of QCTL∗. The basic cases of atomic propositions and boolean operations are
easy to handle. Existential quantification over atomic propositions is handled by projection:
given a tree automaton Aϕ corresponding to a QCTL∗ formula ϕ, the projection of Aϕ from
alphabet 2AP to alphabet 2AP\{p} yields a tree automaton characterizing formula ∃p. ϕ.

Finally, formulas of the form Eϕp and Aϕp are handled by considering word automata
for the path formula ϕp: nested QCTL subformulas can be handled separately, by induction,
and replaced by fresh atomic propositions. The resulting formula ϕ̃p is a pure LTL formula,
and can be turned into a deterministic parity word automaton, which in turn is easily turned
into a symmetric tree automaton for Eϕ̃p or Aϕ̃p. The nested QCTL subformulas can then
be included back by plugging the corresponding symmetric tree automata where needed.

Notice that this construction involves several exponential blowups in the size of the
automaton and in the number of priorities. Since model checking QkCTL formulas is
k-EXPTIME-complete, there is no hope of avoiding this non-elementary explosion in the
construction of the automaton (because our translation back into Q2CTL is linear in the size
of the automaton, as we explain below).

4.2.3 From symmetric tree automata to Q2CTL
In this section, we turn a non-alternating symmetric tree automaton A = (Q, q0, δ,Ω) into a
QCTL formula ΦA such that T ∈ L(A)⇔ T , ε |= ΦA for any 2AP-labelled tree T .

We begin with a preliminary lemma, which we believe is interesting in itself but will be
used in a special case in the sequel.

I Lemma 20. For any LTL formula Eϕ, there exists a Q1CTL formula Ψ Eϕ such that for
all tree T , it holds T , ε |= Eϕ if, and only if, T , ε |= Ψ Eϕ.

Proof. Following classical techniques [22, 21], we associate with ϕ a Büchi (word) automaton
Bϕ = 〈Q, q0, δ, F 〉 accepting exactly the set of infinite words in which ϕ holds. The auto-
maton Bϕ is a non-deterministic word automaton, so that for any q ∈ Q and any σ ∈ 2AP,
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it holds δ(q, σ) ⊆ Q. The acceptance condition is defined in terms of a set F ⊆ Q of states:
an execution is accepting if some state of F is visited infinitely many times.

We use this automaton in order to write a Q1CTL-formula characterizing those trees
containing (at least) one branch accepted by Bϕ. The formula expresses that the tree can be
(partially) labelled with states of Bϕ in such a way that at least one branch is fully labelled
with a sequence of states corresponding to an accepting run of Bϕ. Following this intuition,
we use the states of Q = {qi | 0 ≤ i ≤ n = |Q| − 1} as new atomic propositions. For the
sake of readability, we define the following two shorthand formulas: for a subset S ⊆ Q,
formula λS is the propositional formula

∨
q∈S q, while for P, P ′ ⊆ AP, we write χP,P ′ for∧

p∈P p∧
∧
p′∈P ′ ¬ p′. We then let Ψ Eϕ = ∃q0 . . . ∃qn. Ψ̃ Eϕ, with Ψ̃ Eϕ being defined as

q0 ∧
n∧
i=0

AG
(
qi⇒

(
¬λQ\{qi} ∧

[ ∨
P⊆AP′

(χP,AP′\P ∧ EXλδ(qi,P ) ∧¬ EXλQ\δ(qi,P ))
]))

∧
(
AG AF (¬λQ ∨λF )

)
where AP′ stands for AP \ {q0, . . . , qn}. Formula Ψ Eϕ reads as follows: it is possible to label
the input tree with propositions (qi)0≤i≤n in such a way that the root is labelled with q0,
and any node labelled with some qi is not labelled with any other state and has a successor
node labelled with a possible successor state of Bϕ. This in particular entails that at least
one branch ρ is fully labelled with states of Q. Finally, the second part of the formula asserts
that any branch has to fulfill the Büchi acceptance condition or to contain unlabelled nodes.
In particular, the branch ρ identified above satisfies the Büchi condition.

It is now easy to prove equivalence of Eϕ and Ψ Eϕ:
consider a tree T = 〈T, l〉 in which one branch ρ satisfies ϕ: then Bϕ has an accepting
run on l(ρ), and this run can be used to label T with states of Bϕ so as to fulfill Ψ̃ Eϕ;
conversely, if T can be labelled with states of Q in order to fulfill Ψ̃ Eϕ, then one branch
has to be fully labelled, and each node along that branch will be labelled with exactly
one state of Q. Formula Ψ Eϕ then enforces that the labelling of consecutive nodes is
coherent with the transition function of Bϕ, and that it satisfies the Büchi condition. J

We now describe our main construction: we consider a non-alternating symmetric parity
tree automaton A = 〈Q, q0, δ,Ω〉, where Q = {qi | 0 ≤ i ≤ n = |Q|−1} and δ(q, σ) ⊆ NQ×2Q
is a set of pairs (E,U) with E : Q → N and U ⊆ Q. For such a pair (E,U), we write
k(E) =

∑
q∈QE(q), and we let kmax be the largest such value appearing in δ. We also see E

as a multiset {Ei | 1 ≤ i ≤ k(E)}.
Reusing ideas (and notations) of the proof of Lemma 20, and with AP′ = AP\{q0, . . . , qn,

p1, . . . , pkmax}, our formula ΦA is written as ∃q0 . . . ∃qn.∃p1 . . . ∃pkmax . Φ̃A, where Φ̃A is
defined as

q0 ∧
n∧
i=0

AG
[
qi ⇒

(
¬λQ\{qi} ∧

∨
P⊆AP′

(
χP,AP′\P ∧

∨
(E,U)∈δ(qi,P )

Ψ(E,U)
))]
∧¬Ψ E¬ parity(Ω)

where Ψ(E,U) encodes the transition (E,U) of A and Ψ E¬ parity(Ω) encodes the parity accept-
ance condition. Using Lemma 20, the latter formula can be expressed as a Q1CTL formula
(since parity acceptance condition can be expressed in LTL). Now, we let

Ψ(E,U) =
k(E)∧
j=1

[
E1X pj ∧ EX

(
pj ∧

∧
1≤j′≤kmax
∧ j′ 6=j

¬pj′ ∧Ej
)
∧ AX

(
(
k∧
j=1
¬pj)⇒

∨
q∈U

q
)]
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Note that Ψ(E,U) belongs to Q1CTL (because it uses E1X pj), so that ΦA is in Q2CTL. It is
not hard to see that ΦA characterizes the behaviour of A, since the labelling of a tree T
with {qi | 0 ≤ i ≤ n} corresponds to an execution tree of A on T . This ends the proof of
Theorem 16.

5 Concluding remarks

We see two main directions for future work. First it would be interesting to consider the
expressiveness of QCTL∗ fragments when the size of block of quantifiers (i.e. the number of
atomic propositions used in a block) is bounded (several of our proofs use arbitrary many
propositions). The second direction is to analyze the expressiveness of these logics in the
context of the structure semantics (when the labellings apply to Kripke structures instead of
execution trees) in order to see whether the hierarchy also collapses for this semantics.
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